青藏高原上空平流层对流层中尺度交换过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原特殊大地型的动力热力作用不仅对区域及全球的天气气候有显著影响,而且对全球平流层和对流层物质交换有重要的调节作用。研究青藏高原上空的平流层-对流层物质交换(STE)对于我们更好的理解人类和自然排放的污染物质对区域乃至全球气候变化的影响具有重要指示意义。本文聚焦于青藏高原上空的中尺度对流层顶折卷(Tropopause Fold)事件,用中尺度数值模式(WRF),结合NCEP和欧洲中心再分析资料、CALIPSO和AIRS卫星资料、多种地基观测资料以及中国气象站点常规观测资料,研究了发生在青藏高原及其周边区域的对流层顶折卷的细节以及与折卷有关的STE特征,分析了该区域不同强度对流层顶折卷的多年气候学分布特征,并在此基础上进一步模拟诊断了影响对流层顶折卷的主要因子。所得主要结果和结论如下:
     (1)论文首先利用中尺度模式(WRF)模拟了发生在青藏高原及其周边区域(25°N-45°N,70°E-110°E)的两次对流层顶折卷个例。模拟结果表明,WRF模式能够很好地捕捉、重现对流层顶折卷过程,而模式中积云参数化方案的选取对折卷过程的模拟影响不大。与NCEP再分析资料相比,高分辨率的模式模拟结果能更好的反应对流层顶折卷时空变化特征,尤其在复杂下垫面上空,对对流层顶折卷事件的详细细节体现更为完整。模式模拟的水汽混合比和位势涡度场都能很好的体现对流层顶折卷的形态与结构特征,但是折卷的形态和结构在水汽场中比在位势涡度场中体现的更加清晰,而由地形所导致的对流层顶畸变则在位势涡度场中体现得更好。通过对两次对流层顶折卷事件的对比分析发现,如果折卷事件受到高原环流系统的直接影响而不是由高空天气系统生成,折卷事件发展演变会有显著不同,由折卷引起的穿越对流层顶物质输送量也差别很大。受高原环流系统影响的对流层顶折卷事件持续时间相对较长,穿越对流层顶物质输送量也明显较大。高原地形对于对流层顶折卷引起的穿越对流层顶的物质输送有显著影响。当折卷过程从高原上空移过后,由于平流层干空气的快速下沉侵入以及大气动量的垂直输送,会在折卷系统的后方产生一个对流层中层的湿空气层,同时在山体背风坡形成一个低空急流,两者相互作用使背风坡大气的不稳定性加强从而容易产生深厚的垂直上升运动,将对流层物质直接带入平流层低层。此外,当气团被地形强迫抬升到折卷形成的不稳定湿空气层高度,就会激发深对流活动,进而在山体迎风坡产生持续稳定的对流层向平流层的物质输送。值得指出的是,如果折卷受到高空锋面的影响,则会在高空锋面上产生持续的穿越对流层顶向上的物质输送,该输送量大于地形强迫抬升所产生的向上物质输送量。
     (2)论文进一步利用ERA-Interim再分析资料和中国753个常规气象观测站点的日平均温度资料,通过Q矢量散度极大值和PV极大值配合的判别方法,分析了1989至2009年间发生于青藏高原及其周边区域的对流层顶强、弱折卷事件的气候学分布特征及可能成因。通过大量折卷个例的对比验证,发现用Q矢量散度极大值和PV极大值配合的判别法来对折卷事件进行确认的方法是科学有效的,对同一折卷被重复统计两次的几率不超过5%。分析也表明折卷强度和400hPa等压面上Q矢量散度场极值大小密切相关,极值越大,折卷强度越强。统计分析显示1989至2009年间青藏高原及其周边区域上空的强、弱折卷发生次数都有显著增加的趋势,这一变化趋势可能与高原上空西风急流强度增强,冷空气入侵次数增加及上对流层稳定性降低有关。在强、弱折卷事件的季节分布方面,强折卷的发生次数一年中有明显的两次峰值,分别在冬季风盛行期(12-3月)和夏季风盛行期(6-8月),且冬季强折卷发生频率高于夏季。弱折卷只在夏季风盛行期发生频率极高,但全年弱折卷发生次数高于强折卷。从所有折卷事件的季节分布上看,青藏高原上空对流层顶折卷夏季发生频繁,其他三季发生频率差别不大。进一步对有、无折卷个例以及强、弱折卷个例的高空风场和温度场进行合成分析后表明,在青藏高原上空,高空急流是冬季风盛行期间影响对流层顶折卷发生频率及强度的主要因素;而在夏季风盛行期间高空急流对对流层顶折卷的影响较弱。
     (3)论文还利用中尺度模式WRF,通过一系列敏感性数值试验诊断分析了地表温度及地形高度等因素对对流层顶折卷的影响。分析表明,把模式中地表温度人为升高3K和6K后,在较短的积分时间内(6小时)对整层大气温度场和高空纬向风场没有显著变化,对对流层顶折卷也没有明显影响。而将模式中地形高度人为降低10%,20%和50%,并与真实地形条件下的模拟结果进行对比,发现青藏高原下垫面高度变化可以通过影响高空风场,间接地对对流层顶折卷产生显著影响,特别是会影响对流层顶折卷在区域内的传播速度。同时地形高度的降低会导致高原上空的重力波信号减弱,进而可能对该地区STE产生影响。
     (4)本文最后利用1989至2009年的ERA-Interim再分析资料,对青藏高原区域(70(?)-110(?),20(?)-45(?))和西太平洋区域(120(?)-160(?),20(?)-45(?))对流层顶折卷统计特征进行了对比分析,分析结果表明,西太平洋区域与青藏高原区域的冬季折卷都受到副热带西风急流的显著影响。但与青藏高原不同的是,西太平洋区域对流层顶折卷发生次数更多。且西太平洋区域以强折卷发生为主,强折卷发生次数是弱折卷的3倍,造成这种差异的原因和机理值得进行进一步深入的研究。
The thermal and dynamical effects of the Tibetan Plateau (TP) have an important impact not only on regional and global weather and climate but also on the global Stratosphere-Troposphere Exchange (STE). Detailed investigations of the STE over the TP is important for understanding the impact of anthropogenic and natural emissions on the regional and global climate. Using a meso scale model (WRF) togather the ERA-Interim of ECMWF (European Center for Medium Range Weather Forecasting) reanalysis data and FNL (Final Operational Global Analysis) of NCEP (National Centers for Environmental Prediction) reanalysis data, satellite observations, various ground based measurements, and surface observations at routine meterologcal stations of China, the detailes of a few tropopause events and climatological characteristics of tropopause fold as well as the associated STE over the TP and its surrounding areas are analyzed in this thesis. In addition, the factors affecting the tropopause fold over the TP are also investigated. The main conclusions are summarized as bellow:
     (1) To verify the performance of WRF model in simulating tropopause fold events over the TP and its surrounding areas (25-45(?),70(?)-110(?)), the two tropopause events occurred in the middle of April and May2007were simulated. The result shows that the high-resolution meso scale model WRF can well capture the properties of the tropopause fold events and is able to provide more detail of the tropopause fold structures than FNL data, especially over regions with complex terrain. It is also found that the cumulus parameterization schemes have little impact on the tropopause fold simulation over TP. Both the modeled water vapor field and potential vorticity field can capture the morphology and structure of tropopause fold. The tropopause structure is more clearly defined in the modeled water vapor field while the tropopause distortion is more obvious in the modeled potential vorticity field. A comparison of these two tropopause fold events reveals that the fold duration will be longer when a fold is influenced directly by the TP-induced circulation systems and indirectly by the upper level synoptic systems, and the STE induced by fold will be more significant accordingly. The analysis also shows that orography has a significant impact on the cross-tropopause mass exchange. The leeside jet stream and a layer of wet air in the middle troposphere tend to develop when folds passed an elevated surface. The low-level jet was mainly due to downward transportation of momentum from the higher levels associated with the fold and mesoscale descent of air on the lee of the orography. The layer of wet air in the middle troposphere was lifted from the lower troposphere by the descent of dry air from the stratosphere. The leeside jet and the wet layer with high potential instability (PI) can give rise to deep upward motion on the leeside and inject tropospheric air into the lower stratosphere. On the other hand, when the flow encounters an elevated surface, forced lifting together with mid level wet layer can trigger deep convective motion on the windward slope. The troposphere-to-stratosphere transport was found to be persistent and almost stationary over a windward slope of high orography during the evolution of the fold. In particlular, if a fold is affected by the upper level front, the persistent cross-tropopause mass exchange will occur along the frontal surface, and the cross tropopause mass exchange is stronger than that caused by the forced of lifting air over the windward slope.
     (2) The climatlogical charateristics and factors of impacting on the long-term trend of tropopause fold over the TP during the time period from1989-2009are further analysed. A pattern maching method through seeking for collocated maxima of potential vorticity and Q-vector divergence is used for searching tropopause folds from the reanalysis data. A large number of folds selected by this method are compared and verified by the corresponding folds determined by the other means. The comparison shows that this pattern maching method is robust and scientificaly effective, and the rate of overlaped selections for the same fold event is below5%. The statistical analysis shows that the fold intensity is closely related to the Q-vector divergence on400hPa level with a larger Q-vector divergence corresponding to a stronger tropopause fold. The frequency of both strong and weak folds over the TP shows a increasing trend from1989to2009. This trend is possibly caused by the increased intensity of the subtropical westerly jet, enhanced frequency of cold air intrusion and decreased atmosphere stability in the upper troposphere over the TP. The annual variation of strong fold events have two obvious peaks with one in the winter monsoon season (Dec-Mar) and the other in the summer monsoon season (Jul-Aug). There are more the strong folds in winter than in summer while the weak folds mostly occur in summer monsoon season. The number of weak folds is larger than the number of strong folds over the TP. In addition, the seasonal distribution of tropopause fold events shows that the number of folds in summer over TP is the largest and there are no significant differences in fold numbers in the other seasons. A composite analysis of the wind and temperature fields with and without fold and corresponding fields associated with strong and weak folds is performed. The analysis indicates that the upper level westerly jet is the mainly factor influencing the frequency and intensity of fold during winter monsoon season while in summer monsoon season, the effect of the upper level westerly jet on folds over the TP is not significant.
     (3) The effects of the surface temperature and topography height on folds over the TP are investigated through a series of WRF sensitivity simulations. The results demonstrate that in a short integration time of6hrs there are little changes in potential temperature field and the upper level zonal wind field, as well as in the tropopause fold when the model surface temperature is arbitrarily increased by3K and6K. Nevertheless, changes in the topography height in the model can significantly influence the propagation speed of folds via changing intensity of upper level jet. Meanwhlie, the lower terrain results in weaker gravity waves, and this also has a possible impact on the STE over the TP and its surronding areas.
