隧道路面新材料及复合式路面设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混凝土和水泥混凝土是目前广泛应用的两种路面材料,但在公路隧道内特殊的环境和使用条件下,其应用受到限制。橡胶轻集料混凝土(RLC)是一种具有低弹性模量、高韧性、良好工作性和优良耐久性的新型生态环保型路面材料,特别适用于高速公路隧道路面建设发展的需要,其应用前景非常广阔。本论文围绕RLC的组成、结构及性能开展了大量的实验和系统的研究工作,通过对RLC物理力学性能、耐久性和微观结构的系统研究,揭示了RLC的组成、结构与性能之间的相互影响和变化规律,并将这种新型的路面材料应用到隧道路面结构的设计中,建立了RLC复合式隧道路面结构形式(PCC—RLC),实现了RLC制备和复合式隧道路面应用的关键技术系统集成,为促进该材料的发展应用提供了重要的参考。
     本文进行的主要工作和取得的重要成果有:
     从隧道路面结构的发展战略、经济性和技术要求三个方面,把RLC复合式隧道路面的设计水平分为三个层次进行评价,在此基础上提出RLC复合式隧道路面的设计理念,用以指导设计、制备和应用该种新材料;在设计理念的指导下,结合对RLC内各种组分之间的组成结构和关系的分析,建立了RLC的三相复合分散模型,提出了弹塑性应变能理论、界面增强理论和聚合物改性理论三个主要的RLC改性设计理论。为设计、制备该类材料提供了理论依据。
     以设计理念和改性设计理论为指导,系统研究了橡胶粉、轻集料、外加剂以及高分子聚合物、体积砂率等配比参数对RLC工作性能、力学性能和耐久性能的影响规律;通过显微硬度分析、偏光显微镜图像分析技术以及扫描电镜研究了水泥和辅助胶凝材料在由多孔性轻集料和弹性粒料橡胶粉构造的水化环境中的水化硬化机理,探明了RLC各组分与性能间的关系;掌握了RLC低弹模、高韧性和提高耐久性的关键技术,研制出抗压强度为15~20 MPa,抗拉强度为1~3 MPa,弹性模量为10000~15000 MPa,极限拉伸变形值为0.01~0.03,低干缩、高韧性、高耐久的RLC材料。
     针对隧道路面这一特殊应用环境,提出用于隧道的RLC复合式路面结构形式PCC—RLC:下部为普通水泥混凝土强化层(PCC),上部为RLC缓冲降噪层;采用有限元数值模拟技术,研究掌握了PCC—RLC复合路面结构在车辆荷载、温度荷载作用下的应力应变分布规律,掌握了RLC路面受力特征及对路面缓冲减振等舒适性的影响,为PCC—RLC复合路面结构的设计提供力学依据。
     系统研究了RLC搅拌、运输、浇注、振捣和养护工艺等工程应用的关键技术,提出PCC—RLC复合路面施工的主要技术要求,建立了PCC—RLC复合路面施工质量控制技术方法,为RLC的生产和应用提供了重要的参考。
Asphalt concrete and Portland cement concrete are commonly used as pavement materials nowadays. But, the use of these types of concrete in tunnels is restricted. Rubberized lightweight aggregate concrete (RLC) is a kind of new environment-friendly pavement material that has low elastic modulus, high toughness, good workability and durability. Therefore, it is very suitable for the construction of pavement in tunnels of express highways. In this thesis, a serial of experiments and systemic researches is carried out which is focused on the constituents, structure and performance of RLC. Based on the systematic study on the mechanical performance, durability and microstructure of RLC, the relation among the constituents, structure and performance of RLC and the joint effects are investigated. Considerting the practical applications, this new material is applied in the design of tunnel pavement and a composite tunnel pavement structure (PCC—RLC) is put forward. Key techniques for the preparation of RLC and its applications in composite tunnel pavement are addressed, which can be used to guide the development and application of RLC.
     The main research work and achievements presented in this thesis are outlined as following:
     From the aspects of development strategy, economic and technical demand, the design of RLC composite tunnel pavement is divided into three levels. Based on this three-level design, a design concept for RLC composite tunnel pavement is put forward, which may guide the design, preparation and application of this new material. Based on the analysis of the relation between the constituents and structure of RLC, a distributed three-phase composite model is built; three main modified theories of interfacial strengthening, polymer modification and strain energy are applied, which are the theoretical foundations for the design and preparation of RLC.
