轴压荷载下干湿循环—硫酸盐侵蚀耦合作用混凝土长期性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:硫酸盐侵蚀混凝土的过程是一个涉及物理、化学、力学等多方面作用效应的复杂现象,其影响因素众多、危害很大,是混凝土耐久性研究的重要内容之一。实际工程中,当混凝土结构处于荷载与硫酸盐侵蚀环境因素耦合作用时,其作用机理更为复杂。在这种耦合作用下,如何判定结构的功能,即安全性、适用性与耐久性是否满足设计、施工、使用等方面的要求,需要对混凝土的长期性能等进行研究分析。然而,在现有的相关研究中,多因素耦合作用下混凝土性能试验方法还没有统一,造成研究成果缺乏规律性并存在普遍争议,尤其是环境因素作用下混凝土长期变形的试验方法还没有相应的标准遵循。这些因素都有可能会造成研究过程中出现偏差,并导致工程设计和施工的不安全,兹待解决。
     在混凝土结构的设计中,往往取混凝土28天的力学性能或者是一个定值作为其材料性能的判定指标。然而,混凝土材料性能是随时间不断变化的,导致结构性能也在随时间不断变化,当这一变化在结构处于危险状态时则更为突出,会危及结构的安全,因此,获取和使用混凝土当前状态的材料性能指标十分重要。目前,荷载与环境多因素耦合作用下混凝土性能研究还很不充分,处于起步阶段,尤其是对于荷载与干湿循环硫酸盐耦合作用下混凝土依时性力学性能的研究分析仍是空白。
     本文围绕轴压荷载、干湿循环、硫酸盐侵蚀三重因素共同作用下混凝土的力学、耐久、徐变性能开展了试验研究和理论研究。主要工作如下:
     (1)通过对国内外已有硫酸盐侵蚀混凝土试验方法比较与分析,根据工程实际环境下混凝土硫酸盐侵蚀的特点,设计了轴压荷载下干湿循环-硫酸盐侵蚀耦合作用混凝土长期性能演变规律的试验方案;
     (2)开展了压应力、干湿循环和硫酸盐侵蚀作用下混凝土长期性能的试验研究,主要考虑了浸泡方式、应力水平和硫酸盐溶液浓度等因素。试验结果表明,多因素的耦合作用,由于多因素之间选择的水平不同,耦合后对混凝土性能的复合作用会产生或延缓或加速的效应;
     (3)基于描述物理系统的元胞自动机模型,制定了混凝土内各元胞状态在时间和空间上的演化规则,并考虑由于混凝土的不均匀性引起的硫酸根离子在混凝土内传输的不确定性,建立了用于模拟多因素耦合作用下硫酸根离子侵蚀混凝土的元胞自动机模型;
     (4)基于材料损伤力学的有效应力理论与混凝土徐变B3模型,建立了硫酸盐侵蚀作用下混凝土轴心受压构件徐变模型。进一步考虑与干湿循环影响系数相结合,给出了干湿循环硫酸盐侵蚀下混凝土徐变预测模型。上述模型的预测结果与试验数据吻合较好;
     (5)在混凝土损伤本构理论的基础上,考虑硫酸盐侵蚀混凝土的特征,建立了硫酸盐侵蚀混凝土的损伤计算模型,并结合徐变对混凝土应力应变关系影响规律,建立了干湿循环硫酸盐侵蚀下混凝土依时性应力-应变关系模型。该模型能较好的与试验数据曲线对应,并能合理地模拟其破坏过程。
As one of the important contents of concrete durability, sulfate attack on concrete, being many impact factors and great harmfulness, is a complex phenomenon which involves the effects of actions of physics, chemistry and mechanics. In practice, how to predicate the predetermined functions (e.g. safety, applicability, durability, etc.) of concrete structure suffered from couple effects of loading, single or double sulfate attack, requires the analysis of concrete long-term performance. However, test methods of concrete preformances under the coupled actions of the multi-factors have not been unified, such as creep test method of concrete under harsh environmental conditions has no corresponding standard to follow, which result in research achievement in lack of regularity and being commonplace disputed. These might cause deviations in research and unsafeties in engineering practice, to be solved.
     In the design of concrete structure, it is completely important to obtain the current state of material performances of concrete in service which are not constant in actual and differ from the concrete in28days in traditional design. The current statuses of concrete performances are affected by ambient environment, creep and damage, etc. At present, research on material performances of concrete under the combined actions are insufficiency and on beginning phase, the time-dependent behaviors of concrete suffered from coupled effects is still blank.
     In response to these circumstances, in this dissertation, experimental and theoretical studies are carried out on mechanical, durability and long-term performance of concrete under the coupled actions of axial compression, dry-wet cycle and shlfate attack. The main works are as follows:
     (1) Based on the comparison and analysis of pre-existing test mothod domestic and overseas, in combination of characteristics of concrete sulfate attack in engineering practical environment, testing programs for long-term performances of concrete subjected to coactions of axial compression, dry-wet cycle and sulfate attack are established.
     (2) Long-term properties and their relations with different immersion ways, stress levels and concentrations of sulfate solution of concrete exposed to multiple aggressions are experimentally studied. It is indicated that effects of combined factors on concrete performance are delayed or accelerated due to distinction between the alternative factors.
     (3) According to the general principle of the cellular automaton model, the evolution rules of the cells in concrete in time and space are proposed and the uncertainty of sulfate ion diffusion caused by inhomogenous in concrete are taken into consideration. A modified cellular automaton model is presented to simulate the diffusion process of sulfate ion in concrete under multiple corrosion factors.
     (4) On account of the concrete damage mechanics theory and the B3creep model, a modified B3creep model is presented to predict the time-dependent deformations of concrete under coupled effects of sustained loading and sulfate attack. Furthermore, in combination with the impact factor of drying and wetting cycle, a new creep model is established for prediction in the condition of dry-wet cycle and sulfate attack. All prediction models herein can agree well with the test data.
     (5) On the basis of concrete damage constitutive theory, a damage model of concrete suffered from sulfate attack is proposed which take the characteristics of concrete sulfate attack into account. In combination of the creep effects on concrete strength, modulus of elasticity and strain, a time-dependent stress-strain model of concrete under the coupled effects of axial compression, dry-wet cycle and sulfate attack is presented. This model can provide good predictions on the stress-strain relationship curves of the concrete and rational simulations on the failure propagation.
