氯嘧磺隆高效降解菌的分离筛选及其生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯嘧磺隆属磺酰脲类除草剂,其具有超高效、广谱、低毒和高选择性等特点,已在我国广泛使用,但其残留期长,易形成农田环境污染,对后茬敏感作物有严重的药害,是农业生产的一个重要问题。本文针对氯嘧磺隆残留的农田污染问题,研究其微生物降解技术,采用摇瓶富集驯化方法分离筛选高效降解菌株,应用形态、生理生化和分子方法对新菌株进行了分类地位鉴定,研究了该菌的主要生物学特性和降解酶粗酶液的特性,并采用盆栽实验法对该株降解菌的效果进行了初步评价。本研究对有效控制农田农药污染,保障农产品安全生产均具有重要的意义。具体研究结果如下:
     应用摇瓶富集驯化培养方法,从河北、北京、天津等地的农药厂排污口淤泥中分离到1株氯嘧磺隆高效降解菌株E-1。菌株在含10 mg/L氯嘧磺隆的液体无机盐培养基中,反应72h,其降解效率可以达到94.74%。
     运用形态、生理生化及分子方法对该菌株进行了鉴定。鉴定结果显示,该菌株的16SrDNA基因序列与巨大芽孢杆菌Bacillus megaterium的相似性达到100%,结合菌株的其他特征,综合判定该株菌为巨大芽孢杆菌。
     研究明确了E-1菌株的生长特性和营养特性。E-1菌株在牛肉膏蛋白胨培养基上生长迅速,pH5~9均能生长,pH10时不生长,最适pH为6.0;菌株在15~45℃均能生长,50℃不能生长,最适生长温度为30℃;菌株生长对氧气的需求要量不高,装瓶量40 mL/250mL至200mL/250mL均能良好生长;菌株的最适碳氮源分别为葡萄糖和酵母粉。
     研究明确,该菌株的降解酶位于细胞内,为诱导型酶。该菌的粗酶液在pH为7.0的磷酸缓冲液中,温度30℃时,对氯嘧磺隆的降解率可达到52.73%(蛋白含量4.747mg/ml,反应30min);底物氯嘧磺隆的浓度对粗酶的活性有抑制作用,酶活性随着氯嘧磺隆浓度的增加而降低,底物氯嘧磺隆浓度从5mg/L上升到50mg/L,酶的降解效率从52.79%降低到27.41%。
     生测结果显示,施用降解菌对氯嘧磺隆药污染具有显著的修复作用,施用降解菌可保证敏感作物的出苗率及较正常的株高。在本实验条件下,当土壤中氯嘧磺隆浓度为14μg/kg时,降解菌的修复作用最明显,不加菌处理的玉米株高被抑制率为58.35%,加入降解菌液后其株高被抑制率可降低到了15.66%,如果提高施菌量,其修复效果可能更佳。
Chlorimuron-theyl has become one of the worst pollutants in soil because of extensive using in the world. As a result, effects of degrading bacteria on chlorimuron-theyl and its bio-degradation has attracted increasing attention. In present research, degrading bacteria were isolated and identified, and its degradation effects were analyzed.
     One highly effective degrading bacterium of chlorimuron-ethyl named E-1. The E-1 was isolated from soil which has long term applied with chlorimuron-ethyl through enrichment culture method. The E-1 used chlorimuron-theyl as sole nitrogen source. The degradation percentage of chlorimuron-ethyl was 94.74% after cultured 72h in liquid mineral medium containing 10 mg/L chlorimuron-ethyl. Based on the morphological appearances, physiological biochemical characters and 16SrDNA sequence analyse, the E-1 was 100% homologous with Bacillus megaterium. The E-1 was identified as Bacillus megaterium.
     The E-1 grew fast when the pH value of 5.0~9.0 in beef peptone medium, the E-1 grew best when the pH was 6.0 and stopped grow when the pH value of 10.0. The E-1 grew fast when the temperature was 15~45℃, the E-1 grew best when the temperature was 30℃and stopped grow when the temperature was 50℃. The appropriate aeration was 40~200mL/250mL. The optimum carbon and nitrogen was glucose and yeast powder, respectively.
     The degrading-enzymes produced by E-1 and located in cells, a kind of inducible enzyme. Temperature and pH were key factors affecting degrading activity of enzymes. The enzymes showed the highest activity at 30℃and pH 7.0 in the Na_2HPO_4-NaH_2PO_4 buffer. The degradation percentage of chlorimuron-ethyl was 52.73% ,when the enzyme content was 4.747 mg/ml andreaction time was 30 min in degradation experiment of chlorimuron-ethyl. The degrading-enzymes were much more stable at pH 6.5~7.0 and 4℃. While the chlorimuron-ethyl initial concentration raised, the degrading activity of enzymes declined; the enzymes degrading activity declined along with the enzymes concentration at the same chlorimuron-ethyl concentration.