     (4) Finally, the number of tropopause events during the time period from1989to2009over the TP (70°E-110°E,20°N-45°N) is compared to that over the Western Pacific (120°E-160°E,20°N-45°N). The result indicates that the folds over both regions are mainly affected by the subtropical westerly jet in winter. But the number of folds over the Western Pacific is larger than that over the TP. Folds over the Weatern Pacific are mainly strong folds and the number of the strong folds is three time larger than the number of weak one. The possible reason and mechanisms of these differences between the two areas need further study.
引文
[1]卞建春,李维亮,周秀骥,青藏高原及其邻近地区流场结构季节性变化的特征分析,见:周秀骥主编,中国地区大气臭氧变化及其对气候环境的影响(二),北京:气象出版社,1997:257-272
    [2]卞建春.上对流层/下平流层大气垂直结构研究进展[J].地球科学进展,2009,24(3):262-271.
    [3]白虎志,谢金南,李栋梁.青藏高原季风对西北降水影响的相关分析[J].甘肃气象,2000,18(2):10-12.
    [4]白虎志,谢金南,李栋梁.近40年青藏高原季风变化的主要特征[J].高原气象,2001,20(1):22-27.
    [5]白虎志,马振锋,董文杰.青藏高原地区季风特征及与我国气候异常的联系[J].应用气象学报,2005,16(4):484-491.
    [6]蔡琼琼,周天军,吴波,李博,张丽霞.东亚副热带西风急流及其年际变率的海气耦合模式模拟[J],海洋学报.2011,33(4):38-48.
    [7]陈晓光,李林,朱西德,王振宇,青海省气候变化的区域性差异及其成因研究,气候变化研究进展,2009,5:249-254.
    [8]陈洪滨,卞建春,吕达仁.上对流层下平流层交换过程研究的进展与展望[J].大气科学.2006,30(5):813—820.
    [9]陈文,魏科.大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用[J].地球科学进展.2009,24(3):272-285.
    [10]陈泽宇,吕达仁.利用卫星探测数据估计平流层传播性行星波活动特征[J].地球科学进展,2009,24(3):320-330.
    [11]陈磊,田文寿,王婵.半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟。高原气象.2009,28(2):233-245.
    [12]陈秋士,缪金海,李维亮.1958年7月亚州东南部西南季风区和太平洋信风区平均流场和平均经圈环流.气象学报.1964,34(1):51-61.
    [13]从春华,李维亮,周秀骥.青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换.科学通报.2001,46(22):1914-1918.
    [14]杜银,张耀存,谢志清.东亚副热带西风急流位置变化及其对中国东部夏季降水异常分布的影响[J].大气科学.2009,33(3):581-592.
    [15]付超,李维亮,周秀骥.夏季青藏高原上空臭氧总量低值区形成的模拟试验.见:周秀骥主编.中国地区大气臭氧变化及其对气候环境的影响(二).北京:气象出版社,1997.274-285.
    [16]冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据.科学通报,1998,43(6):633-636.
    [17]傅云飞.夏季青藏高原与东亚及热带降水廓线的差异[G]//海-陆热力差异对我国气候变化的影响.北京:气象出版社,2005: 123-133.
    [18]高由禧,郭其蕴.我国的秋雨现象[J].气象学报,1958,29:264-273.
    [19]高由禧.西藏气候.北京:科学出版社,1984.
    [20]胡永云,2006:关于平流层异常影响对流层天气系统的研究进展。地球科学进展,21(7): 713-721.
    [21]胡永云,夏炎,高梅,等.2008:21世纪平流层温度变化和臭氧恢复[J].气象学报,66(6),880-891.
    [22]胡永云,丁峰,夏炎.全球变化条件下的平流层大气长期变化趋势[J].地球科学进展,2009,24(3):242-251.
    [23]胡宁,张朝林,仲跻芹,李玉焕,2011,大气对流层平流层(STE)研究进展,地球科学,26(4),375-385.
    [24]黄荣辉,蔡榕硕,陈际龙.等.我国旱涝气候灾害的年代际变化及其与东亚气候系统变化关系.大气科学,2006,30(5):730-743.
    [25]况雪源,张耀存.东亚副热带西风急流季节变化特征及其热力影响机制探讨[J].气象学报,20206,64(5):564-575.
    [26]林振耀,赵听奕.青藏高原地区气温降水变化的空间特征[J].中国科学,1996,26(4):354-358.
    [27]刘晓东,康兴成,青藏高原当代气候变化特征及其对温室效应的响应,地球科学,1998,2:113-121
    [28]刘晓东,1998:青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响[J].高原气象,18(3):321-331.
    [29]李维亮,陈隆勋,金祖辉,亚州上空夏季平均大气环流结构及其热源分析,气象学报,1983,41(1):43-56.
    [30]李维亮,于胜民.青藏高原地区气溶胶的时空分布特征及其辐射强迫和气候效应的数值模拟.中国科学(D辑),2001,31(增刊):300-307.
    [31]李勇红,张可苏,1992,急流加速产生的高空锋生和低空锋生,大气科学,16(4),452-463.
    [32]李崇银,龙振夏,1992:准两年振荡及其对东亚大气环流和气候的影响,大气科学,02,DOI: CNKI:SUN:DQXK.0.1992-02-004.
    [33]李崇银,朱锦红,孙照渤.年代际气候变化研究.气候与环境研究,2002,7(2):209-219.
    [34]李崇银,王作台,林士哲,等.东亚夏季风活动与东亚高空西风急流位置北跳关系的研究[J].大气科学,2004,28(5):641-658.
    [35]吕达仁,陈泽宇,卞建春,陈洪滨(2008):平流层对流层相互作用的多尺度过程特征及其与天气气候关系-研究进展。大气科学,32(4):782-793.
    [36]吕达仁,卞建春,陈洪滨等.平流层大气过程研究的前沿与重要性,2009:地球科学进展,24(3):221 228.
    [37]马振锋,高文良.热带海温变化与高原季风发展[J].应用气象学报,2002,13(4):440-447.
    [38]马振锋.高原季风强弱对南亚高压活动的影响[J].高原气象,2003,22(2):143-147.
    [39]马振锋,高文良.青藏高原季风年际变化与长江上游气候变化的联系[J].高原气象,2003,22(增刊):8-16.
    [40]马振锋,高文良,刘富明,等.青藏高原东侧初夏旱涝的季风环流分析[J].高原气象,2003,22(增刊):1-7.
    [41]蒲健辰,姚檀栋,王宁练,苏珍,沈永平,近百年来青藏高原冰川的进退变化,冰川冻土,2004,26(5):517-522.
    [42]裴胜轩,毛节泰,李建国,张霭琛,桑建国,潘乃先,2003,大气物理学[M],北京,北 京大学出版社.
    [43]齐冬梅,李跃清,2007,高原季风研究主要进展及其科学意义,干旱气象,25(4),74-79.
    [44]施雅风,刘时银.中国冰川对21世纪全球变暖响应的预估[J].科学通报,2000,45(4):4342438.
    [45]盛承禹等,1986:中国气候总论[M]. 北京:科学出版社,538.
    [46]苏珍,刘宗香,王文悌,姚檀栋,邵文章,蒲健辰,刘时银,青藏高原冰川对气候变化的相应及预测趋势,地球科学进展,1999,14(6):607-612.
    [47]汤绪,孙国武,钱维宏.亚洲夏季风北边缘研究[M].北京:气象出版社,2007.88-94.
    [48]汤懋苍,沈志宝,陈有虞.高原季风的平均气候特征[J].地理学报,1979,34(1):33-41.
    [49]汤懋苍.夏季高原季风中断过程长短的一些热力学判据[J].高原气象,1984,4(2):181-184.
    [50]汤懋苍,梁娟,邵明镜,等.高原季风年际变化的初步分析[J].高原气象,1984,3(3):75-82.
    [51]汤懋苍,李存强.关于“青藏高原气温降水变化的空间特征”.中国科学(D),1992,26(4):354-358.
    [52]汤懋苍.高原季风研究的若干进展[J].高原气象,1993,12(1):95-101.
    [53]汤懋苍.高原季风的年际振荡及其原因探讨[J].气象科学,1995,15(4):64-68.
    [54]田文寿,张敏,舒建川(2009):中层大气模式的应用及发展前景。地球科学进展,24(3):252-261.
    [55]谭杰丽,江静,袁俊鹏,2009,副热带高空急流各中心强度时间变化及分析,29(4),482-489.
    [56]卫捷,汤懋苍,冯松,等.亚洲季风年代际振荡及与天文因子的相关[J].高原气象,1999,18(2):179-184.
    [57]吴国雄,刘屹岷,刘新,等.青藏高原加热如何影响亚洲夏季的气候格局.大气科学,2005,29(1):47-56.
    [58]吴绍洪,尹云鹤,郑度,杨勤业,青藏高原近30年气候变化趋势,地理学报,2005,60(1):3-11.
    [59]徐淑英,高由禧.西藏高原的季风现象[J].地理学报,1962,28(2):111-123.
    [60]徐祥德,周明煜,陈家宜,等.青藏高原地-气过程动力、热力结构综合物理图像.中国科学(D辑).2001,31:428-440.
    [61]徐兴奎,陈红,周广庆.青藏高原地表特征时空分布[J].气候与环境研究,2005,10(3):409-420.
    [62]叶笃正,罗四维,朱抱真.西藏高原及其周围的流场结构和对流层大气的热量平衡[J].气象学报,1957,28(2):108-121.
    [63]叶笃正,陶诗言,李麦村.在6月和10月大气环流的突变现象[J].气象学报,1958,29(4):250—263.
    [64]叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979.62-73.
    [65]叶笃正,杨广基,王兴东.东亚和太平洋上空平均垂直环流(一)夏季.大气科学,1979,3(1):1-11.
    [66]杨广基,叶笃正,吴国雄.夏季青藏高原热力场和环流场的诊断分析(Ⅱ).环流场主要 的特征及大型垂直环流.大气科学,1992,16(3):287-301.
    [67]杨健,吕达仁.平流层-对流层交换研究进展[J].地球科学进展,2003,18(3):380-385.
    [68]杨健,吕达仁,2004,2000年北半球平流层、对流层质量交换的季节变化,大气科学,28(2),294-301.
    [69]杨逸畴.青藏高原地貌的形成及其效应.西藏科技,1989(1):21-25.
    [70]杨修群,朱益民,谢倩,等.太平洋年代际振荡的研究进展.大气科学.2004,28(6):979-992.
    [71]易明建;陈月娟;周任君;邓淑梅;(2009):2008年中国南方雪灾与平流层极涡异常的等熵位涡分析。高原气象,DOI:CNKI:SUN:GYQX.0.2009-04-020.
    [72]张力小,宋豫秦.青藏高原的隆起对中国沙漠与沙漠化时空格局的影响.中国人口·资源与环境,2001,11f4):98-101.
    [73]张镱锂,李炳元,郑度,论青藏高原范围与面积,2002,地理研究,21(2),1-8.
    [74]张冬峰,高学杰,白虎志.:RegCM 3模式对青藏高原地区气候的模拟[J].高原气象,2005,24(5):714-720.
    [75]曾庆存,1963,大气中的适应过程和调整过程(1),气象学报,33(2),163-174.