引文
[1]中华人民共和国国家统计局.中国统计年鉴—2011[J].北京:中国统计出版社,2011.
    [2]中国公路学会.公路学科发展研究报告(2011)[J].中国公路,2012,(15):34-43.
    [3]Metha P K, Monterio P J M.覃维祖,王栋民,丁建彤译.混凝土一微观结构、性能和材料(原著第三版)[M].北京:中国电力出版社,2008.
    [4]宁夏,孙继成,崔源声.我国近五年商品混凝土行业碳排放量计算[J].商品混凝土,2011,(8):25-27.
    [5]Thomas E, Stanton J. Cement and concrete control San Francisco-Oakland Bay bridge [J]. American Concrete Institute Journal,1935,32(9):1-27.
    [6]孙伟.提高耐久性和服役寿命是重大混凝土工程建设的重中之重[J].江苏科技信息,2006,(7):1-4.
    [7]冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社,2009.
    [8]赵庚,马峰玲.高抗硫酸盐材料现场试验报告[J].混凝土与水泥制品,1997,(2):10-13.
    [9]马保国,贺行洋,苏英,陈友治,李永鑫,朱洪波.内盐湖环境中混凝土硫酸盐侵蚀破坏研究[J].混凝土,2001,(4):11-15.
    [10]冷发光,马孝轩,丁威,王晶,周永祥,纪宪坤.滨海盐渍土环境中暴露17年的钢筋混凝土桩耐久性分析[J].建筑结构,2011,41(11):144,148-151.
    [11]马宏威,张雷,林学玮,寇继海.硫酸盐对桥涵基础混凝土的侵蚀分析及预防措施[J].东北公路,2003,26(2):119-121.
    [12]程选生,杜永峰,石晓宇,李慧.黄土对地下贮库的湿陷敏感性及化学侵蚀影响[J].地下空间与工程学报,2006,2(6):1072-1075.
    [13]金祖权,孙伟,张云升,刘志勇.荷载作用下混凝土的碳化深度[J].建筑材料学报,2005,8(2):179-183.
    [14]万小梅.力学荷载及环境复合因素下混凝土结构劣化机理研究[D].西安:西安建筑科技大学,2011.
    [15]Wang H L, Lu C H, Jin W L, and Bai Y. Effect of external loads on chloride transport in concrete [J]. Journal of materials in Civil Engineering,2011,23(7):1043-1049.
    [16]Schneider U, Piasta J, Nagele E, and Piasta W. Stress corrosion of cementitious materials in sulphate solutions [J]. Materials and Structures,1990,23(2):110-115.
    [17]Jin Z Q, Sun W, Jiang J Y, and Zhao T J. Damage of concrete attacked by sulfate and sustained loading [J]. Journal of Southest University (English Edition),2008,24(1):69-73.
    [18]潘丽云,武志刚,赵顺波.应力状态下混凝土受硫酸盐侵蚀深度的神经网络预测分析[J].华北水利水电学院学报,2008,29(5):34-36.
    [19]Chen S F, Zheng M L, and Wang B G Study of high-performance concrete subjected to coupled action from sodium sulfate solution and alternating stresses [J]. Journal of materials in Civil Engineering,2009,21(4):148-153.
    [20]Sun W, Zhang Y M, Yan H D, and Mu R. Damage and damage resisitance of high strength concrete under the action of load and freeze-thaw cycles [J]. Cement and Concrete Research, 1999,29(9):1519-1523.
    [21]韩冰,曹健,董敬勋.持续荷载作用对粉煤灰混凝土冻融性能的影响[J].中国铁道科学,2012,33(2):33-37.
    [22]Tumidajski P J, Chan G W, and Philipose K E. An effective diffusivity for sulfate transport into concrete [J]. Cement and Concrete Research,1995,25(6):1159-1163.
    [23]Lorente S, Yssorche-Cubaynes M P, and Auger J. Sulfate transfer through concrete:migration and diffusion results [J]. Cement and Concrete Composites,2011,33(7):735-741.
    [24]高培伟,吴胜兴,林萍华,吴中如,卢小琳,杨传喜.硫酸盐在水泥基材料中的扩散和渗透特征[J].河海大学学报(自然科学版),2007,35(4):434473.
    [25]万旭荣.硫酸盐侵蚀环境下的混凝土扩散反应规律研究及数值模拟[D].南京:南京理工大学,2010.
    [26]牛立聪.荷载与硫酸盐侵蚀耦合作用下硫酸根离子在混凝土中扩散反应规律的数值模拟研究[D].南京:南京理工大学,2012.
    [27]Marchand J, Samson E, Maltais Y, and Beaudoin J J. Theoretical analysis of the effect of weak sodium sulfate solutions on the durability of concrete [J]. Cement and Concrete Composites, 2002,24(3-4):317-329.
    [28]左晓宝,孙伟.硫酸盐侵蚀下的混凝土损伤破坏全过程[J].硅酸盐学报,2009,37(7):1063-1067.
    [29]杨全兵,杨钱荣.硫酸钠结晶对混凝土破坏的影响[J].硅酸盐学报,2007,35(7):877-880,885.
    [30]梁咏宁,袁迎曙.硫酸盐侵蚀环境因素对混凝土性能的影响—研究现状综述[J].混凝土,2005,(3):28-30,66.
    [31]Santhanam M, Cohen M D, and Olek J. Sulfate attack research-whither now? [J]. Cement and Concrete Research,2001,31(6):845-851.
    [32]Neville A. The confused world of sulfate attack on concrete [J]. Cement and Concrete Research, 2004,34(8):1275-1296.
    [33]Tian B, and Cohen M D. Does gypsum formation during sulfate attack on concrete lead to expansion? [J]. Cement and Concrete Research,2000,30(1):117-123.
    [34]Santhanam M, Cohen M D, and Olek J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack [J]. Cement and Concrete Research,2003,33(3): 325-332.
    [35]Eden M A. The laboratory investigation of concrete affected by TSA in the UK [J]. Cement and Concrete Composite,2003,25(8):847-850.
    [36]Tsivilis S, Sotiriadis K, and Skaropoulou A. Thaumasite form of sulfate attack (TSA) in limestone cement pastes [J]. Journal of the European Ceramic Society,2007,27(2-3): 1711-1714.
    [37]高小建,马保国,周奇志.水泥混凝土TSA侵蚀研究进展[J].材料导报,2004,18(8):46-49.