     Based on the design concept and modified theories, the recipe of this type of concrete such as rubber particle size, lightweight aggregate type, additives, polymer and sand ratio is studied and effective rules about its workability, mechanical performance and durability are concluded. Based on results of the micro-hardness test, polarizing microscope image analysis and SEM images, the hardening mechanicsms of RLC are analyzed and the relation between the constituent and performance is revealed by using the microcosmic methods. Key propertyes such as low elastic modulus, high toughness and good durability are obtained. RLC with compressive strength of 15~20 MPa, tensile strength of 1~3 MPa, elastic modulus of 10000~15000 MPa and ultimate tensile deformation of 0.01~0.03 is developed. It has low shrinkage, high toughness and good durability as well.
     Considering the special working condition of tunnel pavement, a RLC composite tunnel pavement (PCC—RLC) structure is developed, which comprises a Portland cement concrete strengthening layer as the base (PCC) and a RLC layer as the up layer (RLC). By using finite element analysis, the distribution of stress and strain in this PCC—RLC structure under the vehicle and temperature loads are studied, which are the mechanical and theoretical foundations for the design of PCC—RLC.
     Key techniques such as mixing, transportation, pouring, vibration and curing, etc. for the engineering application of RLC are studied systematically. Critical techniques for the construction of PCC—RLC composite pavement are put forward in this thesis as well. Quality control methods are proposed, which may be used to guide the production and application of RLC.
引文
[1] 吴绪浩,刘朝晖.公路隧道路面结构与材料技术研究[J].广西交通科技, 2003, 28(6):31-33.
    [2] 杨良,郭忠印,丁志勇.公路隧道路面工作环境调研与分析[J].交通科技,2004, (1):27~30.
    [3] 张锐,黄晓明,赵永利.隧道路面使用状况调查与分析[J].公路隧道,2007,(1):12~16.
    [4] 王振信.公路隧道安全问题初探[J].地下工程与隧道,2003,(1):1~5.
    [5] 重庆交通科研设计院.隧道内路面铺装技术的研究(试验研究报告).2001.
    [6] 卢哲安,陈应波.上下层布钢纤维混凝土抗弯拉强度及增强机理研究[J].武汉理工大学学报,2001,23(1):55~59.
    [7] 袁海庆,陈景涛,朱继东.层布式钢纤维.聚丙烯腈纤维混凝土力学性能试验研究[J].武汉理工大学学报,2003,25(4):31~34.
    [8] 朱涵.新型弹性混凝土的研究综述[J].天津建设科技,2004,(2):35~37.
    [9] Huynh Hai, Dharmaraj Raghavan, Chiara F Ferraris. Rubber Particles from recycled Tires in Cementitious Composite Materials[C].NISTIR 5858R.1~19.
    [10] 李悦,王玲.橡胶集料混凝土研究进展综述[J].混凝土,2006,(4):91~95.
    [11] Ali N A Amos, A D, Roberts M. Use of ground rubber tires in Portland cement concrete[R]. InProc.Int.Conf.Concrete.2000.University of Dundee.UK 1993:379~390.
    [12] Eldin N N, Senouci A B. Rubber tire particles as concrete aggregate[J]. ASCE JMater.Civ.Erg. 1993(5):478~496.
    [13] Toutanji H A. The use of rubber tire particles in concrete to replace mineral aggregates[J]. Cement and Concrete Composites, 1996(18):135~139.
    [14] Huynh H, Raghavan D. Durability of Simulated Shredded Rubber Tire in Highly Alkaline Environments[J]. Advanced Cement Based Materials, 1997(6): 138~143.
    [15] Topcu Ilker Bekir, Avcular N. Collision Bebaviours of Rubberized Concrete[J]. Cement and Concrete Research, 1997, 27(12):1893~1898.
    [16] IIker Bekir Topru. The properties of rubberized concretes[J]. Cement and Concrete research, 1995, 25(2):304~310.