    [76]邹进上.江静.高空气候学[M].北京:气象出版社.1990.
    [77]周秀骥,罗超,李维亮等.中国地区臭氧总量变化与青藏高原低值中心.科学通报,1995,40(15):1396-1398.
    [78]周秀骥,李维亮,陈隆勋,刘煜,2004,气象学报,青藏高原地区大气臭氧变化的研究,62(5),513-527.
    [79]朱乾根,林锦瑞,寿绍文,唐东昇,2000,天气学院里和方法(第三版),北京,气象出版社.
    [80]张耀存,郭兰丽,2010,东亚副热带西风急流变化多模式模拟结果分析,气象科学,30(5),694-700.
    [81]赵昕奕,林振耀.青藏高原地区50年代至90年代初期气温降水变化特征研究[A].青藏高原研究会编.青藏高原形成演化、环境变迁与生态系统研究[C].北京:科学出版社,1996:226-234.
    [82]Allam. R. J., and A.F.Tuck,1984:Transport of water in a stratosphere-tropopause general circulation model.2. Trajectories.Quart.J.Roy.Meteor.Soc.,110,357-392.
    [83]Andrews, D. G., J. R. Holton, and C. B. Leovy,1987:Middle Atmosphere Dynamics. Academic Press, San Diego, California,489pp.
    [84]Austin, J. F., and R. P. Midgley,1994:The climatology of the jet stream and stratospheric intrusions of ozone over Japan. Atmos. Environ.,28,39-52.
    [85]Adams. J. B, Mann. M. E., Ammann. C. M. Proxy evidence for an El Nino-like response to volcanic forcing [J]. Nature,2003,426:274-278.
    [86]Brewer A M. Evidence for a world circulation provided by the measurement of helium and water vapor distribution in the stratosphere[J].Quarterly Journal of Royal Meteorologilal Society,1949,75:3512363.
    [87]Bush. A. B. G, Peltier.W.R.,1994:Tropopause folds and synoptic scale baroclinic wave life cycles [J]. Journal of Atmospheric Science,51,1581-1604.
    [88]BURRAGE M D, VINCENT R A, MAYER H G, et al. Long-term variability in the equatorial middle atmosphere zonal wind [J].J. Geophys.Res.,1996,101(D8):12847-12854.
    [89]Beekmann, M., et al.,1997:Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmos. Chem.,28,29-44.
    [90]Baldwin, M. P., D. W. Thompson, et al.,2003:Weather from the stratosphere. Science, 301(5631),317-318.
    [91]Bollasina. M, Benedict S.,2004:The role of the Himalayas and the Tibetan Plateau within the Asian monsoon system [J]. Bulletin of the American Meteorological Society,85 (7):1 001.
    [92]Birner T.,2006:Fine-scale structure of the extratropical tropopause region[J]. Journal of Geophysical Research,111, D04104, do:i 10.1029/2005 JD006301.
    [93]Baldwin M P, Dameris M, Shepherd T G.,2007:How Will the Stratosphere Affect Climate Change? [J]. Science,316:1576-577.
    [94]Chanin. M. L., Signature of the 11 year cycle in the upper atmosphere [J]. Space Science Reviews,2006,125:261-272,doi:10.1007/s11214.006.9062.5.
    [95]Chen. X. L., Y. M. Ma., Z. Su., K. Yang.,2010,On the behaviors of the tropopause folding events over the Tibetan Plateau, Atmos. Chem. Phys. Discuss.,10,22993-23016.
    [96]Dobson. A. E., Hintsa, E,J,, Weinstock, E,M,, et al.:Origin and distribution of polyatomicmolecules in the atmosphere[J]. Proceedings of the Royal Society of London, 1956,A236:1872193.
    [97]Ding, A. and Wang, T.:Influence of stratosphere-to-troposphere exchange on the seasonal cycle of surface ozone at Mount Waliguan in Western China, Geophys. Res. Lett.,33, L03803, doi:10.1029/2005GL024760,2006.
    [98]Danielsen, E. F,1964:Project Springfield report. DASA 1517, Defense Atomis Support Agency, Washington, DC,97pp.
    [99]Danielsen, E. F., K. H. Bergman, and C.A.Paulson,1962:Radioisotopes, Potential Temperature and Potential Vorticity. University of Washington,54pp.
    [100]Danielsen, E. F,1968:Stratospheric-tropospheric exchange based on radioactivity, ozone, and potential vorticity, J. Atmos. Sci.,25,502-518.
    [101]Danielsen, E. F, Mohnen. V. A.,1977:Progect Dust storm report:Ozone transport, in situ measurements, and meteorological analyses of tropopause folding [J]. Journal of Geophysical Research,82:5867-5877.
    [102]DUNBAR R B, WELLINGTON G M, COLGAN M W, et al. Eastern Pacific sea surface temperature since 1600 A.D.:The δ180 record of climate variability in Galapagos Corals [J]. Paleoceanogr,1994,9(2):291-315.
    [103]Ebel,A., H. Hass., H. J. Jakobs., M. Laure., M. Memmesheimer., A. Oberreuter., H. Geiss., Y.H.Kou.,1991:Simulation of ozone instrusion caused by a tropopause fold and cut-off low. Atmos. Environ.,25A,2131-2144.
    [104]Elbern. H, J. Hendricks, and A. Ebel. A Climatology of Tropopause Folds by Global Analyses, Theor. Appl. Climatol,1998,59:181-200.
    [105]Flohn H. Contributions to the meteorology of the Tibetan Highlands. Atmospheric Science Paper,1968,130:182-225.
    [106]Gettleman. A., and A. H. Sobel (2000), Direct diagnoses of stratosphere-tropopause exchange, J.Atmos.Sci.,57,3-16.
    [107]Hess. S. L:Some new mean ineridional cross sections through the atmosphere J]. J Meteor,] 948,5:293-300.
    [108]Holton J R, Haynes P H, Mclntyre M E, et al.(1995):Stratosphere-troposphere exchange. Rev Geophys,33(4):403-439.
    [109]Hoinka K P. The tropopause:Discovery, definition and demarcation [J]. Meteorologische Zeitschrift,1997,6:281-303.
    [110]Hoerling. M. P, Schaack. T. K, Lenzen. A. J. A global analysis of stratospheric-tropospheric exchange during northern winter. Mon. Wea. Rev,1993,121: 162-172.
    [111]Hoskins. B. J.,1982:The mathematical theory of frontogenesis [J]. Annual of Reviews Fluid Mechanics,14,131-151.
    [112]Hoskins B J., McIntyre. M. E., Robertson. A. W., On the use and significance of isentropic potential vorticity maps [J]. Quarterty Journal of the Royal Meteorological Society, 1985,3:8872946.
    [113]Haynes P H, Marks C J, Mclnyrre M E, et al. On the "downward control" of the extratropical diabatic circulations by eddy2induced mean zonal force[J]. Journal Atmospheric Science.1991,48:6512678.
    [114]Hintsa, E. J., and Coauthors,1998:Troposphere-tostratosphere transport in the lowermost stratosphere from measurements of H2O, CO2, N2O and O3. Geophys. Res. Lett., 25,2655-2658.
    [115]Jason.A.O., Thomas. J.G.,2008, Comparison of WRF Model-simulated and MODIS-derived cloud data, Monthly Weather Review,136,1957-1970.
    [116]Kutzbach. J. E, Guetter. P. J., Ruddiman. W. F., et al.,Sensitivity of climate to late Cenozoic uplift in Southern Asia and the American West:Numerical experiments. Journ. of Geog Research,1989,94(15):18393~18407.
    [117]Kutzbach J E, PrellW L, Ruddiman. W F. Sensitivity of Eurasian Climate to surface up lift of the Tibetan Plateau [J]. Journal of Geology,1993,101:1772190.
    [118]Karyampudi, V. M., M. L. Kaplan, S. E. Koch, and R. J. Zamora,1995:The influence of the Rocky Mountains on the 13-14 April 1986 severe weather outbreak. Part I:Mesoscale lee cyclogenesis and its relationship to severe weather and dust storms. Mon. Wea. Rev.,123, 1394-1422.
    [119]Lamarque.J.F, Hess. P.G.,1994:Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding [J]. Journal of Atmospheric Science,,51,2246-2269.
    [120]Liu. X. D., Chen. B. D.,2000:Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol.,20 (14):1729-1742.
    [121]Manabe S, Wetherald R T。,1967:Theral equilibrium of the atmosphere with a given distribution of relative humidity [J]. Journal of the Atmospheric Sciences,24:241-254.
    [122]Maxobep 3 M.对流层顶气候学[M].张贵银,廖寿发洋.北京:气象出版社。1988.
    [123]Mastrangelo.D.,Miglietta.M.M.,Moscattelo.A.,Horvath.K.,Budillon.G.,2009,MM5 and WRF high resolution simulations of a heavy precipitation event over southern Italy, Plinius Conference Abstracts, Vol.11, Plinius11-127.
    [124]Pan. L., P. Konopka., E. V. Browell., Observations and model simulations of mixing near the extratropical tropopause. J.Geophys. Res.,2006,111. D05106.doi:10.1029/2005 JD006480.
    [125]Reed, R. J., and F.Sanders,1953:An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J.Meteor.,10,338-349.
    [126]Reed, R. J.,1955:A study of a characteristic type of upper-level frontogenesis, J. Atmos. Sci.,12(3),226-237.
    [127]Ramaswamy V, Chanin M L, Angell J, et al.,2001:Stratospheric temperature trends: Observations and model simulations[J]. Reviews of Geophysics,39:71-122.
    [128]Stohl, A., H. Wernli, P. James, M. Bourqui, C. Forster, M. A. Liniger, P. Seibert, and M. Sprenger (2003), A new perspective of stratosphere-troposphere exchange, Bull. Am. Meteorol. Soc.,84,1565-1573.
    [129]Staley. D. O.,1960:Evaluation of potential vorticity changes near the tropopause and the related motion,vertical advection of vorticity and transfer of radioactive debris from stratosphere to troposphere.J.Meteor.,17,591-620.
    [130]Shapiro, M. A,1976:The role of turbulent heat flux in the generation of potential vorticity in the vicinity of upper-level jet stream system. Mon.Wea.Rev.,104,892-1004.
    [131]Shapiro, M. A,1978:Further evidence of the mesoscale and turbulence structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev.,106,1100-1111.
    [132]Shapiro, M. A,1980:Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and the troposphere. J. Atmos. Sci.,37,994-1004.
    [133]Steinwagner, J., Milz, M., von Clarmann, T., Glatthor, N., Grabowski, U., H"opfner, M, Stiller, G. P., and ROckmann, T.:HDO measurements with MIPAS, Atmos. Chem. Phys.,7, 2601-2615, doi:10.5194/acp-7-2601-2007,2007.
    [134]Solomon S. Stratospheric ozone depletion:A review of concepts and history[J]. Reviews of Geophysics,1999,37:275-316.