    [38]Thomas M D A, Rogers C A, and Bleszynski R F. Occurrences of thaumasite in laboratory and field concrete [J]. Cement and Concrete Composite,2003,25(8):1045-1050.
    [39]Schmidt T, Lothenbach B, Romer M, Scrivener K, Rentsch D, and Figi R. A thermodynamic and experimental study of the conditions of thaumasite formation [J]. Cement and Concrete Research,2008,38(3):337-349.
    [40]Hobbs D W, and Taylor M G Nature of the thaumasite sulfate attack mechanism in field concrete [J]. Cement and Concrete Research,2000,30(4):529-533.
    [41]Loudon N. A review of the experience of thaumasite sulfate attack by the UK Highways Agency [J]. Cement and Concrete Composite,2003,25(8):1051-1058.
    [42]Iden I K, and Hagelia P. C, O and S isotopic signatures in concrete which have suffered thaumasite formation and limited thaumasite form of sulfate attack [J]. Cement and Concrete Composite,2003,25(8):839-846.
    [43]Naik N N, Jupe A C, Stock S R, Wilkinson A P, Lee P L, and Kurtis K E. Sulfate attack monitored by microCT and EDXRD:influence of cement type, water-to-cement ratio, and aggregate [J]. Cement and Concrete Research,2006,36(1):144-159.
    [44]Skaropoulou A, Tsivilis S, Kakali G, Sharp J H, and Swamy R N. Long term behavior of portland limestone cement mortars exposed to magnesium sulfate attack [J]. Cement and Concrete Composite,2009,31(9):628-636.
    [45]Mehta P K. Sulfate attack on concrete separating myths from reality [J]. Concrete International, 2000,22(8):57-61.
    [46]Kurtis K E, Monteiro P J M, and Madanat S. Empirical models to predict concrete expansion caused by sulfate attack [J]. ACI Materials Journal,2000,97(2):156-161.
    [47]American Concrete Insitute (ACI). Building code requirements for reinforced concrete [S]. ACI-318-38. Detroit,1989.
    [48]American Society for Testing and Materials (ASTM). Standard test method for potential expansion of portland motars exposed to sulfate [S]. ASTM C 452-2006. West Conshohocken, 2006.
    [49]American Society for Testing and Materials (ASTM). Standard test method for length change of hydraulic-cement motars exposed to a sulfate solution [S]. ASTM C 1012-09. West Conshohocken,2009.
    [50]曹征良,袁雄洲,邢锋,丁铸.美国混凝土硫酸盐侵蚀试验方法评析[J].深圳大学学报理工版,2006,23(3):201-210.
    [51]中华人民共和国建设部.建筑防腐蚀工程施工及验收规范[S].GB 50212-2002.北京:中国计划出版社,2002.
    [52]中国建筑材料联合会.水泥抗硫酸盐侵蚀试验方法[S]. GB/T 749-2008.北京:中国标准出版社,2008.
    [53]中国工程建设标准化协会化工分会.工业建筑防腐蚀设计规范[S]. GB 50046-2008.北京:中国计划出版社,2008.
    [54]中华人民共和国住房和城乡建设部.混凝土结构耐久性设计规范[S]. GB/T 50476-2008.北京:中国建筑工业出版社,2008.
    [55]高礼雄,姚燕,王玲,余海燕.水泥混凝土抗硫酸盐侵蚀试验方法的探讨[J].混凝土,2004,(10):12-13,17.
    [56]Lee H, Cody R D, Cody A M, and Spry P G Reduction of concrete expansion by ettringite using crystallization inhibition techniques [R]. Iowa State University, Ames,2001.
    [57]Ganjian E, and Pouya H S. Effect of magnesium and sulfate ions on durability of silica fume blended mixes exposed to the seawater tidal zone [J]. Cement and Concrete Research,2005, 35(7):1332-1343.
    [58]Sahmaran M, Erdem T K, and Yaman I O. Sulfate resistance of plain and blended cements exposed to wetting-drying and heating-cooling environments [J]. Construction and Building Materials,2007,21(8):1771-1778.
    [59]Tixier R, and Mobasher. Modeling of damage in cement-based materials subjected to external sulfate attack. I:formulation [J]. Journal of Materials in Civil Engineering,2003,15(4): 305-313.
    [60]Tixier R, and Mobasher. Modeling of damage in cement-based materials subjected to external sulfate attack. Ⅱ:comparison [J]. Journal of Materials in Civil Engineering,2003,15(4): 314-322.
    [61]KosmatkaS H .钱觉时等译.混凝土设计与控制[M].重庆:重庆大学出版社,2005.
    [62]亢景富.混凝土硫酸盐侵蚀研究中的几个基本问题[J].混凝土,1995,(3):9-18.
    [63]乔宏霞,何忠茂,刘翠兰.粉煤灰混凝土在硫酸盐环境中的动弹性模量研究[J].粉煤灰综合利用,2006,(1):6.-8.
    [64]赵铁军.混凝土渗透性[M].北京:科学出版社,2006.
    [65]李淑进,赵铁军,吴科如.混凝土渗透性与微观结构关系的研究[J].混凝土与水泥制品,2004,(2):6-8.
    [66]石明霞,谢友均,刘宝举.水泥—粉煤灰复合胶凝材料抗硫酸盐结晶侵蚀性[J].建筑材料学报,2003,6(4):350-355.
    [67]马昆林,谢友均,龙广成,刘运华.硫酸钠对水泥砂浆的物理侵蚀作用[J].硅酸盐学报,2007,35(10):1376-1381.
    [68]Xie Y J, Ma K L, and Long G C. Sulfate crystallization attack on cement-based materials [J]. Key Engineering Materials,2009,400-402:89-99.
    [69]马昆林,谢友均,龙广成,朱岱力.水泥基材料在硫酸盐结晶侵蚀下的劣化行为[J].中南大学学报(自然科学版),2010,41(1):303-309.
    [70]陈记豪,钱晓军,赵顺波.干湿循环—硫酸盐作用的混凝土中硫酸根离子分布预测[J].河南科学,2008,26(7):815-817.
    [71]李长永,贾春燕,高润东,赵顺波.干湿循环下硫酸根在混凝土中的传输规律研究[J].人民黄河,2009,31(12):114-116.
    [72]李凤兰,马利衡,高润东,赵顺波.侵蚀方式对硫酸根离子在混凝土中传输的影响[J].长江科学院院报,2010,27(3):62-65.
    [73]高润东.复杂环境下混凝土硫酸盐侵蚀微—宏观劣化规律研究[D].北京:清华大学,2010.