     Bioassay experiment showed that the seeding and height of sensitive crop of degrading bacteria treatment were compatible with the control, on the whole, it considered that E-1 could recover the contamination of chlorimuron-ethyl. The recover effects of E-1 were the most prominent when the chlorimuron-ethyl concentration was 14μg/kg in soil, which the corns’hight inhibition rate of degrading bacteria treatment was 15.66% lower than that of the chlorimuron-ethyl control. The recover ability of E-1 might be even better when the introduction of degrading bacteria was increased.
引文
1. 丁海涛, 李顺鹏, 沈标, 崔中利. 拟除虫菊酯类农药残留降解菌的筛选及其生理特性研究. 土壤学报, 2003, 40 (1): 123-129.
    2. 丁伟, 杨薇, 白赫, 曲娟娟. 长残留除草剂氯嘧磺隆降解菌的筛选、鉴定和降解特性. 作物杂志, 2007 , 4(1): 88-91.
    3. 付聿成, 王妮娅, 杜金华. 金帅苹果多酚氧化酶提取及部分酶学特性研究. 食品工业科技, 2006, 27(2): 59~62.
    4. 富丽静, 王雷, 宋文华. 复合微生物在高密度主养鲫池塘中的应用. 水产科学, 2002, 21(1): 23~25.
    5. 韩厚安. 关于“长残效”除草剂在应用中的几个问题. 湖北植保, 1996 (1): 28~31.
    6. 侯颖, 孙军德, 徐建强, 徐超蕾. 养殖水体中高效氨氮降解菌的分离与鉴定. 水产科学 2005, 24(10): 22~24.
    7. 黄春燕, 陈铁保, 王宇, 孙宝宏. 氯嘧磺隆在土壤中降解动态研究. 2001, 27(3): 15~16.
    8. 黄星, 孙纪全, 潘继杰, 顾立峰, 孙笑非, 李顺鹏. 甲磺隆水解酶酶促反应体系的建立与特性研究. 农药学学报, 2005, 7(4): 329~333.
    9. 黄星, 何健, 潘继杰, 孙纪全, 顾立峰, 李顺鹏. 甲磺隆降解菌 FLDA 的分离鉴定及其降解特性研究. 土壤学报, 2006, 43(5): 821~826.
    10. 黄星, 何健, 潘继杰, 洪青, 李顺鹏. 噻吩磺隆降解菌 FLX 的分离鉴定及降解特性.中国环境科学, 2006,26(2): 214~218.
    11. 黄艳红, 袁中一, 王应睐. 巨大芽胞杆菌青霉素酰化酶在枯草杆菌中的表达及其分离纯化.中国生物化学与分子生物学报, 1999,1: 173~175.
    12. 林玉锁, 龚瑞忠, 朱忠林. 农药与生态环境保护. 北京:化学工业出版社, 1999, 174~176.
    13. 刘辉, 陶波. 土壤微生物对氯磺隆降解的研究. 农业与技术, 2003, 23 (1): 36~39, 55.
    14. 刘辉. 霉菌对磺酰脲类除草剂残留解毒效应的研究. 东北农业大学硕士学位论文, 2003, 15~28.
    15. 刘世亮, 骆永明, 丁克强, 曹志洪. 土壤中有机污染物的植物修复研究进展. 土壤, 2003, 35 (3): 187~192.
    16. 栾凤侠, 陶波. 作保灵对长残效除草剂的解毒效应. 农药, 2003, 142 (16) : 38~40.
    17. 栾新红, 丁鉴峰, 孙长勉, 汉丽梅, 吕秋凤, 杨建成. 除草剂阿特拉津影响大鼠脏器功能的毒理学研究. 沈阳农业大学学报, 2003, 34(6): 441~445.
    18. 马文漪, 孔志明, 尹大强. 微生物降解四种农药的毒性效应.南京大学学报(自然科学), 1993, 29(4): 631~636.
    19. 潘学冬, 虞云龙. 生物修复中细菌的遗传修饰. 微生物学报, 2002, 42(1): 121~124.
    20. 秦炳权. 磺酰脲类除草剂在谷物中的应用. 农药译从, 1997, 19(2): 8~10.
    21. 邵劲松, 沈标, 洪青, 李顺鹏. 一株绿磺隆降解菌的分离鉴定及其特性研究. 土壤学报, 2003, 40 (6): 952~956.
    22. 沈东升, 方程冉, 周旭辉. 一株甲磺隆降解真菌(Penicilliumsp.)的降解特性研究. 浙江大学学报 (农业与生命科学版), 2002, 28 (5): 542~546.