    [135]SPARC [JP/OL]. http://www.atmosp.physics.utronto.ca/SPARC/,2009.
    [136]Stohl, A., and T. Trickl,1999:A textbook example of longrange transport:Simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe. J. Geophys. Res.,104,30445-30462.
    [137]STACCATO,2003:Journal of Geophysical Research, Vol.108, no. D12.
    [138]Thompson D W J, Wallace J M.,1998:The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett,25(9):1297-1300.
    [139]Thompson. J, Wallance. M.,2000:Annual models in the extratropical circulation. Part I:Month to Month variability [J]. Journal of Climate,13:1000-1016.
    [140]Thompson. D. W. J., Furtado. J. C, Shepherd. T.G., et al.,2006:On the tropospheric response to anomalous stratospheric waved rag and radiative heating [J]. Journal of Atmospheric Sciences,63:2616-2629.
    [141]TAGUCHI M, HARTMANN D L. Increased occurrence of stratospheric sudden warmings during El Nino as simulated by WACCM [J]. Clim.,2006,19:324-332.
    [142]Tian W, Chipperfield MP, Huang G.2008. Effects of the Tibetan Plateau on total column ozone distribution. Tellus 60B:622-636.
    [143]Tian. H., Wenshou Tian., Jiankai Zhang., Min Zhang., and Jiali Luo.,2012: Cross-Tropopause Mass Exchange over the Tibetan Plateau, Q. J. Roy. Meteorol. Soc (under view)
    [144]Vaughan G, Price J D, Howells A. Transport into the troposphere in a tropopause fold[J]. Quarterly Journal of the Royal Meteorological Society,1994,120:108521 103.
    [145]Vaughan, G., and C. Timmis,1998:Transport of neartropopause air into the lower midlatitude stratosphere.Quart. J. Roy. Meteor. Soc.,124,1559-1578.
    [146]Van Haver, P., Beekmann, M., De Muer, D., and Mancier, C.,1996:Climatology of tropopause folds at midlatitudes, Geophys. Res. Lett.23,1036-1036.
    [147]WMO.,2007:Scientific Assessment of Ozone depletion:2006, WMO Global O zone Research and Monitoring Project-Report No.50 [R]. Geneva, Switzerland.
    [148]WMO,1985:Atmospheric ozone, volume I. Global Ozone Research and Monitoring Project, Report No.16, Washington. D. C.
    [149]Wei. M. Y. A new fomlul ation Of the exchange of mass and trace constituent between the stratosphere and the troposphere. J. Atmos. Sci.,1987,44:3079-3086.
    [150]Wirth. V., and J. Egger (1999), Diagnosing extratropical synoptic-scale stratosphere-tropopause exchange:A case study, Q. J. R. Meteorol. Soc.,125,635-655.
    [151]Wu Guoxiong, Liu Yimin, Liu Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Sciences,2005,29 (1):47256.
    [152]Weatherhead E C, Andesen S B. The search for signs of recovery of the ozone layer[J]. Nature,2006,441:39-45.
    [153]WMO(World Meteorological Organization). Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project-Report No.50[R]. Geneva Switzerland,2007.
    [154]Ye, D. and Gao, Y.:The Meteorology of the Qinghai-Xizang (Tibet) Plateau (in Chinese), Science Press, Beijing,62-257,1979.
    [155]Ye. D. Z, Wu. G. X.,1998:The role of the heat source of the Tibetan Plateau in the general circulation. Met. Atmos. Phys.,67:181-198.
    [156]Yanai, M., Li, C., and Song, Z.,1992:Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon, J. Meteorol. Soc. Jpn.,70,319-351.
    [157]Zhan, R. F. and Li, J. P.:Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor, Sci. China Ser. D,51(8),1179-1193, 2008.
    [158]Zhang min, Tian wenshou, Chen lei, and Lu daren. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau, AAS, 2010,27(6),1344-1360.
    [159]Zhang. Y. C., Kuang. X. Y., Guo. W. D., et al., Seasonal evolution of the upper tropospheric westerly jet core over East Asia [J]. Geo Phys Res Lett.2006,33,L11708, doi:10.1029/2006GL026377.
    [1]丁一汇,马晓青,2007,2004/2005年冬季强寒潮事件的等熵位涡分析,气象学报,65(5),695-707.
    [2]Betts, A. K.,:A new convective adjustment scheme. Part I:Observational and theoretical basis [J]. Quart. J. Roy. Meteor. Soc.,1986112:677-691.
    [3]Betts, A. K., and M. J. Miller. A new convective adjustment scheme. Part Ⅱ:Single column tests using GATE wave, BOMEX, and arctic air-mass data sets [J]. Quart. J. Roy. Meteor. Soc.,1986112:693-709.
    [4]Chen, F., J. Dudia,2000. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part Ⅰ:Model description and implementation. Mon. Wea. Rev., in press.
    [5]Chen,S.-H.,W.-Y. Sun. A one-dimensional time dependent cloud model [J]. J. Meteor. Soc. Japan,2002,80:99-118.
    [6]Cox B D, Bithell M, Gray. L J. Modeling of stratospheric intru-sions within a mid-latitude synoptic-scale disturbance. Q J R Me-teorol Soc,1997,123: 1377-1403.
    [7]Dudia, J.,:Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. J. Atmos. Sci.,1989,46:3077-3107.
    [8]Danielsen E F. Stratospheric-tropospheric exchange based on ra-dioactivity, ozone and potential vorticity. J Atmos Sci,1968,25:502-518.
    [9]Fels, S. B., M. D. Schwarzkopf. The simplified exchange approximiation:a new method for radiative transfer calculations [J]. J.TMOS.Sci.,1975,32L1475-1488.
    [10]Ge, J., Su, J., T. P. Ackerman, Fu, Q., Huang, J., and Shi, J.,2010:Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S joint field experiment, J. Geophys. Res.,115, D00K12, doi:10.1029/1009JD013263.
    [11]Hoerling M P, Schaack T K, Lenzen A J. A global analysis of stratospheric-tropospheric exchange during northern winter. Mon Wea Rev,1993,121: 162-172.
    [12]Huang,J., P.Minnis., B. Lin., T. Wang., Y. Yi., Y. Hu., S. Sun-Mack., and K. Ayers(2006b),Possible influences of Asian dust aerosols on cloud properties and radioactive forcing observed from MODIS and CERES, Geophys.Res.Lett.,33,L06824, doi:10.1029/2005GL024724.
    [13]H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, "AIRS/AMSU/HSB on the Aqua mission:Design, science objectives, data products, and processing systems", IEEE Trans. Geosci. Remote Sensing, vol.41, pp.253-264,2003.
    [14]Huang J, W Zhang, J Zuo, J Bi, J Shi, X Wang, Z Chang, Z Huang, S Yang, B Zhang, G. Wang, G. Feng, J Yuan, L Zhang, H Zuo, S Wang, C Fu, and J Chou,2008:An Overview of the Semi-arid Climate and Environment Research Observatory over the Loess Plateau, AAS, VOL.25, NO.6,906-921.
    [15]Huang, Z., J. Huang, J. Bi, G. Wang, W. Wang, Q. Fu, Z. Li, S.-C. Tsay, and J. Shi,2010: Dust aerosol vertical structure measurements using three MPL Iidars during 2008 China-U.S. joint dust field experiment, J. Geophys. Res.,115, D00K15, doi:10.1029/2009JD013273.
    [16]Hong, S.-Y., H.-L. Pan.Nonlocal boundary layer vertical diffusion in a medium-range forecast model [J]. Mon. Wea. Rev.,1996,124:2322-2339.
    [17]Hong,S.-Y.,H.-M.H.Juang,Q.Zhao. Implementation of prognostic cloud scheme for a regional spectral model [J].Mon.Wea.Rev.,1998,126:2621-2639.
    [18]Janjic, Z. I.,:Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models. [J]..Journal of the Atmospheric Sciences,2000,Vol.57:3686.
    [19]Janjic, Z. I.,:Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models."[J]. Journal of the Atmospheric Sciences,2000, Vol.57, p.3686.
    [20]Janjic, Z. I.,:Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No.437,2002,61 pp
    [21]Kessler, E.,:On the distribution and continuity of water substance in atmospheric circula-tion. Meteor.Monogr[J].,No.32,Amer.Meteor.Soc.,1969,84pp
    [22]Kain, J. S., J. M. Fritsch. A one-dimensional entraining/detraining plume model and its application in convective parameterization [J]. J. Atmos. Sci.,1990,47:2784-2802.
    [23]Kain, J. S., J. M. Fritsch. Convective parameterization for mesoscale models:The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc.,1993,246 pp.
    [24]Lin,Y.-L.,R.D.Farley,H.D.Orville.Bulk parameterization of the snow field in a cloud model[J].Climate Appl.Meteor.,1983,22,1065-1092
    [25]Lamarque J F, Hess P G. Cross-tropopause mass exchange and po-tential vorticity budget in a simulated tropopause folding. J Atmos Sci,1994,51(15): 2246~2269.
    [26]Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough.:Radiative trans-fer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the long-wave [J]. J.Geophys.Res.,1997,102(D14):16663-16682.
    [27]Reiter E R. Stratospheric-tropospheric exchange processes. Rev Geophys Space Phys,1975, 13(4):459-474.
    [28]Schwarzkopf, M. D., S. B. Fels.,:The simplified exchange method revisited-An accurate,rapid method for computation of infrared cooling rates and fluxes[J]. J. Geophys. Res.,1991,96(D5):9075-9096.
    [29]Simmons A, Uppala S, Dee D, et al.2006. ERA-Interim:New ECMWF reanalysis products from 1989 onwards [N]. ECMWF Newsletter,110:25-35.
    [30]Shapiro, M. A,1978:Further evidence of the mesoscale and turbulence structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev.,106,1100-1111.
    [31]Shapiro, M. A,1980:Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and the troposphere. J. Atmos. Sci.,37,994-1004.
    [32]Tao, W. K.,:An ice-water saturation adjustment[J].Mon.Wea.Rev.,1989,117:231-235.
    [33]Webb, E. K.,:Profile relationships:The log-linear range, and extension to strong stability [J]. Quart. J.Roy. Meteor. Soc.,1970,96:67-90.
    [34]Zhao, Q.,F.H. Carr. A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev.,1997,125:1931-1953.
    [1]丛春华,李维亮,周秀骥,2001:青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换.科学通报,46(22):1914-1918
    [2]陈洪滨,卞建春,吕达仁,2006:上对流层下平流层交换过程研究的进展与展望[J].大气科学,30(5):813—820.
    [3]白虎志,谢金南,李栋梁.近40年青藏高原季风变化的主要特征[J].高原气象,2001,20(1):22-27.