    [74]高润东,赵顺波,李庆斌,陈济豪.干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J].土木工程学报,2010,43(2):48-54.
    [75]袁晓露,李北星,崔巩,赵尚传,周明凯.干湿循环—硫酸盐侵蚀下矿物掺合料对混凝土耐久性的影响[J].硅酸盐学报,2009,37(10):1754-1759.
    [76]袁晓露,李北星,崔巩,赵尚传.干湿循环—硫酸盐侵蚀下混凝土损伤机理的分析[J].公路,2009,(2):163-166.
    [77]Atis C D, Ozcan F, Kilic A, Karahan O, Bilim C, and Severcan M H. Influence of dry and wet curing conditions on compressive strength of silica fume concrete [J]. Building and Environment,2005,40(12):1678-1683.
    [78]Huang W H. Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber [J]. Cement and Concrete Research,1997,27(3):395-406.
    [79]Kosa K, and Naaman A E. Corrosion of steel fiber reinforce concrete [J]. ACI Materials Journal, 1990,87(1):27-37.
    [80]Yague A, Valls S, Vazquez E, and Albareda F. Durability of concrete with addition of dry sludge from waste water treatment plants [J]. Cement and Concrete Research,2005,35(6):1064-1073.
    [81]Mohr B J, Nanko H, and Kurtis K E. Durability of thermomechanical pulp fiber-cement composites to wet/dry cycling [J]. Cement and Concrete Research,35(8):1646-1649.
    [82]张亚梅,陈胜霞,高岳毅.浸—烘循环作用下橡胶水泥混凝土的性能研究[J].建筑材料学报,2005,8(6):665-671.
    [83]张伟勤,刘连新,代大虎.混凝土在卤水、淡水中的干湿循环腐蚀试验研究[J].青海大学学报(自然科学版),2006,24(4):25-29.
    [84]王琴.混凝土在干湿循环与硫酸盐侵蚀双重因素作用下的损伤研究[D].扬州:扬州大学,2008.
    [85]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].南京:东南大学,2006.
    [86]袁晓露.多因素耦合作用下高性能混凝土的长期物理力学性能研究[D].武汉:武汉理工大学,2010.
    [87]Grabowski E, Czarnecki B, Gillott J E, Duggan C R, and Scott J F. Rapid test of concrete expansivity due to internal sulfate attack [J]. ACI Materials Journal,1992,89(5):469-480.
    [88]中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准[S].GB/T 50082-2009.北京:中国建筑工业出版社,2009.
    [89]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [90]Schneider U, and Piasta W G. The behavior of concrete under Na2SO4 solution and sustained compression or bending [J]. Magazine of Concrete Research,1991,43:281-289.
    [91]Schneider U, and Chen S W. The chemomechanical effect and the mechanochemical effect on high-performance concrete subjected to stress corrosion [J]. Cement and Concrete Research, 1998,28(4):509-522.
    [92]牛建刚,牛荻涛.荷载作用下混凝土的耐久性研究[J].混凝土,2008,(8):30-33.
    [93]Xing F, Huang Z, Dong B Q, and Luo S. Study on the sulfate corrosion of concrete under the action of loading [J]. Key Engineering Materials,2009,400-402:175-180.
    [94]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [95]莫斯克文BM等著.倪继淼等译.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1988.
    [96]Zivica V, Szabo V. The behaviour of cement composite under compression load at sulphate attack [J]. Cement and Concrete Research,1994,24(8):1475-1484.
    [97]Gerdes A, and Wittmann F H. Influence of stress corrosion on fracture energy of cementitious materials [C]. Proceedings:FRAMCOS-2:Fracture Mechanics of Concrete Structures, Freiburg, 1995:271-278.
    [98]Werner K C, Chen Y X, and Odler I. Investigations on stress corrosion of hardened cement pastes [J]. Cement and Concrete Research,2000,30(9):1443-1551.
    [99]Schneider U, and Chen S W. Modeling and empirical formulas for chemical corrosion and stress corrosion of cementitious materials [J]. Materials and Structures,1998,31(10):662-668.
    [100]Schneider U, and Chen S W. Behavior of high-performance concrete (HPC) under ammonium nitrate solution and sustained load [J]. ACI Materials Journal,1999,96(1):47-51.
    [101]张秀英.混凝土梁的应力腐蚀断裂实验研究[J].河海大学学报,1986,14(4):119-126.
    [102]林毓梅,冯琳.在海水中混凝土应力腐蚀试验研究[J].水利学报,1995,(2):40-45.
    [103]林毓梅,吴相豪.在盐酸溶液(PH=2)中混凝土应力腐蚀试验研究[J].河海大学学报,1996,24(4):114-118.
    [104]林毓梅,姜国庆.在5%硫酸钠溶液中混凝土应力腐蚀试验研究[J].混凝土与水泥制品,1996,(2):22-25.
    [105]孙伟.荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J].东南大学学报,2006,36(S2):7-14.
    [106]慕儒,孙伟,缪昌文.荷载作用下高强混凝土的硫酸盐侵蚀[J].工业建筑,1999,29(8):52-55,63.
    [107]余红发,孙伟,刘连新,翁智财,陈浩宇,李美丹.在盐湖卤水环境中混凝土应力腐蚀行为[J].哈尔滨工业大学学报,2007,39(12):1965-1968.
    [108]李金玉等.高浓度和应力状态下混凝土硫酸盐侵蚀性的研究[c].第五届全国混凝土耐久性学术交流会,大连,2000:281-290.
    [109]董必钦,罗帅,邢锋.多因素对混凝土硫酸盐腐蚀的影响研究[J].混凝土,2007,(9):33-36.
    [110]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学,2000.
    [111]Makoto Y. Reliability-based criteria for corrosion in prestressed concrete bridge girders [D]. Ann Arbor:University of Michigan,2004.
    [112]刘斯凤.荷载-复合离子-千湿交替下生态混凝土的损伤过程与寿命[D].南京:东南大学,2004.
    [113]Kong A. Freeze-thaw behaviour of circular concrete members confined by fibre reinforced polymer jackets when simultaneously subjected to sustained axial loads [D]. Ontario:Queen's University,2005.
    [114]黄鹏飞.钢筋混凝土在环境腐蚀与弯曲荷载协同作用下的损伤失效研究[D].北京:中国建筑材料科学研究院,2004.