    23. 苏少泉. 除草剂作用机制的生物化学与生物技术的应用. 生物工程进展, 1993, 14(2): 30.
    24. 苏少泉, 徐其中, 刘全玉. 豆磺隆使用的一些问题. 农药科学与管理, 1995, 53(1) : 22~23.
    25. 孙威江, 袁弟顺. 农艺措施对茶叶农药残留成分降解的作用. 福建农业大学学报, 1998, 27(3): 307~311.
    26. 宋小玲, 马波, 皇甫超河, 强胜. 除草剂生物测定方法. 杂草科学, 2004, 3: 1~5.
    27. 陶波, 苏少泉. 安全剂对绿磺隆解毒效应的研究. 杂草学报, 1993, 7(4): 1~6.
    28. 陶波. 作物保护剂对磺酰脲类除草剂解毒效应述评. 沈阳农业大学学报, 1999, 30 (3): 361~364.
    29. 陶波, 何钟佩. 豆磺隆在土壤中残留动态及对后茬作物影响. 西北植物学报, 2000, 6: 1229~1233(增刊).
    30. 滕春红, 陶波, 赵世君. 高效降解真菌对大豆田除草剂氯嘧磺隆的降解特性研究. 大豆科学, 2006, 25(1): 58-61.
    31. 滕春红. 氯嘧磺隆对土壤微生态的影响及其高效降解真菌的研究. 东北农业大学博士学位论文, 2006, 94.
    32. 田艳, 马勉, 刘长龄. 磺酰脲类除草剂抗性杂草的出现及其抗性机理. 杂草科学, 1995, 4: 8~10.
    33. 王险峰, 关成宏, 辛明远. 我国长残效除草剂使用概况、问题及对策. 农药, 2003, 42(11): 5~10.
    34. 闻长虹. 磺酰脲类除草剂的微生物降解与转化. 池州师专学报, 2004, 18 (5): 43~45.
    35. 伍宁丰, 邓敏捷, 史秀云, 梁果义, 姚斌, 范云六. 一种新的有机磷降解酶的分离纯化及酶学性质研究. 科学通报, 2003, 48(23): 2446~2450.
    36. 杨绍义, 陈铁保. 普施特在土壤中降解的研究. 杂草学报, 1991, 5 (4): 15~20.
    37. 杨小红, 李俊, 葛诚, 沈德龙. 微生物降解农药的研究新进展. 微生物学报, 2003, 30 (6): 93~96.
    38. 杨基峰, 虞云龙, 方华, 王晓, 单敏. 甲磺隆污染土壤的生物修复. 环境化学, 2006, 25(1): 76~79.
    39. 姚东瑞, 宋小玲, 陈杰. 绿磺隆残留的生测方法研究. 杂草学报, 1995, 9(2): 19~24.
    40. 姚东瑞, 陈杰, 宋小玲, 叶贵标. 磺酰脲类除草剂残留与降解的研究进展. 农药, 1997, 36(7): 32~37.
    41. 姚东瑞, 陈杰, 宋小玲. 绿磺隆在三种土壤中的降解. 江苏农业学报, 1998, 14 (4): 215~219.
    42. 虞云龙, 陈鹤鑫, 樊德方, 盛国英, 傅家谟. 拟除虫菊酯类杀虫剂的酶促降解. 环境利学, 1998, 19 (3): 66~69.
    43. 张朝贤, 钱益新, 胡祥恩, 叶贵林. 合理用药预防长残效除草剂残留药害. 杂草科学, 1998, (2): 2~4.
    44. 张成双. 农业部对含磺酰脲类除草剂产品实行管理. 四川农业科技, 2005, 8: 31.
    45. 张纪忠, 微生物分类学, 上海:复量大学出版社, 1990.
    46. 张蓉, 邱永德, 花日茂, 汤锋, 曹德菊, 操海群, 李学德. 磺酰脲类除草剂在环境中的转归和影响. 安徽农业科学, 2003, 31(6): 1007~1009.
    47. 中国科学院微生物研究所细菌分类组编, 一般细菌常用鉴定方法, 北京: 科学出版社, 1985.
    48. 周军英, 林玉锁, 徐亦刚, 石利利, 陈良燕. 巨大芽胞杆菌 LY-4 对土壤中杀虫单农药的降. 中国环境科学, 2000, 20(6): 511~514.
    49. 周旭辉.土壤中甲磺隆的微生物降解研究. 浙江大学硕士论文, 2000.
    50. Ahrens W H. North Dakota Weed Control Guide NDSU Extension Service. 1999, 22~43.
    51. Anderson J J, Duika J J. Environmental fate of sulfometuron methyl in aeobic soils. Agric.Food Chem, 1985, 33: 596~602.