    [4]冯松,汤懋苍,王冬梅,1998:青藏高原是我国气候变化启动区的新证据.科学通报,43(6):633-636
    [5]汤懋苍,沈志宝,陈有虞,1979:高原季风的平均气候特征[J].地理学报,34(1):35-41
    [6]汤懋苍,程国栋,林振耀编著,1998:青藏高原近代气候变化及对环境的影响[M].广州:广东科技出版社.161-171
    [7]吴国雄,刘屹岷,刘新,等,2005:青藏高原加热如何影响亚洲夏季的气候格局.大气科学,29(1):47-56
    [8]叶笃正,罗四维,朱抱真,1957:西藏高原及其附近的流场结构和对流层大气的热量平衡.气象学报,28:108-121
    [9]杨健,吕达仁,2003:平流层-对流层交换研究进展[J].地球科学进展,18(3),380—385.
    [10]杨双燕,周顺武,2010:对流层顶研究回顾,气象科技,38(2):145-151.
    [11]周秀骥,罗超,李维亮,等,1995:中国地区臭氧总量变化与青藏高原低值中心[J].科学通报,40(15):1396-1398.
    [12]Austin, J. F., and R. P. Midgley,1994:The climatology of the jet stream and stratospheric intrusions of ozone over Japan. Atmos. Environ.,28,39-52.
    [13]Andrews, D. G., J. R. Holton, and C. B. Leovy,1987:Middle Atmosphere Dynamics. Academic Press, San Diego, California,489pp.
    [14]Betts, A. K.,1986:A new convective adjustment scheme. Part Ⅰ:Observational and theoretical basis. Quart. J. Roy. Meteor. Soc.,112,677-692.
    [15]Beekmann, M., et al.,1997:Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmos. Chem.,28,29-44.
    [16]Betts, A. K., and M. J. Miller,1986:A new convective adjustment scheme Part Ⅱ. Quart. J. Roy. Meteor. Soc.,112,693-709.
    [17]Brill, K. F., Uccellini, L. W., Burkhart, R. P., Warner, T. T. and Anthes, R. A.,1985: Numerical simulations of a transverse indirect circulation and low level jet in the exit region of an upper-level jet.J. Atmos. Sci.,42,13061320
    [18]Bush, A. B. G. and Peltier, W. R.,1994:Tropopause folds and synoptic-scale baroclinic wave life cycles. J. Atmos. Sci.,51,1581-1604
    [19]Cadle, R. D., M. A. Shapiro, and G. Langer,1979:Concentrations of condensation nuclei in the vicinity of jet stream maxima. Arch. Meteor. Geophys. Bioklimatol., A28,1-10.
    [20]Chen F, Dudhia J.2001:Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part Ⅰ:Model description and implementation. Mon. wea. Rev.,129:569-585.
    [21]Chen. X. L., Y. M. Ma., Z. Su., K. Yang.,2010,On the behaviors of the tropopause folding events over the Tibetan Plateau, Atmos. Chem. Phys. Discuss.,10,22993-23016.
    [22]Cox, B. D., M. Bithell, and L. J. Gray,1995:A general circulation model study of a tropopause-folding event at middle latitudes. Quart. J. Roy. Meteor. Soc.,121,883-910.
    [23]Cox, B.D., Bithell, M., Gray, L.J.,1997. Modelling of stratospheric intrusions within a mid-latitude synoptic-scale disturbance. Quarterly Journal of the Royal Meteorological Society 123,1377-1403.
    [24]Danielsen, E. F., K. H. Bergman, and C.A.Paulson,1962:Radioisotopes, Potential Temperature and Potential Vorticity. University of Washington,54pp.
    [25]Danielsen, E. F,1964:Project Springfield report. DASA 1517, Defense Atomis Support Agency, Washington, DC,97pp.
    [26]Danielsen, E. F,1968:Stratospheric-tropospheric exchange based upon radio-activity, ozone, and potential vorticity, J. Atmos. Sci.,25,502-518.
    [27]Ebel, A., Hess, H., Jakobs, H.J., Laube, M., Memmesheimer, M.,Oberreuter, A.,1991. Simulation of ozone intrusion caused by a tropopause fold and cut-o! low. Atmospheric Environment 25A,2131-2144.
    [28]Elbern, H., Kowol, J., SlaH dkovic, R., Ebel, A.,1997. Deep stratospheric intrusions:a statistical assessment with model guided analyses. Atmospheric Environment 31 (19), 3207-3226.
    [29]Elbern. H, J. Hendricks, and A. Ebel. A Climatology of Tropopause Folds by Global Analyses, Theor. Appl. Climatol.59,181-200 (1998).
    [30]Fu, R., Hu, Y., Wright, J. S., Jiang, J. H., Dickinson, R. E., and co-authors,2006:Short circuit of water vapor and polluted air to the global stratosphere by convection transport over the Tibetan Plateau, PNAS 103,5664-5669.
    [31]Galani, E., D. Balis, P. Zanis, C. Zerefos, A. Papayannis, H. Wernli, and E. Gerasopoulos, 2003:Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system. J. Geophys. Res.,108(D12),8527, doi:10.1029/2002JD002596.
    [32]Gettelman A, Kinni son D E, Dunkert on T J, et al.,2004:The impact of monsoon circulations on the upper tropsphere and lower stratosphere. J. Geophys. Res.,109:D22101, doi:10.1029/2004JD004878.
    [33]Hoskins, B. J., Bretherton, F. P.,1972:Atmospheric frontogenesis models:mathematical formulation and solution. J. Atmos. Sci.,29,11-37.
    [34]Hoskins B J.:The mathematical theory of frontogenesis [J]. Annual of Reviews Fluid Mechanics,1982,14:131-151.
    [35]Holton J R Hoerling M P, T K Schaack, A J Lenzen.,1991:Global objective tropopause analysis [J].Mon Wea Rev,119(8):1816-1831.
    [36]Holton. J. R, Haynes P H, Mclntyre M E, et al.,1995:Stratosphere-troposphere exchange. Rev of Geophys,33:403-439
    [37]Harris, J. M., S. J. Oltmans, E. J. Dlugokencky, P. C. Novelli, B. J. Johnson, and T. Mefford, 1998:An investigation into the source of the springtime tropospheric ozone maximum at Mauna Loa Observatory. Geophys. Res. Lett.,25,1895-1898.
    [38]Hsu J, Prath er M J, Wild O.,2005:Diagnosing the stratosphere to troposphere flux of ozone in a chemistry transport model. J. Geophys. Res.,110:D19305, doi:10. 1029/2005 JD006045.
    [39]Hong, S. Y., Y. Noh, and J. Dudhia,2006:A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev.,134,2318-2341.
    [40]Janjic, Z. I.,1994:The step-mountain eta coordinate model:Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev.,122, 927-945.
    [41]Karyampudi, V. M., M. L. Kaplan, S. E. Koch, and R. J. Zamora,1995:The influence of the Rocky Mountains on the 13-14 April 1986 severe weather outbreak. Part I:Mesoscale lee cyclogenesis and its relationship to severe weather and dust storms. Mon. Wea. Rev.,123, 1394-1422.
    [42]Lin, Y. L., R. D. Farley, and H. D. Orville,1983:Bulk parameterization of the snow field in a cloud model. Journal of Climate & Applied Meteorology,22,1065-1092.
    [43]Liu X D, Chen B D.,2000:Climat ic w arming in the Tibetan Plateau during recent decades. Int. J. Climatol.,20 (14):1729-1742.
    [44]Monks, P. S.,2000:A review of the observations and origins of the spring ozone maximum. Atmos. Environ.,34,3545-3561.Reed, R. J., and F.Sanders,1953:An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field.J.Meteor.,10,338-349.
    [45]Reed, R. J.,1955:A study of a characteristic type of upper-level frontogenesis, J. Atmos. Sci., 12(3),226-237.
    [46]Ramanathan K R. Kolkarni R N.,1960:Mean meridional distribution of ozone in different season calculated from Umkehr observation and probable vertical transport mechanism [J]. Quart J Roy Meteor Soc,86(368):144-155.
    [47]Randel, W. J., Seidel, Dian, J., and Pan, L. L.,2007:Observational characteristics of double tropopauses, J. Geophys. Res.,112, D07309, doi:10.1029/2006jd007904.
    [48]Shapiro, M. A.,1975:Simulation of upper level frontogenesis with a 20-level isentropic coordinate primitive equation model. Mon. Weather Rev.,103,591-604
    [49]Shapiro, M. A,1978:Further evidence of the mesoscale and turbulence structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev.,106,1100-1111.
    [50]Shapiro, M. A,1980:Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and the troposphere. J. Atmos. Sci.,37,994-1004.
    [51]Schuepbach. E., Trevor D. D., Alexia C. M., Heini W.,1999:Mesoscale modelling of vertical atmospheric transport in the Alps associated with the advection of a tropopause fold a winter ozone episode, Atmospheric Environment 33,3613-3626.
    [52]Sprenger, M., and H. Wernli,2003:A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979-1993). J. Geophys. Res.,108,8521, doi:10.1029/2002JK002636.
    [53]Schmidt, T., Heise, S., Wickert, J., Beyerle, G., and Reigber, C.,2005:GPS radio occultation with CHAMP and SAC-C:global monitoring of thermal tropopause parameters, Atmos. Chem. Phys.,5,1473-1488, doi:10.5194/acp-5-1473-2005.
    [54]Shu, J., W. Tian, J. Austin, M. P. Chipperfield, F. Xie, and W. Wang.,2011:Effects of sea surface temperature and greenhouse gas changes on the transport between the stratosphere and troposphere, J. Geophys. Res.,116, D02124, doi:10.1029/2010JD014520. (通讯作者)
    [55]Tian, W. S., M. P. Chipperfield., and Q. Huang,2008:Effects of the Tibetan plateau on total column ozone distribution. Tellus,60B,622-635.
    [56]Tian W., M. P. Chipperfield, D. Lu.,2009:Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change. Advances in Atmospheric Sciences,26(3), 373-380, doi:10.1007/s00376-009-0373-9.
    [57]Van Haver, P., Beekmann, M., De Muer, D., and Mancier, C.,1996:Climatology of tropopause folds at midlatitudes, Geophys. Res. Lett.23,1036-1036.
    [58]WMO,1985:Atmospheric ozone, volume I. Global Ozone Research and Monitoring Project, Report No.16, Washington. D. C.
    [59]Xie, F., W. Tian, and M. P. Chipperfield.,2008:Radiative effect of ozone change on stratosphere-troposphere exchange, J. Geophys. Res.,113, D00B09, doi:10.1029/2008JD009829(通讯作者).
    [60]Zhou, X., C. Lou, W. L. Li, and J. E. Shi.,1995:Ozone changes over China and low center over Tibetan Plateau. Chinese Science Bulletin,40,1396-1398.
    [61]Lamarque, J.-F. and Hess, P. G.,1994:Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding.J. Atmos. Sci.,51,2246-2269
    [1]陈洪滨,卞建春,吕达仁,2006:上对流层下平流层交换过程研究的进展与展望[J].大气科学,30(5):813—820.
    [2]蔡琼琼,周天军,吴波,李博,张丽霞,2011东亚副热带西风急流及其年际变率的海气耦合模式模拟,海洋学报,33(4),38-48
    [3]顾震潮.西藏高原对东亚大气环流的动力影响和它的重要性[J].中国科学,1951,2:283-303.