    [115]Bassuoni M T, and Nehdi M L. Durability of self-consolidating concrete to sulfate attack under combined cyclic environments and flexural loading [J]. Cement and Concrete Research,2009, 39(3):206-226.
    [116]潘丽云,杨普,高润东,赵顺波.应力和干湿循环共同作用下硫酸根在混凝土中传输试验研究[J].港工技术,2009,46(5):30-32.
    [117]余振新,高建明,宋鲁光,汪廷秀,薛宝法,孙伟.荷载-千湿交替-硫酸盐耦合作用下混凝土损伤过程[J].东南大学学报(自然科学版),2012,42(3):487-491.
    [118]Hatt W K. Notes on the effect of time element in loading reinforced concrete beams [C]. ASTM Proceedings,1907,7:421-422.
    [119]Fuller A H, and Moore C C. Time tests of concrete [J]. American Concrete Institute Journal, 1916,12(2):302-310.
    [120]Neville A M. Role of cement in creep of mortar [J]. American Concrete Institute Journal,1959, 55(3):963-984.
    [121]Smith E B. The flow of concrete under sustained loads [J]. American Concrete Institute Journal,1917,13(2):99-102.
    [122]Davis R E, and Davis H E. Flow of concrete under the action of sustained loads [J]. American Concrete Institute Journal,1931,27(3):837-901.
    [123]惠荣炎,黄国兴,易冰若.混凝土徐变[M].北京:中国铁道出版社,1988.
    [124]Bazant Z P. and Wittmann F H. Creep and shrinkage in concrete structures [M]. New York: John Wiley & Sons,1982.
    [125]Neville A M, Dilger W H, and Brooks J J. Creep of plain and structural concrete [M]. London and New York:Construction Press,1983.
    [126]王元丰.钢管混凝土徐变[M].北京:科学出版社,2006.
    [127]黄国兴,惠荣炎,王秀军.混凝土徐变与收缩[M].北京:中国电力出版社,2012.
    [128]American Concrete Institute (ACI). Prediction of creep, shrinkage, and temperature effects in concrete structures [S]. ACI209R-92, Detroit,1992.
    [129]Comite Euro-International Du Beton. CEB-FIP Model Code, Design Code [S]. CEB-FIP 1990, London,1990.
    [130]Bazant Z P, and Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures-Model B3 [J]. Materials and Structures,1995,28(6):357-365.
    [131]Goel R, Kumar R, Paul D K. Comparative study of various creep and shrinkage prediction models for concrete [J]. Journal of Materials in Civil Engineering,2007,19(3):249-260.
    [132]Podvalnyi A M. Creep of freezing concrete [J]. Dokl.Akad.Nauk.SSSR,1963,148(5): 1148-1151.
    [133]O'Brien K J, Bischoff P H, and Bremner T W. Preliminary study of freeze-thaw effects on reinforced concrete beams under load [C]. Annual Conference of the Canadian Society for Civil Engineering, Sherbrooke,1997:11-20.
    [134]American Society for Testing and Materials (ASTM). Standard Test Method for Creep of Concrete in Compression [S]. ASTM C 512-02. West Conshohocken,2002.
    [135]British Standards Institution. Testing of concrete-Part 9:Determination of creep of concrete cylinders in compression [S]. BS ISO 1920-9:2009. London,2009.
    [136]Piasta W G, and Schneider U. Deformations and elastic modulus of concrete under sustained compression and sulphate attack [J]. Cement and Concrete Research,1992,22(1):149-158.
    [137]Torrenti J M, Nguyen V H, Colina H, Maou F L, Benboudjema F, and Deleruyelle F. Coupling between leaching and creep of concrete [J]. Cement and Concrete Research,2008,33(8): 816-821.
    [138]Hannant D J. The mechanisam of creep in concrete [J]. Materials and Structures,1968,1(5): 403-410.
    [139]Maxson O G, and Achenbach G D. Properties of concrete in contact with pressurized hydrocarbons and sea water [J]. Journal of Petroleum Technology,1976,29(4):360-362.
    [140]Parrott L J. Increase in creep of hardened cement paste due to carbonation under load [J]. Magazine of Concrete Research,1975,27:179-181.
    [141]Plowman J M. Maturity and the strength of concrete [J]. Concrete Reseach,1956,22(8): 13-22.
    [142]Washa G W, Wendt K F. Fifty year properties of concrete [J]. American Concrete Institute Journal,1975,72(1):20-28.
    [143]American Concrete Institute (ACI).Guide to factors affecting shrinkage and creep of hardened concrete [S]. ACI 209 1R-05. Detroit,2005.
    [144]Wood S L. Evaluation of the long-term properties of concrete [J]. ACI Materials Journal,1992, 88(6):630-643.
    [145]Kjellsen K O, and Detwiler R J. Later-age strength prediction by a modified maturity model [J]. ACI Materials Journal,1993,90(3):220-227.
    [146]Yi S T, Moon Y H, and Kim J K. Long-term strength prediction of concrete with curing temperature [J]. Cement and Concrete Research,2005,35(10):1961-1969.
    [147]Manuel R F, and MacGregor J G Analysis of restrained reinforced concrete columns under sustained load [J]. ACI Journal,1967,64(1):12-24.
    [148]Chovichien V, Gutzwiller M J, and Lee R H. Analysis of reinforced concrete columns under sustained load [J]. ACI Journal,1973,70(10):692-700.
    [149]Choo C C, Gesund H, and Harik I E. Influence of long-term loads on concrete column strength [J]. Practice Periodical on Structure Design and Construction,2003,8(1):57-60.
    [150]韩林海,陶忠,刘威,陈宝春.长期荷载作用对方钢管混凝土柱承载力的影响[J].中国公路学报,2001,14(3):58-61,66.
    [151]彭凯,黄志堂,肖盛燮,陈山林,王家林.持续荷载下混凝土抗压强度的时效模型[J].重庆建筑大学学报,2004,26(4):29-34.
    [152]周建民.考虑时间因素的混凝土结构分析方法[D].上海:同济大学,2006.
    [153]Wang Y F, and Zhang D J. Creep-effect on mechanical behavior of concrete confined by FRP under axial compression [J]. Journal of Engineering Mechanics,2009,135(11):1315-1322.
    [154]Zhang D J, Wang Y F, and Ma Y S. Compressive behaviour of FRP-confined square concrete columns after creep [J]. Engineering Structures,2010,32(8):1957-1963.