    [17] Fattuhi N, Clark L A. Cement-based materials containing shredded scrap truck tyre rubber[J]. Construction and building materials, 1996, 10(4):229~236.
    [18] N. Segre, I. Joekes. Use of tire rubber particles as addition to cement paste [J]. Cement and Concrete research, 2000, 30(9):1421~1425.
    [19] 宋少民,刘娟红,金树新.橡胶粉改性的高韧性混凝士研究[J].混凝土与水泥制品,1997, (1):10~12.
    [20] Erhan Guneyisi, Mehmet Gesoglu, Turan Ozturan. Properties of rubberized concretes containing silica fume[J]. Cement and Concrete research, 2004, 34:2309~2317.
    [21] IIker Bekir Topru. Assessment of the brittleness index of rubberized concretes[J]. Cement and Concrete research, 1997, 27(2):177~183.
    [22] 孙家瑛,高先芳,朱武达.橡胶混凝土研制及物理力学性能研究[J].混凝土,2001, (10):30~32.
    [23] Rostami H, Lepore J, Silverstraim T, et al. Use of recycled rubber tires in concrete[C]. InProc.Int.Conf.Concrete.2000. University of Dundee.UK 1993. 391~399.
    [24] 李悦.橡胶集料水泥砂浆和混凝土的性能研究[J].混凝土,2006,(6):45~48.
    [25] 陈波,张亚梅,陈胜霞等.橡胶混凝土性能的初步研究[J].混凝土,2004,(12):37~39.
    [26] 黄少文,徐玉华.废旧轮胎胶粉对水泥砂浆力学性能的影响[J].南昌大学学报,2004, 26(4):53~55.
    [27] 龙广成,谢友均,李建.废旧橡胶颗粒改性水泥混凝土及其工程应用[J].粉煤灰,2005, (2):3~4.
    [28] 杨志峰,李关江,王旭东.废旧橡胶粉在道路工程中应用的历史和现状[J].公路交通科技, 2005,22(7):19~22.
    [29] 李红燕.橡胶改性水泥基材料的性能研究[D].东南大学硕士论文,2004.
    [30] Kamil E. Kaloush, George B.Way, Han Zhu. Properties of Crumb Rubber Concrete[R]. Submitted for Presentation and Publication at the 2005 Annual Meeting of the Transportation Research Board. 2004.11.15.
    [31] Pieter J H van Beukering, Marco A Janssen. Trade and recycling of used tyres in Western and Eastern Europe[J]. Resources Conservation and Recycling, 2001(33): 235~265.
    [32] Fang Yi, Zhan Maosheng, Wang Ying. The status of recycling of waste rubber[J]. Materials and Design, 2001(22):123~127.
    [33] 张小平,包承纲,施斌.柔性水泥混凝土的长期特性及对三峡二期围堰运行的影响[J],岩土工程学报.2001,32(6):677~681.
    [34] 刘学艳,刘彦龙,杨宝珍等.胶粒混凝土在道路工程中的应用[J].东北林业大学学报, 2006,34(2):111~112.
    [35] 姚祖康,李华.普通水泥混凝土路面标准结构[J].中国公路学报,1996,9(1):14~20.
    [36] 吕锡岭,胡建荣,郭成军.高等级公路面层材料研究[J].西安工程学院学报,2002, 22(12):37~39.
    [37] 杨小利,王钧.聚合物混凝土的应用与发展[J].玻璃钢复合材料,1999, (6):47~48.
    [38] 姚红云,梁乃兴,孙立军等.羧基丁苯聚合物改性水泥混凝土的路用性能及经济性研究 [J].公路交通科技,2004,21(8):12~16.
    [39] 王秉纲,胡长顺.碾压水泥混凝土与沥青混凝土复合式路面结构研究[J],中国公路学报, 1996(6):34-36.
    [40] 王社,刘成生,灌入式半刚性路面的试验研究[J].华东公路,1993,(3):23~25.
    [41] 李国强,等.乳化橡胶沥青水泥混凝土疲劳性能及应用研究[J].重庆交通学院学报, 1997.
    [42] 郝培文,程磊,林立.半柔性路面混合料路用性能[J].长安大学学报(自然科学版),2003, 23(2):1~6.