    [4]李勇红和张可苏,1992,急流加速产生的高空锋生和低空锋生,大气科学,16(4),452-463
    [5]曾庆存,1963,大气中的适应过程和调整过程(1),气象学报,33(2),163-174
    [6]曾庆存,1979,数值天气预报的数学物理基础,第一卷,230-237,科学出版社.
    [7]叶笃正,陶诗言,李麦村,1958:在6月和10月大气环流的突变现象,气象学报,29(4):250-263.
    [8]陶诗言,赵煜佳,陈晓敏,1958:东亚的梅雨与亚洲上空大气环流季节变化的关系[J].气象学报,29(2):119-134.
    [9]况雪源,张耀存,2006:东亚副热带西风急流季节变化特征及其热力影响机制探讨[J].气象学报,64(5):564-575.
    [10]杜银,张耀存,谢志清,2009:东亚副热带西风急流位置变化及其对中国东部夏季降水异常分布的影响[J].大气科学,33(3):581-592.
    [11]朱乾根,林锦瑞,寿绍文,唐东昇,2000,天气学院里和方法(第三版),北京,气象出版社
    [12]Ancellet, G., J. Pelon, M. Beekmann, A. Papayannis, and G. Megie,1991:Ground based lidar studies of ozone exchanges between the stratosphere and the troposphere. J. Geophys. Res.,96,22401-22421.
    [13]Ancellet, G., M-. Beekmann, and A. Papayannis,1994:Impact of a cutoff low development on downward transport of ozone in the troposphere. J. Geophys. Res.,99,3451-3468.
    [14]Andrews, D. G., J. R. Holton, and C. B. Leovy,1987:Middle Atmosphere Dynamics. Academic, San Diego, Calif.
    [15]Appenzeller, C., and H. C. Davies,1992:Structure of stratospheric intrusions into the troposphere. Nature,358,570-572.
    [16]Austin, J. F., and R. P. Midgley,1994:The climatology of the jet stream and stratospheric intrusions of ozone over Japan. Atmos. Environ.,28,39-52.
    [17]Betts, A. K.,1986:A new convective adjustment scheme. Part Ⅰ:Observational and theoretical basis. Quart. J. Roy. Meteor. Soc.,112,677-692.
    [18]Betts, A. K., and M. J. Miller,1986:A new convective adjustment scheme Part Ⅱ. Quart. J. Roy. Meteor. Soc.,112,693-709.
    [19]Charney. J. G., A. Eliassen. A numerical method for predicting in the perturbat ion of the middle latitude westerlies [J]. Tellus,1949,1:38-55.
    [20]Cluley, A. P., and M. J. Oliver,1978:Aircraft measurements of the humidity in the low stratosphere over southern England 1972-1976. Quart. J. Roy. Meteor. Soc.,104,511-526.
    [21]Cox, B. D., M. Bithell, and L. J. Gray,1995:A general circulation model study of a tropopause-folding event at middle latitudes. Quart. J. Roy. Meteor. Soc.,121,883-910.
    [22]Chen F, Dudhia J.2001:Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part Ⅰ:Model description and implementation. Mon. wea. Rev.,129:569-585
    [23]Danielsen, E. F,1968:Stratospheric-tropospheric exchange based upon radio-activity, ozone, and potential vorticity. J. Atmos. Sci.,25,502-518.
    [24]Ding, A. and Wang, T.:Influence of stratosphere-to-troposphere exchange on the seasonal cycle of surface ozone at Mount Waliguan in Western China, Geophys. Res. Lett.,33, L03803, doi:10.1029/2005GL024760,2006.
    [25]Ye, D. and Gao, Y.:The Meteorology of the Qinghai-Xizang (Tibet) Plateau (in Chinese), Sci 15 ence Press, Beijing,62-257,1979.
    [26]Eisele, H., H. E. Scheel, R. Sladkovic, and T. Trickl,1999:High-resolution lidar measurements of stratosphere- troposphere exchange. J. Atmos. Sci.,56,319-330.
    [27]Elbern. H, J. Hendricks, and A. Ebel. A Climatology of Tropopause Folds by Global Analyses, Theor. Appl. Climatol.59,181-200 (1998).
    [28]Fu, R., and co-authors,2006:Short circuit of water vapor and polluted air to the global stratosphere by convection transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. U. S. A., 103,5664-5669.
    [29]Galani, E., D. Balis, P. Zanis, C. Zerefos, A. Papayannis, H. Wernli, and E. Gerasopoulos, 2003:Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system. J. Geophys. Res.,108(D12),8527, doi:10.1029/2002JD002596.
    [30]Gray, L.J., Bithell, M., Cox, B.D.,1994. The role of specific humidity fields in the diagnosis of stratosphere troposphere exchange. Geophysical Research Letters 21 (19),2103}2106.
    [31]Hong, S. Y., Y. Noh, and J. Dudhia,2006:A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev.,134,2318-2341.
    [32]Hoskins, B. J., Bretherton, F. P.,1972:Atmospheric frontogenesis models:mathematical formulation and solution. J. Atmos. Sci.,29,11-37.
    [33]Janjic, Z. I.,1994:The step-mountain eta coordinate model:Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev.,122, 927-945.
    [34]Karyampudi, V. M., M. L. Kaplan, S. E. Koch, and R. J. Zamora,1995:The influence of the Rocky Mountains on the 13-14 April 1986 severe weather outbreak. Part I:Mesoscale lee cyclogenesis and its relationship to severe weather and dust storms. Mon. Wea. Rev.,123, 1394-1422.
    [35]Kentarchos, A. S., T. D. Davies, and C. S. Zerefos,1998:A low latitude stratospheric intrusion associated with a cut-off low. Geophys. Res. Lett.,25,67-70.
    [36]Kentarchos, A. S., G. J. Roelofs, and J. Lelieveld,1999:Model study of a stratospheric intrusion event at lower midlatitudes associated with the development of a cutoff low. J. Geophys. Res.,104(D1),1717-1727.
    [37]Lamarque, J. F.,1996:Cross-tropopause mixing of ozone through gravity wave breaking: Observation and modeling. J. Geophys. Res.,101(D17),22969-22976
    [38]Lamarque.J.F, Hess.P.G.,1994:Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding [J]. Journal of Atmospheric Science,,51,2246-2269
    [39]Lilly, D. K.,1971:Observations of mountain-induced turbulence. J. Geophys. Res.,76, 6585-6587.
    [40]Lin, Y. L., R. D. Farley, and H. D. Orville,1983:Bulk parameterization of the snow field in a cloud model. Journal of Climate & Applied Meteorology,22,1065-1092.
    [41]Liu, S. C., M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D.W. Fahey, G. Hubler, and P.C. Murphy,1987:Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res.,92(D4), 4191-4207.
    [42]Queney P. The problem of air flow over mountains:A summary of theoretical studies [J]. Bull Amer Meteor Soc,1948,29:16-29.
    [43]Randel, W., and M. Park,2006:Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, doi:10.1029/2005JD006490.
    [44]Randel, W. J., Seidel, Dian, J., and Pan, L. L.,2007:Observational characteristics of double tropopauses, J. Geophys. Res.,112, D07309, doi:10.1029/2006jd007904.
    [45]Reed, R. J,1955:A study of a characteristic type of upper-level frontogenesis. J. Meteor.,12, 226-237.
    [46]Schuepbach, E., T. D. Davis, A. C. Massacand, and H. Wernli,1999:Mesoscale modelling of vertical atmospheric transport in the Alps associated with the advection of a tropopause fold-a winter ozone episode. Atmos. Environ.,33,3613-3626.
    [47]Shapiro, M. A,1978:Further evidence of the mesoscale and turbulence structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev.,106,1100-1111.
    [48]Shapiro, M. A,1980:Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and the troposphere. J. Atmos. Sci.,37,994-1004.
    [49]Schuepbach. E., Trevor D. D., Alexia C. M., Heini W.,1999:Mesoscale modelling of vertical atmospheric transport in the Alps associated with the advection of a tropopause fold} a winter ozone episode, Atmospheric Environment 33,3613-3626
    [50]Sprenger, M., and H. Wernli,2003:A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979-1993). J. Geophys. Res.,108,8521, doi:10.1029/2002JK002636.
    [51]Schmidt, T., Heise, S., Wickert, J., Beyerle, G., and Reigber, C.,2005:GPS radio occultation with CHAMP and SAC-C:global monitoring of thermal tropopause parameters, Atmos. Chem. Phys.,5,1473-1488, doi:10.5194/acp-5-1473-2005.
    [52]Staley.D.O,1960:Evaluation of potential vorticity changes near the tropopause and the related motion,vertical advection of vorticity and transfer of radioactive debris from stratosphere to troposphere.J.Meteor.,17,591-620
    [53]Tian, W. S., M. P. Chipperfield., and Q. Huang,2008:Effects of the Tibetan plateau on total column ozone distribution. Tellus,60B,622-635.
    [54]Vaughan, G., J. D. Price, and A. Howells,1994:Transport into the troposphere in a tropopause fold. Quart. J. Roy. Meteor. Soc.,120,1085-1103.
    [55]Wu Guoxiong. The non linear response of the atmosphere to large-scale mechani cal and thermal forcing [J]. J Atmos Sci,1984,41:2456-2476.
    [56]Wu Guoxiong, Zhu Baozhen, Gao Dengyi. The impact of Tibetan Plateau on local and regional climate [M]. From Atmospheric Circulation to Global Change. Ed. By the Institute of Atmospheric Physics, CAS, Ch ina M et eor Pr ess,1996:425-440.
    [57]Wu G X, Zhang Y S. Tibet an plateau forcing and the timing of the monsoon onset over south Asia and the south Chinasea [J]. Mon Wea Rev,1998,126:913-927.
    [58]Wang, P. K.,2003:Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res.,108,4194, doi:10.1029/2002 JD002581.
    [59]Yeh T C. The circulation of the high troposphere over China in the winter of 1945-1946[J]. Tellus,1950,2(3):173-183.
    [60]Zhou, X., C. Lou, W. L. Li, and J. E. Shi,1995:Ozone changes over China and low center over Tibetan Plateau. Chinese Science Bulletin,40,1396-1398.
    [61]Zheng, X., X. Zhou, J. Tang, Y. Qin, and C. Chan,2004:A meteorological analysis on a low tropospheric ozone event over Xining, North Western China on 26-27 July 1996. Atmos. Environ.,38,261-271.
    [62]Zhan, R. F. and Li, J. P.:Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor, Sci. China Ser. D,51(8),1179-1193, 2008.
    [63]Zhang Y.C., Kuang X.Y., Guo W.D., et al.,2006:Seasonal evolution of the upper tropospheric westerly jet core over East Asia[J]. Geophys Res Lett,33:L11708, doi:10.1029/2006GL026377.
    [1]陈隆勋,李维亮,亚洲季风区各月大气热源的结构,见:陈隆勋主编,1982年全国热带夏季风学术会议论文集,贵州:云南人民出版社,1983,246-258.