    [155]梁咏宁,袁迎曙.硫酸盐腐蚀后混凝土单轴受压本构关系[J].哈尔滨工业大学学报,2008,40(4):532-535.
    [156]Huang B, and Qian C X. Experiment study of chemo-mechanical coupling behavior of leached concrete [J]. Construction and Building Materials,2011,25(5):2649-2654.
    [157]Gjorv O E, and Shah S P. Testing methods for concrete durability [J]. Materials and Structures, 1971,4(5):295-304.
    [158]Castro P, Veleva L, and Balancan M. Corrosion of reinforced concrete in a tropical marine environment and in accelerated tests [J]. Construction and Building Materials,1997,11(2): 75-81.
    [159]Santhanam M. Studies on sulfate attack:mechanisms, test methods, and modeling [D]. West Lafayette:Purdue University,2001.
    [160]欧阳东.混凝土抗硫酸盐侵蚀试验的一种新方法[J].腐蚀与防护,2003,24(9):369-370,375.
    [161]Bazant Z P, and Wittmann F H. Creep and shrinkage in concrete structure [M]. New York: John Wiley & Sons,1982.
    [162]Castel A, Francois R, and Arliguie G. Effect of loading on carbonation penetration in reinforced concrete elements [J]. Cement and Concrete Research,1999,29(4):561-565.
    [163]王文博.抗冻混凝土粘结锚固性能及有应力混凝土抗冻性试验研究[D].哈尔滨:哈尔 滨工业大学,2005.
    [164]Lopez M, Kahn L F, Kurtis K E. Characterization of elastic and time-dependent deformations in normal strength and high performance concrete by image analysis [J]. Cement and Concrete Research,2007,37(8):1265-1277.
    [165]Lopez M, Kahn L F, Kurtis K E. Characterization of elastic and time-dependent deformations in high performance lightweight concrete by image analysis [J]. Cement and Concrete Research,2009,39(7):610-619.
    [166]中华人民共和国国家质量监督检验检疫总局.通用硅酸盐水泥[S].GB 175-2007.北京:中国标准出版社,2007.
    [167]国家质量技术监督局.水泥胶砂强度检验方法(ISO法)[S]. GB/T17671-1999.北京:中国标准出版社,1999.
    [168]中华人民共和国住房和城乡建设部.普通混凝土拌合物性能试验方法标准[S]. GB/T50080-2002.北京:中国建筑工业出版社,2002.
    [169]中华人民共和国住房和城乡建设部.普通混凝土力学性能试验方法标准[S]. GB/T50081-2002.北京:中国建筑工业出版社,2002.
    [170]Hansen T C. Long-term strength of high fly ash concretes [J]. Cement and Concrete Research, 1990,20(2):193-196.
    [171]Berndt M L. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate [J]. Construction and Building Materials,2009,23(7):2606-2613.
    [172]中华人民共和国国家质量监督检验检疫总局.碟形弹簧[S]. GB/T 1972-2005.北京:中国标准出版社,2005.
    [173]中华人民共和国国家质量监督检验检疫总局.建筑用卵石、碎石[S]. GB/T 14685-2001.北京:中国标准出版社,2001.
    [174]Pommersheim J, and Chang J. Kinetics of hydration of tricalcium aluminate in the presence of gypsum [J]. Cement and Concrete Research,1988,18(6):911-922.
    [175]Gospodinov P N. Numerical simulation of 3D sulfate ion diffusion and liquid push out of the material capillaries in cement composites [J]. Cement and Concrete Research,2005,35(3): 520-526.
    [176]梁咏宁,王佳,孔海新,季韬.混凝土硫酸根离子扩散系数的研究[J].混凝土,2011,(3):11-13.
    [177]张柬,浦海,张连英.硫酸盐在混凝土中扩散过程研究[J].徐州工程学院学报(自然科学版),2012,27(2):57-62.
    [178]Von Neumann J. Theory of self-reproducing automata [M]. Illinois:University of Illinois Press, 1966.
    [179]Wolfram S. Theory and applications of cellular automata [M]. Singapore:World Scientic,1986
    [180]Ermentrout G B, and Edelstein-Keshet L. Cellular automata approaches to biological modeling [J]. Journal of Theoretical Biology,1993,160(1):97-133.
    [181]Nagel K, Wolf D E, Wager P, and Simon P. Two-lane traffic rules for cellular automata:a systematic approach [J]. Physical Review E,1998,58(2):1425-1437.
    [182]Biondini F, Bontempi F, Frangopol D M, and Malerba P G. Cellular automata approach to durability analysis of concrete structures in aggressive environments [J]. Journal of Structural Engineering,2004,130(11):1724-1737.
    [183]Podrouzek J, and Teply B. Modelling of chloride transport in concrete by cellular automata [J]. Engineering Mechanics,2008,15(3):213-222.
    [184]Vorechovska D, Chroma M, Podrouzek J, Rovnanikova P, and Teply B. Modelling of chloride concentration effect on reinforcement corrosion [J]. Computer-Aided Civil and Infrastructure Engineering,2009,24(6):446-458.
    [185]Cao J, Wang Y F, Li K P, and Ma Y S. Modeling the diffusion of chloride ion in concrete using cellular automaton [J]. Journal of Materials in Civil Engineering,2012,24(6):783-788.
    [186]Choprad B, and Droz M. Cellular automata modeling of physical systems [M]. London: Cambridge University Press,1998.
    [187]赵顺波,杨晓明.受侵蚀混凝土内硫酸根离子扩散及分布规律试验研究[J].中国港湾建设,2009,(3):26-29,53.
    [188]唐旭光,谢友均,龙广成.动弹性模量在混凝土抗侵蚀性能评价中的应用[J].湖南科技大学学报,2007,22(1):55-58.
    [189]乔宏霞,何忠茂,刘翠兰.硫酸盐环境混凝土动弹性模量及微观研究[J].哈尔滨工业大学学报,2008,40(8):1302-1306.
    [190]Irassar E F, Maio A D, and Batic O R. Sulfate attack on concrete with mineral admixtures [J]. Cement and Concrete Research,1996,26(1):113-123.
    [191]Zhang Z Z, Olek J, and Diamond S D. Studies on delayed ettringite formation in early-age, heat-cured mortars:Ⅰ. Expansion measurements, changes in dynamic modulus of elasticity, and weight gains [J]. Cement and Concrete Research,2002,32(11):1729-1736.