    [43] 吴中伟.高性能混凝土的发展趋势与问题[J].建筑技术,1998,(1):1~5.
    [44] 宋少民.橡胶粉增韧混凝土的研究[D],武汉工业大学硕士论文,武汉,2000.
    [45] 姚武,蔡江宁等.混杂纤维增韧高性能混凝土的研究[J].三峡大学学报(自然科学版), 2002,24(1):42~44.
    [46] 王凯,张义顺,王信刚.低掺量S-P混杂纤维增强增韧的作用研究[J].哈尔滨工业大学学报,2003,(10).
    [47] Hsu.TTC. Mathenical anlysis of shrinkage stress in a model of hardened concrete. Journal of the ACI proceedings, 1963, 60, (3):371~390.
    [48] 重庆建筑工程学院等, 南京工学院.混凝土学[M].北京:中国建筑工业出版社, 1981.
    [49] A.Carpinteri,A.R.Ingraffea.混凝土断裂力学,黄政宇,万良芬.湖南:湖南大学出版社, 1998.
    [50] 郭佳宁.高强轻集料混凝土的力学特性及其对集料的要求[J].黑龙江水利科技,2001, (1):71~73.
    [51] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999,73~90.
    [52] 冯乃谦,刑峰.高性能混凝土技术[M].北京:原子能工业出版社,2002.
    [53] 梁乃兴,李祝龙.聚合物乳液改性水泥混凝土[J].西安公路交通大学学报,1998, 18(3):159~163.
    [54] Liang, N.: Untersuchungen uber mit Elastomeren mozifizierte Zemente. Dissertation, TU Clausthal, 1991.
    [55] 李祝龙,梁乃兴,吴德平等.聚合物水泥基材料的机理分析[J].公路交通科技,2005, 22(5):63~66.
    [56] 梁乃兴,曹源文,姚红云.聚合物改性水泥混凝土路用性能研究[J].公路交通科技,2005, 22(3):21~27.
    [57] 熊剑平.聚合物改性水泥混凝土路用性能研究[D].长安大学硕士论文,2005.
    [58] Ohama, Y.: Polymer modified Mortars and Concretes. Concrete Admixtures Handbook, Edited by Romachandran V.S., Noyes Publications, Partk Ridge, New Jersey USA, 1984.
    [59] Ohama, Y. Pdciple of Latex Modification and some Typical Propertied of Latex Modified Mortars and Concrete. ACI Materials Journal, Nov.-Dec.1987, S: 511~518.
    [60] Konietzko, A.: Polymer spezifische Auswerkungen auf das Tragverhalten modifizierter zementgebundener Beton(PCC). Dissertation, Braunschweig, 1998.
    [61] 孙继成.高性能聚合物改性水泥基胶结材料的研究[D].华中科技大学硕士论文,2004.
    [62] 杨志强,王东.聚合物对混凝土结构和性能影响的研究[J].混凝士与水泥制品,1995, (1):11~13.
    [63] 梁乃兴.聚合物改性水泥及水泥混凝土的机理分析[J].西安公路交通大学学报,1995, 15(4):14~18.
    [64] Sidney Mindess, J.Francis Young, David Darwin. 混凝土.[M].北京:化学工业出版社, 2005
    [65] Monteiro, P.J.M., A Note on the Hirsch Model[J]. Cement and Concrete Research, 1993, 23(1):947~950.
    [66] Nilsen, A.U., and P.J.M. Monteiro. Concrete: A Three Phase Material[J]. Cement and Concrete Research, 1993, 23(1):147~151.
    [67] G. Li, Y. Zhao, S.-S.Pang. A three-layer built-in analytical modeling of concrete [J]. Cement and Concrete research, 1998, 28(7):1057~1070.
    [68] IIker Bekir Topru, Nuri Avcular. Analysis of rubberized concrete as a composite material[J]. Cement and Concrete research, 1997, 27(8):1135~1139.
    [69] 黄政宇.影响混凝土抗折弹性模量若干因素的试验研究[J].混凝土,1993,(5):17~22.
    [70] 杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,1999.
    [71] Guoqiang Li, Yi Zhao, Su-Seng Pang, Yongqi Li. Effective young's modulus estimation of concrete[J]. Cement and Concrete research, 1999, 29(9):1455~1462.