    52. Anderson J J. Residual Phytotoxicity of Chlorsulfuron in Soil. Joural of Enviro Quality, 1985, 14: 111~114.
    53. Berger B M, Janowitz K, Menne H J, Hoppe H H. Comparative study on microbial and chemical transformation of eleven sulfonylurea herbicides in soil. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 1998, 105(6): 611~623. 43 ref.
    54. Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Biochemistry, 1976, 72: 248~254.
    55. Brian J R, Fermor T R, Semple K T. Induction of PAH--catabolism in Mushroom Compost and its Use in the Biodegradation of Soil-associated Phenanthrene. Environmental Pollution, 2002, 118 (1):65~73.
    56. Cambon J P, Zheng S Q, Bastide J. Chemical or microbiological degradation of sulfonylurea herbicides in soil. Cas du Sulfometuron -methy. Weed Res, 1992, 32: 1~7.
    57. Cheng T C, Harvey S P, Chen G L. Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol, 1996, 62:1636~1641.
    58. Cigliolli C, Allicvi L, Salardi C. Miorobial ecotoxicity and persistence in soil of the herbicide bensulfuron-methyl. Environ Health B, 1998. 33(4): 381~398.
    59. Iida T, Senoo S, Sato Y. Isomerization and Peroxidizing Phytotoxicity of Thiadiazolidine-thione Compounds. Zeitschrift fuer Naturforschung.Section C, 1995, 50, no3-4: 186~192.
    60. Haimi J, Fritze H, Moilanen P. Decomposer Animals and Bioremediation of Soils. Environmental pollution, 2000, 107(2): 233~238.
    61. Herkovits J, Perez C C, Herkovits F D. Ecotoxicological Studies of Environmental Samples from Buenos Aires Area Using a Standardized Amphibian Embryo Toxicity Test(AMPHITOX). Environmental Pollution, 2002, 116(1): 177~183.
    62. James T K, Liolland P T, Rahman A, LU Y R. Degradation of the sulfonyiurea herbicides chlorsulfuron and triasulfuron in a high-organic-matter volcanic soil, Weed Res,1999, 39:137.
    63. Joshi M M, Brown H M, Romesser J A . Degradation of chlorsulfuron by soil microorganisms. Weed Sci, 1985, 33: 888~893.
    64. Kerry K, Eric L Z, BruceM T. Microbial transformaion of prosulfuron. Agric Food Chem, 1997,45: 1479~1485.
    65. Kulowski K, Zirbes E L, Thede B M. Microbial Transformations of Prosulfuron. Agric Food Chem, 1997, 45: 1479.
    66. Nannipieri P, Bollag J M. Use of enzymes to detoxify pesticide contaminated soils and waters. Journal of Environmental Quality, 1991, 20: 510~517.
    67. Nystrom B, Blank H. Effects of the sulfonylurea herbicide metsulfuron methyl on growth and macromolecular synthesis in the green alga Selenastrumcapricor2 nutum. Aquatic Toxicology , 1998 ,43 : 25~39.
    68. Ohshiro K, Nikaidou N, Watanabe T. Molecular cloning and nucleotide sequencing of organophosphorus insecticide hydrolase gene from Arthrobacter sp. strain B-5. J Biosci Bioeng, 1999, 87: 531~534
    69. Pezeshki S R, Delaune R D, Jugsujinda A. The Effects of Crude Oil and the Effectiveness of Cleaner Application Following Oiling on US Gulf of Mexico Coastal Marsh Plants. The Effects of Soil Spill and Clean-up on Dominant US Gulf Coast Marsh Macrphy. Environmental pollution, 2001, 112(3): 483~489.
    70. Radosevich M S, Traina S J, Hao Y L, Tuovinen O H. Degradation and mineralization of atrazine by a soil bacterial isolate. Applied Environmental Microbiology, 1995, 61 (1): 297~302.
    71. Sabater C, Cuesta A , Carrasco R. Effects of bensulfuron methyl and cinosulfuron on growth of four freshwater species of phytoplankton. Chemosphere ,2002 ,46 : 953~960.
    72. Strek J. Fate of Chlorsulfuron in the Enviroment. 2. Field Evaluations. Pestic. Sci., 1998,53: 52~70.
    73. Vencill W K, Foy C L. Triazine Resistance in Common Lambsquarters and Smooth pigweed in Virginia. In proceedings, Southern weed science society, 39 th annual meeting, 1986, 5.
    74. Wei L P ,Yu H X,Sun Y,et al. The effects of three sulfonylurea herbicides and their degradation producs on the green algae chlorella pyrenoidosa. Chemo2 sphere ,1998 ,37 :747 - 751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700