    [2]陈洪滨,卞建春,吕达仁.上对流层一下平流层交换过程研究的进展与展望.大气科学,2006,30(5):813-820.
    [3]陈豫英,陈楠,马金仁,陈晓娟,2010,近48a宁夏寒潮的变化特征及可能影响的成因初步分析,自然资源学报,25(6),939-951.
    [4]从春华,李维亮,周秀骥,2001,青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换,科学通报,46(22)
    [5]蔡琼琼,周天军,吴波,李博,张丽霞,2011东亚副热带西风急流及其年际变率的海气耦合模式模拟,海洋学报,33(4),38-48.
    [6]段明铿,王盘兴,林开平.我国夏季东部区域降水异常年代际、年际变化分析.南京气象学院学报,2005,28(1):932100.
    [7]樊雯璇,王卫国,卞建春,孙绩华,王颢樾,谢应齐,陈新梅.青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征,2008,32(6),1309-1318.
    [8]郭品文,朱乾根,刘宣飞.北半球春季大气臭氧年纪变化特征及其对大气温度和环流场的影响,高原气象,2001,20(3),245-251.
    [9]黄倩,田文寿,王文,张强,沈学顺,张镭,康凤琴.复杂山区上空垂直速度场和热力对流活动的理想数值模拟,2007,65(3),341-352.
    [10]季国良,姚兰昌,袁福茂,等.1982年冬季青藏高原地面和大气加热场特征[J].中国科学(B辑),1986,16(2):214-224.
    [11]况雪源,张耀存.东亚副热带西风急流季节变化特征及其热力影响机制探讨,气象学报,2006,64(5),564-575.
    [12]吕达仁,陈洪斌.平流层和中层大气研究的进展,大气科学,2003,27(4),750-769.
    [13]李维亮,陈隆勋,金祖辉,亚洲上空夏季平均大气环流结构及其热源分析.气象学报,1983,41(1):43-56.
    [14]李勇红,张可苏.急流加速产生的高空锋生和低空锋生,1992,16(4),452-463.
    [15]李爱华,江志红.中国东部夏季雨带推进过程的年际、年代际变化.南京气象学院学报,2007,30(2):1862193.
    [16]刘新,李伟平,吴国雄.夏季青藏高原加热和北半球环流年际变化的相关分析[J].气象学报,2002,60(3):267-277.
    [17]齐冬梅,李跃清,2007,高原季风研究主要进展及其科学意义,干旱气象,25(4),74-7.
    [18]钱纬宏,张玮玮,2007,我国近46年来的寒潮时空变化与冬季增暖,大气科学,31(6),1266-1278.
    [19]汤懋苍,沈志宝,陈有虞.高原季风的平均气候特征[J].地理学报,1979,34(1):33-41.
    [20]汤懋苍,沈志宝,陈有虞,1979,高原季风的平均气候特征,地理学报,34(1),33-42.
    [21]谭杰丽,江静,袁俊鹏,2009,副热带高空急流各中心强度时间变化及分析,29(4),482-489.
    [22]王卫国,郭世昌,杨利群.大气臭氧垂直分布及其变化的研究.地球物理学报,1990,33(6):639-646.
    [23]王卫国,吴涧,刘红年,等.中国及邻近地区污染排放对对流层臭氧变化与辐射影响的研究.大气科学,2005,29(5):734-746.
    [24]王同美,吴国雄,万日金.青藏高原的热力和动力作用对亚洲季风区环流的影响[J].高原气象,2008,27(1):1-9.
    [25]王建中,丁一汇;实际大气中对称不稳定的存在及特征—对称不稳定理论的应用现状分析[J];气象科技;1994.
    [26]王文,陈志勇,陆怀平.中尺度动力学的基础研究和进展,2003,21(3),79-82.
    [27]吴涧,蒋维楣,陈新梅,等.生物质燃烧对东南亚及中国南方对流层臭氧含量影响的模拟研究.环境科学,2004,25(2):1-6.
    [28]杨健,吕达仁,2003:平流层-对流层交换研究进展[J].地球科学进展,18(3):380-385.
    [29]叶笃正,罗四维,朱抱真,高原及其附近的流场结构和对流层的热量平衡[J].气象学报,1957,28(2):108-121.
    [30]叶笃正,张捷迁.青藏高原加热作用对夏季东亚大气环流影响的初步模拟试验[J].中国科学,1974,3:301-320.
    [31]叶笃正,高由禧等编著.青藏高原气象学[M].北京:科学出版社,1979:2-9.
    [32]郑庆林,王三杉,张朝林,等.青藏高原动力和热力作用对热带大气环流影响的数值研究[J].高原气象,2001,20(1):14-21.
    [33]郑光,吴统文,贺慧霞等.北半球臭氧总量与平流层环流关系的分析[J].高原气象,1991,10(3):277--286.
    [34]曾庆存,1963,大气中的适应过程和调整过程(1),气象学报,33(2),163-174.
    [35]周秀骥,罗超,李维亮等.中国地区臭氧总量变化与青藏高原低值中心.科学通报,1995,40(15):1396-1398.
    [36]周秀骥,李维亮,陈隆勋,刘煜.青藏高原地区大气臭氧变化的研究[J].气象学报,2004,62(5):513-527.
    [37]元慧慧,钟中,李杰,郑红莲,张春华.副热带高空急流的非地转平衡特征[J].大气科学学报,2011,(4):484-489.
    [38]Ancellet, G., J. Pelon, M. Beekmann, A. Papayannis, and G. Megie,1991:Ground based lidar studies of ozone exchanges between the stratosphere and the troposphere J. Geophys. Res., 96,22401-22421.
    [39]Ancellet, G., M. Beekmann, and A. Papayannis,1994:Impact of a cutoff low development on downward transport of ozone in the troposphere. J. Geophys. Res.,99,3451-3468.
    [40]Andrews, D. G., J. R. Holton, and C. B. Leovy,1987:Middle Atmosphere Dynamics. Academic Press, San Diego, California,489pp.
    [41]Appenzeller, C., and H. C. Davies,1992:Structure of stratospheric intrusions into the troposphere. Nature,358,570-572.
    [42]Austin, J. F., and R. P. Midgley,1994:The climatology of the jet stream and stratospheric intrusions of ozone over Japan. Atmos. Environ.,28,39-52.
    [43]Browell, E. V., Danielsen, E. F., Ismail, S., Gregory, G. L.,Beck, S. M.,1987:Tropopause fold structure determined from airborne lidar and in situ measurements. J. Geophys. Res.,92, 2112-2120.
    [44]Chen. X. L., Y. M. Ma., Z. Su., K. Yang.,2010,On the behaviors of the tropopause folding events over the Tibetan Plateau, Atmos. Chem. Phys. Discuss.,10,22993-23016.
    [45]Danielsen, E. F,1968:Stratospheric-tropospheric exchange based upon radio-activity, ozone, and potential vorticity. J. Atmos. Sci.,25,502-518.
    [46]Danielsen, E. F., Hipskind, S., Starr, W. L., Vedder, J. F., Gaines, S., Kley, D., Kelly, K. K., 1991:Irreversible transport in the stratosphere by internal waves of short vertical wavelength. J. Geophys. Res.,96,17433-17452.
    [47]Danielsen, E. andMohnen, V.,1977, Project Dustorm Report:Ozone transport, in situ measurements, and meteorological analysis of tropopause folding, J. Geophys. Res.82, 5867-5877.
    [48]Danielsen, E. F., Bleck, R., Dhedlovsky, J., Wartburg, A., Haagenson, P., Pollock, W.,1970: Observed distribution of radioactivity, ozone, and potential vorticity associated with tropopause folding. J. Geophys. Res.,75,2353-2361.
    [49]Ebel, A., Elbern, H., Hendricks, J., and Meyer, R.,1996:Stratosphere-troposphere exchange and its impact on the structure of the lower stratosphere, J. Geomag. Geoelectr.48,135-144.
    [50]Elbern. H, J. Hendricks, and A. Ebel. A Climatology of Tropopause Folds by Global Analyses, Theor. Appl. Climatol.59,181-200 (1998).
    [51]Eisele, H., H. E. Scheel, R. Sladkovic, and T. Trickl,1999:High-resolution lidar measurements of stratosphere troposphere exchange. J. Atmos. Sci.,56,319-330.
    [52]Fu, R., and Coauthors,2006:Short circuit of water vapor and polluted air to the global stratosphere by convection transport over the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America,103,5664-5669.
    [53]Flohn H. Contributions to a Meteorology of the Tibetan Hilands[C]. Atmos Sci Paper, Colorado State University, Fort Collinsm,1957:130-120.
    [54]Genttelman. A, Salby M L, Sassi F. Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res.,2002,107:D10,10.1029/2001JD001048.
    [55]Gettelman A, Kinnison D E. Dunkerton T J, et al. Impact of monsoon circulations on the upper tIoposphere and 1 owe tratosphere J. GOs. Rs.,2004,109:D22101, d0il0.1029 /2004JD004878.
    [56]Haynes P H, Marks C J, McInyrre M E, et al. On the "downward control" of the extratropical diabatic circulations by eddy2induced mean zonal force[J]. Journal Atmospheric Science,1991,48:6512678.
    [57]Hoskins, B. J., Bretherton, F. P.,1972:Atmospheric frontogenesis models:mathematical formulation and solution. J. Atmos. Sci.,29,11-37.
    [58]Hoskins, B. J., Draghici, I.,1977:The forcing of ageostrophic motion according to the semi-geostrophic equations and in an isentropic coordinate model. J. Atmos. Sci.,34, 1859-1867.
    [59]Hoskins, B. J., Pedder, M. A.,1980:The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc.,106,707-719.
    [60]Holton, J. R.,1992:An Introduction to Dynamic Meteorology,3rdedn. San Diego:Academic Press,511 pp.
    [61]Holton J R, Haynes P H, Mclntyre M E, et al.,1995:Stratosphere-troposphere exchange. Rev Geophys,33(4):403-439.
    [62]Jian Mao-qiu, Qiao Yun-ting,Yuan Zhuo-jian,et al.Then impact of atmospheric heat sources over the eastern Tibetan Plateau and the Tropical Western Pacific on the summer rainfall over the Yangtze-River Basin[J].Adv Atmos Sci,2006,23(1):149-155.
    [63]Karyampudi, V. M., M. L. Kaplan, S. E. Koch, and R. J. Zamora,1995:The influence of the RockyMountains on the 13-14 April 1986 severe weather outbreak. Part I:Mesoscale lee cyclogenesis and its relationship to severe weather and dust storms. Mon. Wea. Rev.,123, 1394-1422.
    [64]Keyser, D., Schmidt, B., Duffy, D.,1992:Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q-vector. Mon. Wea. Rev.,120,731-741.
    [65]KoEnig, W., Sausen, R., Sielmami, F.,1993:Objective identification of cyclones in GCM simulations. J. Clim.,6,2217±2231.