    [72] F.P. Zhou, F.D. Lydon, B.I.G. Barr. Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete [J]. Cement and Concrete research, 1995, 25(1):177~186.
    [73] Baoshan Huang, Guoqiang Li, Su-Seng Pang, John Eggers. Investigation into waste tire rubber-filled concrete [J]. Journal of Materials in Civil Engineering, 2004, (3):187~194.
    [74] 刘刚,方坤河,高钟伟.高强混凝土的增韧减脆措施研究[J].混凝土,2004,(5):46~48.
    [75] Lee H, S. Lee, H. Moon JS. Jung H.W. Developnent of tireadded latex concrete[J]. ACI Materials Joumal 1998, 95(4):356~364.
    [76] F. Herna'ndez-Olivares, G. Barluenga, M. Bollati, B. Witoszek. Static and dynamic behaviour of recycled tyre rubber-filled concrete[J]. Cement and Concrete research, 2002, No.32:1587~1596.
    [77] 王涛.高强轻集料混凝土的脆性与增韧技术研究ID].武汉理工大学硕士论文,2004.
    [78] 王发洲.高性能轻集料混凝土研究与应用[D].武汉理工大学博士论文,2003.
    [79] 龚洛书,柳春圃编著.轻集料混凝土[M].中国铁道出版社,北京,1996.
    [80] 吴中伟.纤维增强—水泥基复合材料的未来[J].混凝土与水泥制,1999,(1):38~42.
    [81] 卢哲安,罗国荣,陈应波.层布式钢纤维混凝土抗弯拉强度和增强机理研究[J].武汉工业大学学报, 2001,23(1).
    [82] 陈景涛,层布式混杂短纤维路面混凝土试验研究[D],武汉理工大学硕士论文,2002.
    [83] 李顺凯,蔡安兰,严生.改性聚丙烯纤维砂浆和混凝土的性能试验[J].南京工业大学学报,2004,26(2):58~61.
    [84] 孙家瑛.聚丙烯纤维对高性能混凝土抗弯拉强度、抗冲击性能影响研究[J].混凝土,1999, (06):19~21.
    [85] 连丽.混凝土显微结构的研究[D].武汉理工大学硕士论文,2006.
    [86] 邓勃.试验设计与优化方法[J].分析科学学报,1996,12(2):157~162.
    [87] 方开泰.均匀设计[J].应用数学学报,1980,3(4):363~372.
    [88] 王正友,廖明成,耿运贵.混杂纤维(钢/聚丙烯)高性能混凝土正交试验研究[J].焦作工学院学报(自然科学版),2003(1).
    [89] JTG E30-2005,公路工程水泥及水泥混凝土试验规程[S]
    [90] 傅智,李红.水泥混凝土路面原材料的技术要求[J].公路,2003,7(7):25~31.
    [91] 傅智.滑模混凝土配合比参数对抗弯拉强度的影响[J].公路交通科技,1997,14(2):1~5.
    [92] 薛航.掺硅粉混凝土路用性能研究[J].混凝土,2006,(9):41~44.
    [93] 郭鹏.路面水泥混凝土组成与性能研究[D].哈尔滨工业大学硕士论文,2006.
    [94] 黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁路出版.1990
    [95] 邵萍,胡新刚,宋春涛.关于减少混凝土的收缩裂缝问题的浅析[J].黑龙江交通科技.2002(4):1~4.
    [96] ACI 201 Committee Guide to Durable Concrete, 1996.
    [97] 李祝龙,梁乃兴.掺加丁苯胶乳对水泥砂浆及水泥混凝土刚性与耐磨性的影响[J].西安公路交通大学学报,1996,16(4):38~41.
    [98] 张雪华.机场跑道耐冲磨混凝土的研究[[J].南京航空航天大学学报,2002,34(2):114-120.
    [99] Rafat Siddique. Effect of fine aggregate replacement with class F fly ash on the abrasion resistance of concrete[J]. Cement and Concrete Research, 2003, 33:1877~1881.
    [100] Zeng-Qiang Shi, D.D.L.Chung: Improving the abrasion resistance of mortar by adding latex and carbon fibers[J]. Cement and Concrete Research, 1997, 27(8): 1149~1153.