    [192]Roziere E, Loukili A, Hachem R E, and Grondin F. Durability of concrete exposed to leaching and external sulphate attacks [J]. Cement and Concrete Research,2009,39(12):1188-1198.
    [193]Santhanam M, Cohen M D, and Olek J. Mechanism of sulfate attack:A fresh look-Part 1. Summary of experimental results [J]. Cement and Concrete Research,2002,32(6):915-921.
    [194]Santhanam M, Cohen M D, and Olek J. Mechanism of sulfate attack:A fresh look-Part 2. Proposed mechanisms [J]. Cement and Concrete Research,2003,33(3):341-346.
    [195]Monteiro P J M, and Kurtis K E. Time to failure for concrete exposed to severe sulfate attack [J]. Cement and Concrete Research,2003,33(7):987-993.
    [196]Rigo E, Schmidt-Dohl F, Krauss M, and Budelmann H. Transreac:a model for the calculation of combined chemical reactions and transport processes and its extension to a probabilistic model [J]. Cement and Concrete Research,2005,35(9):1734-1740.
    [197]Samson E, and Marchand J. Modeling the transport of ions in unsaturated cement-based materials [J]. Computer and Structures,2007,85(23-24):1740-1756.
    [198]Pack S W, Jung M S, Song H W, Kim S H, and Ann K Y. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment [J]. Cement and Concrete Research,2010,40(2):302-312.
    [199]Sarkar S, Mahadevan S, Meeussen J C L, van der Sloot H, and Kosson D S. Numerical simulation of cementitious materials degradation under external sulfate attack [J]. Cement and Concrete Composites,2010,32(3):241-252.
    [200]曹双寅.受腐蚀混凝土的力学性能[J].东南大学学报,1991,21(4):89-95.
    [201]曹双寅,朱伯龙.受腐蚀混凝土和钢筋混凝土的性能[J].同济大学学报,1990,18(2):239-242.
    [202]李士伟,王迎飞,王胜年.硫酸盐环境下混凝土损伤预测模型[J].武汉理工大学学报,2010,32(14):35-39,44.
    [203]Neville A. Consideration of durability of concrete structures:past, present, and future [J]. Materials and Structures,2001,34(2):114-118.
    [204]Sereda P J, Feldman R F, and Swenson E G Effect of sorbed water on some mechanical properties of hydrated Portland cement pastes and compacts [C]. Proceedings of Symposium on Structure of Portland Cement Paste and Concrete, Washington D C,1966,58-73.
    [205]Maes M A, Wei X, and Dilger W H. Fatigue reliability of deteriorating prestressed concrete bridges due to stress corrosion cracking [J]. Canadian Journal of Civil Engineering,2001, 28(4):673-683.
    [206]Xi Y P, and Ababneh A. The coupling effects of environmental and mechanical loadings on durability of concrete [C]. Proceedings of the International Conference on Advances in Concrete and Structure, Xuzhou, China,2003,2003:354-365.
    [207]袁承斌,张德峰,刘荣桂,梁正平,吕志涛.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报(自然科学版),2003,31(1):50-54.
    [208]刘荣桂,陆春华,吕志涛.氯盐侵蚀下预应力混凝土结构耐久性分析[J].建筑结构,2005,35(4):28-30,37.
    [209]刘荣桂,陈好,颜庭成.氯盐环境条件下预应力混凝土氯离子侵蚀模型研究[J].混凝土,2006,(9):1-4.
    [210]陈拴发,郑木莲,王秉纲.粉煤灰混凝土应力腐蚀特性试验研究[J].中国公路学报,2005,18(3):14-17.
    [211]陈拴发,王秉纲.混凝土混凝土应力腐蚀影响因素显著性分析[J].长安大学学报(自然科学版),2005,25(5):1-5.
    [212]Saetta A. Mechanical behavior of concrete under physical-chemical attacks [J]. Journal of Engineering Mechanics,1998,124(10):1100-1109.
    [213]Saetta A V, Scotta R, and Vitaliani R. Coupled environmental-mechanical damage model of RC structures [J]. Journal of Engineering Mechanics,1999,125(8):930-940.
    [214]Saetta A. Deterioration of reinforced concrete structures due to chemical-physical phenomena model-based simulation [J]. Journal of Materials in Civil Engineering,2005,17(3):313-319.
    [215]Kuhl D, Bangert F, and Meschke G Coupled chemo-mechanical deterioration of cementitious materials. Part Ⅰ:Modeling [J]. International Journal of Solids and Structures,2004,41(1): 15-40.
    [216]Kuhl D, Bangert F, and Meschke G. Coupled chemo-mechanical deterioration of cementitious materials. Part Ⅱ:Numerical methods and simulations [J]. International Journal of Solids and Structures,2004,41(1):41-67.
    [217]张研,张子明,邵建富.混凝土化学-力学损伤本构模型[J].工程力学,2006,23(9):153-156,183.
    [218]张研,张子明,宋智通.混凝土化学-力学耦合作用的非局部损伤模型[J].固体力学学报,2007,28(2):172-177.
    [219]Bazant Z P, and Kim J K. Improved prediction model for time-dependent deformations of concrete:part1-shrinkage [J]. Materials and Structures,1991,24(5):327-345.
    [220]Bazant Z P, and Kim J K. Improved prediction model for time-dependent deformations of concrete:part2-basic creep [J]. Materials and Structures,1991,24(6):409-421.
    [221]Bazant Z P, and Kim J K. Improved prediction model for time-dependent deformations of concrete:part3-creep at drying [J]. Materials and Structures,1992(1),25:21-28.
    [222]Bazant Z P, and Kim J K. Improved prediction model for time-dependent deformations of concrete:part5-cyclic load and cyclic humidity [J]. Materials and Structures,1992,25(3): 163-169.
    [223]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [224]周耀,王元丰.考虑徐变的钢管混凝土拱桥动力分析[J].大连理工大学学报,2006,46(s1):82-87.
    [225]陈开利.帕劳共和国的桥梁倒塌事故[J].国外公路,1998,18(3):31-33.
    [226]Manzanarez R, and Olmer M. Parrotts Ferry bridge retrofit [R]. T.Y.Lin International,1994.
    [227]Takacs P F. Deformations in concrete cantilever bridges:observations and theoretical modeling [D]. Trondheim:The Norwegian University of Science and Technology,2002.
    [228]鄢玉胜.预应力混凝土梁桥的徐变下挠研究[D].成都:西南交通大学,2005.