    [66]Kentarchos, A. S., T. D. Davies, and C. S. Zerefos,1998:A low latitude stratospheric intrusion associated with a cut-off low. Geophys. Res. Lett.,25,67-70.
    [67]Kentarchos, A. S., G. J. Roelofs, and J. Lelieveld,1999:Model study of a stratospheric intrusion event at lower midlatitudes associated with the development of a cutoff low. J. Geophys. Res.,1O4(D1),1717-1727.
    [68]Levy, H., H. J. D. Mahlman, and W.J.Moxim,1980:Astratospheric source of reactive nitrogen in the unpolluted troposphere,Geophys.Res.Lett.,7,441-444.
    [69]Liu, S. C., M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D. W. Fahey, G. Hubler, and P. C. Murphy,1987:Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res.,92(D4),4191-4207.
    [70]Beekmann. M., G. Ancellet, S. Blonsky, D. Demuer, A. Ebel, H. Elbern, J. Hendricks, J. Kowol, C. Mancier, R. Sladkovic, H.G. J. Smit, P. Speth, T. Trickl and Ph. Van Haver. Regional and Global Tropopause Fold Occurrence and Related Ozone Flux across the Tropopause, Journal of Atmospheric Chemistry,1997,28:29-44.
    [71]Reed, R. J,1955:A study of a characteristic type of upper-level frontogenesis. J. Meteor.,12, 226-237.
    [72]Randel W J, wu F. Cooling of the Arctic and Antarctic polar stratosphere due to ozone depletion[J]. Journal ofClimate,1999,12:1467—1479.
    [73]Ramaswamy V, et al. Stratospheric temperature trends:Observations and model simulations[J]. Rev/ew of Geophysical,2001,39:71-122.
    [74]Randel, W., and M. Park,2006:Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, doi:10.1029/2005JD006490.
    [75]Schuepbach, E., T. D. Davis, A. C. Massacand, and H. Wernli,1999:Mesoscale modelling of vertical atmospheric transport in the Alps associated with the advection of a tropopause fold-A winter ozone episode. Atmos. Environ.,33,3613-3626.
    [76]Shapiro, M. A,1980:Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and the troposphere. J. Atmos. Sci.,37,994-1004.
    [77]Speth, P., Blonsky, S., and Kunz, H.,1996:Bestimmung des anthropogenen und nat urlichen Anteils am Ozon im Mitteleurop aischen Raum aus meteorologischer Sicht. Abschlussbericht und wissenschaftliche Ergebnisse,1994-1996, BMFT Forschungsvorhaben 07EU777A0.
    [78]Solomon S. Stratospheric ozone depl-ion:A review of concepts and history[J]. Review of Geophysical,1999,37:275-316.
    [79]Shu, J., W. Tian, J. Austin, M. P. Chipperfield, F. Xie, and W. Wang (2011), Effects of sea surface temperature and greenhouse gas changes on the transport between the stratosphere and troposphere, J. Geophys. Res.,116, D02124, doi:10.1029/2010JD014520.
    [80]Tian, W. S, M. P. Chipperfield, and Q. Huang (2008):Effects of the Tibetan Plateau on total column ozone distribution, Tellus,60B,4,622-635, doi:10.1111/j.16000889.2008.00338.x..
    [81]Tian W., M. P. Chipperfield, D. Lu (2009):Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change. Advances in Atmospheric Sciences,26(3), 373-380, doi:10.1007/s00376-009-0373-9.
    [82]Tian W., Hongying Tian, Sandip Dhomse and Wuhu Feng,2010:A study of upper troposphere and lower stratosphere water vapor above the Tibetan Plateau using AIRS and MLS data, Atmos. Sci. Let. DOI:10.1002/asl.319.
    [83]Vaughan, G., J. D. Price, and A. Howells,1994:Transport into the troposphere in a tropopause fold. Quart. J. Roy. Meteor. Soc.,120,1085-1103.
    [84]Van Haver, P., Beekmann, M., De Muer, D., and Mancier, C.,1996:Climatology of tropopause folds at midlatitudes, Geophys. Res. Lett.23,1036-1036.
    [85]WMO,1986:Atmospheric Ozone, Vol. Ⅰ, Report No.16. Geneva:WMO,264 pp.
    [86]WMO, Scientific Assessment of Ozone Depletion:1994, WMO 37,Geneva,Switzerland,1995
    [87]Wang C., W. Tian, D. J. Parker, J. H. Marsham and Z. Guo (2011):. Properties of a simulated convective boundary layer over inhomogeneous vegetation. Quarterly Journal of the Royal Meteorological Society,137,99-117, doi:10.1002/qj.724.
    [88]Xie, F., W. Tian, and M. P. Chipperfield (2008), Radiative effect of ozone change on stratosphere-troposphere exchange, J. Geophys. Res.,113, D00B09, doi: 10.1029/2008JD009829.
    [89]Ye. D. Z, Wu G X.,1998:The role of the heat source of the Tibetan Plateau in the general circulation. Met. Atmos. Phys.,67:181-198.
    [90]Yang S, Lau KM, Kim KM. Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J.Climate,2002,15:3062324.
    [91]Zhang min, Tian wenshou, Chen lei, and Lu daren. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau, AAS, 2010,27(6),1344-1360.
    [1]陈洪滨,卞建春,吕达仁.上对流层下平流层交换过程研究的进展与展望[J].大气科学.2006,30(5):813—820.
    [2]蔡琼琼,周天军,吴波,李博,张丽霞,2011东亚副热带西风急流及其年际变率的海气耦合模式模拟,海洋学报,33(4),38-48.
    [3]河惠卿,王振会,金正润,牛生杰,徐爱淑,积云参数化和微物理方案不同组合应用对台风路径模拟效果的影响,热带气象学报,2009,25(4),435-441.
    [4]黄荣辉,顾雷,陈际龙,黄刚,东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展,大气科学,2008,32(4):691-719.
    [5]黄荣辉,蔡榕硕,陈际龙.等.我国旱涝气候灾害的年代际变化及其与东亚气候系统变化关系.大气科学,2006,30(5):730-743.
    [6]李崇银,朱锦红,孙照渤,年代际气候变化研究.气候与环境研究,2002,7(2):209-219.
    [7]李勇红,张可苏,1992,急流加速产生的高空锋生和低空锋生,大气科学,16(4),452-463.
    [8]谭杰丽,江静,袁俊鹏,2009,副热带高空急流各中心强度时间变化及分析,29(4),482-489.
    [9]屠妮妮,何光碧,张利红,WRF模式中不同积云对流参数化方案对比试验[J],高原山地气象研究,2011,31(2):19-25.
    [10]伍华平,束炯,顾莹,胡少立,暴雨模拟中积云对流参数化方案的对比试验,热带气象学报,2009,25(2),175-180.
    [11]杨修群,朱益民,谢倩,等.太平洋年代际振荡的研究进展.大气科学.2004,28(6):979-992.
    [12]张耀存,郭兰丽,2010,东亚副热带西风急流变化多模式模拟结果分析,气象科学,30(5),694-700.
    [13]曾庆存,1963,大气中的适应过程和调整过程(1),气象学报,33(2),163-174.
    [14]朱乾根,林锦瑞,寿绍文,唐东异,2000,天气学院里和方法(第三版),北京,气象出版社.
    [15]Austin, J. F., and R. P. Midgley,1994:The climatology of the jet stream and stratospheric intrusions of ozone over Japan. Atmos. Environ.,28,39-52.
    [16]Betts, A. K., A new convective adjustment scheme. Part I:Observational and theoretical basis[J]. Quart. J. Roy. Meteor. Soc.,1986,112:677-691.
    [17]Betts, A. K., and M. J. Miller. A new convective adjustment scheme. Part Ⅱ:Single column tests using GATE wave, BOMEX, and arctic air-mass data sets [J]. Quart. J. Roy. Meteor. Soc.,1986,112:693-709.
    [18]Beekmann, M., et al.,1997:Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmos. Chem.,28,29-44.
    [19]Danielsen, E. F,1968:Stratospheric-tropospheric exchange based on radioactivity, ozone, and potential vorticity, J. Atmos. Sci.,25,502-518.
    [20]Elbern. H, J. Hendricks, and A. Ebel. A Climatology of Tropopause Folds by Global Analyses, Theor. Appl. Climatol,1998,59:181-200.
    [21]Hoskins. B. J.,1982:The mathematical theory of frontogenesis [J]. Annual of Reviews Fluid Mechanics,14,131-151.
    [22]Janjic, Z. I.:Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models."[J]. Journal of the Atmospheric Sciences,2000,Vol.57, p.3686.
    [23]Jankov, Isidora, William A. Gallus, Moti Segal, Brent Shaw, Steven E. Koch,2005:The Impact of Different WRF Model Physical Parameterizations and Their Interactions on Warm Season MCS Rainfall. Wea. Forecasting,20,1048-1060. doi: http://dx.doi.org/10.1175/WAF888.1.
    [24]Kain, J. S., J. M. Fritsch..:A one-dimensional entraining/detraining plume model and its application in convective parameterization [J]. J. Atmos. Sci.,1990,47:2784-2802.
    [25]Kain, J. S., J. M. Fritsch. Convective parameterization for mesoscale models:The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc.,1993,246 pp.
    [26]Karyampudi, V. M., M. L. Kaplan, S. E. Koch, and R. J. Zamora,1995:The influence of the Rocky Mountains on the 13-14 April 1986 severe weather outbreak. Part I:Mesoscale lee cyclogenesis and its relationship to severe weather and dust storms. Mon. Wea. Rev.,123, 1394-1422.
    [27]Murakami. M.:Analysis of the deep convective activity over the west Pacific and Southeast Asia Part II [J]. Journal of the Meteorological Society of Japan.1984.62:88-108.
    [28]Rama. Y. V., Rao, H. R. Hatwar, Ahmad Kamal Salah and Y. Sudhakar, An Experiment Using the High Resolution Eta and WRF Models to Forecast Heavy Precipitation over India[J]. Pure & Applied Geophysics,2007, B.,1593-1615, DOI: 10.1007/978-3-7643-8493-7_9.
    [29]Reed, R. J.,1955:A study of a characteristic type of upper-level frontogenesis, J. Atmos. Sci., 12(3),226-237.
    [30]Schuepbach. E., Trevor D. D., Alexia C. M., Heini W.,1999:Mesoscale modelling of vertical atmospheric transport in the Alps associated with the advection of a tropopause fold} a winter ozone episode, Atmospheric Environment 33,3613-3626.
    [31]Williams.R.T.,1967, Atmospheric frontogenesis:Anumerical experiment. J.Atmos.Sci., 24,627-641.
    [32]Williams.R.T.,1972, Quasi-geostrophic versu non-geostrophic frontogenesis. J.Atmos.Sci., 29:3-10.
    [33]Ye. D., and Gao.Y.,:The Meteorology of the Qinghai-Xizang (Tibet) Plateau (in Chinese), Science Press, Beijing,62-257,1979.
    [34]Zhang min, Tian wenshou, Chen lei, and Lu daren. Cross-tropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau, AAS, 2010,27(6),1344-1360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700