    [101] 郭灿贤.废旧轮胎胶粉改性水泥混凝土及其路用性能研究[D].南昌大学硕士论文, 2006.
    [102] 林绣贤著.柔性路面结构设计方法[M].北京:人民交通出版社,1988.
    [103] 姚祖康著.水泥混凝土路面设计理论和方法[M].北京:人民交通出版社,2003.
    [104] 胡长顺,王秉纲著.复合式路面设计原理与施工技术[M].北京:人民交通出版社,1999.
    [105] 武和平著.高等级公路路面结构设计方法[M].北京:人民交通出版社,1999.
    [106] 王秉纲,戴经梁,胡长顺.复合式水泥混凝土路面设计原理与方法的研究[J].中国公路学报,1992,5(2):1~7.
    [107] 姚祖康,半刚性基层水泥混凝土路面的结构计算方法[J].华东公路,1997,106(3):3~8.
    [108] JTJ034-2000,公路路面基层施工技术规范[S]
    [109] JTG D40-2002,公路水泥混凝土路面设计规范[S]
    [110] 贾玉.聚合物改性水泥混凝土复合式路面研究[D].长安大学硕士论文,2006.
    [111] 谈至明,姚祖康.层间约束引起的双层板水泥混凝土路面的温度应力[J].交通运输工程学报, 2001,(1):25~28.
    [112] 谈至明,姚祖康,刘伯莹.水泥混凝土路面的温度应力分析[J].公路,2001,8(8):19~23.
    [113] 邓学钧,陈荣生编著.刚性路面设计.北京:人民交通出版社,2005.
    [114] 林有贵,廖国毅.无胀缝水泥混凝土路面的理论与实践[J].华东公路,1998(3).
    [115] 蔡岳雄,罗平.水泥混凝土路面胀缝设计方法探讨[J].国外公路,2001(1).
    [116] 王瑛,李沁福.水泥混凝土路面胀缝设置的探讨[J].中南公路工程,1999(4).
    [117] 黄仰贤著,余定选、齐诚译.路面分析与设计[M].北京:人民交通出版社,1998.
    [118] PCA. Join design for concrete highway and street pavements. PCA: Concrete Information, 1980.
    [119] 王发洲,胡曙光等.高性能复合道路水泥混凝土的研究[J].中国公路学报.2001, 13(3): 12~14.
    [120] Richard W Burron. The visible and invisible cracking of concrete[M].1998.1~5.
    [124] Hans Schrama, Michael Blumcnthal, Edwad C Weatherhead. A survey of burning technology for cement industry[R]. IEEE Cement Industry Technical Conference, 1995. 283~306.
    [125] 辛德刚,王哲人,周晓龙编著.高速公路沥青路面材料与结构[M].人民交通出版社, 北京, 2001,1.
    [126] Jiang Z. R. LiG.Q. General Based semi-Rigid surface Course material Laboratory Evaluation. in proceeding of 2nd ICPT.Vol 1, 1995.
    [127] 刘清泉,路面表面特性研究方向探讨[J].公路交通科技.1994,(2):1~5.
    [128] Y.Lo, X.F.Gao, A.P.Jeary. Microstructure of pre-wetted aggregate on lightweight concrete[J]. Building and Environment, 1999, No.34:759-764.
    [129] H.J.Chen, T.Yen, TP.Lia et al. Determination of the dividing strength and its relation to the concrete strength in light-weight aggregate concrete[J]. Cement and Concrete Composites, 1999, No.ZI:29~37.
    [130] Bentur.a, at al. The contribution of the transition zone to the strength to the strength of high quality silica fume concretes bonding in cementitious composites[J], Proc. Symp. Materials Research Society Vol.114:97~103.
    [131] Kenro Mitsui, Zongjin Li, David A.Lange, Surendra P.Shah. Relationship between microstructure and mechanical Properties of the Paste—aggregate interface[J]. ACI Materials Journal, 1994, No.1:30~39.
    [132] Kamran M. Nemati. The percolation of pore space in the cement paste/aggregate interfacial zone of concrete [J]. Cement and Concrete research, 1996, 26(1):35~40.
    [133] 龚益鸣著.质量管理学[M].复旦大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700