    [229]辛兵,徐升桥.大跨度钢管混凝土拱桥的徐变分析[J].铁道标准设计,2003,46(4):31-33.
    [230]郝超.钢管混凝土拱桥的徐变效应计算分析[J].公路交通科技,2006,23(6):69-71.
    [231]傅学怡,孙璨,吴兵,陈贤川.卡塔尔外交部大楼结构徐变影响分析[C].第十九届全国高层建筑结构学术会议论文,长春,2006:261-265.
    [232]林超伟,王兴法,陈勤,等.长富金茂大厦混凝土收缩徐变分析及结构设计[J].建筑结构,2011,41(5):43-45,59.
    [233]Bazant Z P, and Prasannan S. Solidification theory for concrete creep. I:formulation [J]. Journal of Engineering Mechanics,1989,115(8):1691-1703.
    [234]Bazant Z P, and Prasannan S. Solidification theory for concrete creep. II:verification and application [J]. Journal of Engineering Mechanics,1989,115(8):1704-1725.
    [235]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].JTGD62-2004.北京:人民交通出版社,2004.
    [236]Bazant Z P, and Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures:Model B3 [C]. Symposium:Creep and Shrinkage-Structural Design Effects, Farmington Hills, Michigan,2000:1-83.
    [237]Bazant Z P, and Baweja S. Justification and refinements of Model B3 for concrete creep and shrinkage 1. Statistics and sensitivity [J]. Materials and Structures,1995,28(7):415-430.
    [238]Bazant Z P, and Baweja S. Justification and refinements of Model B3 for concrete creep and shrinkage 2. Updating and theoretical basis [J]. Materials and Structures,1995,28(8): 488-495.
    [239]雷阳.基于B3模型的钢管混凝土轴心受压构件徐变研究[D].北京:北京交通大学,2005.
    [240]宋灿,徐伟.用修正B3模型预测泵送高强混凝土的徐变[J].建筑材料学报,2007,10(1):101-104.
    [241]Cao J, Wang Y F, and Zhao S C. Study on creep of concrete under freeze-thaw cycles [C]. Proceedings:International Symposium on Innovation and Sustainability of Structures in Civil Engineering, Guangzhou, China,2009:1111-1115.
    [242]Wang Y F, Ma Y S, and Zhou L. Creep of FRP-wrapped concrete columns with or without fly ash under axial load [J]. Construction and Building Materials,2011,25(2):697-704.
    [243]曹健,王元丰.硫酸盐侵蚀混凝土轴心受压构件徐变分析[J].建筑材料学报,2011,14(4):460-466.
    [244]Ma Y S, and Wang Y F. Creep of AFRP confined high-strength concrete columns under low-level [J]. Advances in Structural Engineeing,2012,15(2):205-216.
    [245]罗听.损伤演变对混凝土强度的影响[D].武汉:华中科技大学,2006.
    [246]方祥位,申春妮,杨德斌,陈正汉,张忠发.混凝土硫酸盐侵蚀速度影响因素研究[J].建筑材料学报,2007,10(1):89-96.
    [247]Gawin D, Pesavento F, and Schrefler B A. Modelling creep and shrinkage of concrete by means of effective stresses [J]. Materials and Structures,2007,40(6):579-591.
    [248]Pickett G. The effect of change in moisture content on the creep of concrete under a sustained load [J]. American Concrete Institute Journal,1942,38:333-355.
    [249]Bazant Z P. Prediction of concrete creep and shrinkage:past, present and future [J]. Nuclear Engineering and Design,2001,203(1):27-38.
    [250]Hansen T C. Creep of concrete [R]. Bulletin No.33:Swedish cement and concrete research institute, Stockholm,1958.
    [251]Hansen T C. Creep of concrete:The influence of variations in the humidity of the ambient atmosphere [C]. Sixth congress of the international association for bridge and structural engineering, Stockholm,1960.
    [252]Ishai G. Creep mechanism in cement mortar [J]. American Concrete Institute Journal,1962. 59(7):923-948.
    [253]Bernhardt C J. Krypning og svinn av betong ved forskjellige ytre forhold [J]. Nordisk Betony, 1967, (1):9-26. (in Dansk).
    [254]AL-alusi H R., Bertero V V.and Polivka M. Einflusse der feuchte auf schwinden und kriechen von beton [J]. Beton-und Stahlbetonbau,1978,73(1):18-23. (in Deutsch).
    [255]Bazant Z P, and Wang T S. Practical prediction of cyclic humidity effect in creep and shrinkage of concrete [J]. Materials and Constructions,1985,106(18):247-252.
    [256]陈惠发等著.余天庆等译.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [257]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [258]Carino N J, and Tank R C. Maturity functions for concrete made with variouscements and admixtures [J]. ACI Materials Journal,1992,89(2):188-196.
    [259]中华人民共和国建设部.混凝土结构设计规范[S].GB 50010-2002.北京:中国建筑工业出版社,2002.
    [260]Hognestad E. A study of combined bending and axial load in reinforced concrete members [R]. University of Illinios Engineering Experiment Station, Bulletin Series No.399, Urbana IL, USA,1951.
    [261]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2004.
    [262]Dougill J W. On stable progressively fracturing solids [J]. Journal of Applied Mathmatics and Physics,1976,27(4),423-436.
    [263]Loland K E. Constinuous damage model for load-response estimation of concrete [J]. Cement and Concrete Research,1980,10(3):395-402.
    [264]Mazars J, and Lemaitre J. Application of continuous damage mechanics to strain and fracture behavior of concrete [M]. Evanston, USA:Springer,1984:375-378.
    [265]Sidoroff F. Description of anisotropic damage application to elasticity [C]. IUTAM Colloquium:Physical Nonlinearities in Structural Analysis, California,1981:237-244.
    [266]Krajcinovic D. Constitutive equations for damaging materials [J]. Journal of Applied Mechanics,1983,50(2):355-360.
    [267]徐定华,徐敏.混凝土材料学概论[M].北京:中国标准出版社,2002.
    [268]董毓利,谢和平,李世平.混凝土受压损伤力学本构模型的研究[J].工程力学,1996,13(1):44-53.
    [269]黄河.损伤理论在腐蚀混凝土力学性能研究中的应用[D].重庆:重庆大学,2004.
    [270]Ford J S, Chang D C, and Breen J E. Behavior of concrete columns under controlled lateral deformation [J]. American Concrete Institute Journal,1981,78(1):3-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700