溶解氧、温度、盐度、氨氮和亚硝酸盐氮对锈斑蟳(Charybdis Feriatus)存活和摄饵的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以锈斑蟳为研究对象,研究了溶解氧、温度、盐度、氨氮以及亚硝氮等环境因子对锈斑蟳存活及摄饵的影响。所得主要研究结果如下:
     溶解氧对锈斑蟳存活和摄饵的影响:在温度23℃~27℃、盐度30、pH值7.5~8.5的条件下,设置1mg/L、2mg/L、3mg/L、4mg/L、5mg/L、6mg/L共6个溶解氧梯度,进行溶解氧对锈斑蟳存活和摄食影响的研究。结果表明,溶解氧浓度1mg/L、2mg/L不适宜锈斑蟳生存,存活率极低,活力弱,几乎不摄食;在4mg/L~6mg/L溶解氧浓度条件下,锈斑蟳的摄饵率无显著差异(p>0.05),与1mg/L、2mg/L浓度组存在显著差异(p<0.05);在3mg/L溶解氧浓度下,锈斑蟳的摄食率与4mg/L~6mg/L溶解氧浓度组无显著差异(p>0.05),能够摄食,但摄食率低于4mg/L~6mg/L溶解氧浓度下锈斑蟳的摄食率。由此说明,1mg/L~2mg/L溶解氧浓度条件下,锈斑蟳的摄饵率极低,溶解氧浓度4mg/L~6mg/L是锈斑蟳摄食的适宜溶解氧,3mg/L与4mg/L以上浓度组都无明显差异,说明3mg/L溶解氧浓度是一个转折点,高于此浓度,锈斑蟳的摄食率高,低于此浓度,则摄饵率偏低,溶解氧浓度1mg/L、2mg/L为锈斑蟳摄食的不适宜溶解氧。
     温度对锈斑蟳存活和摄饵的影响:在盐度30、pH值7.8~8.5、溶解氧浓度6mg/L~6.3mg/L的条件下,设置5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃共8个温度梯度分别进行骤变试验和渐变试验。结果表明,在5℃、35℃~40℃的温度条件下,锈斑蟳死亡率高,存活时间短,摄饵率极低;而锈斑蟳在10℃~30℃时的存活率高,存活时间长,尤其在20℃~30℃条件下,锈斑蟳的摄饵率与其他梯度存在显著差异(p﹤0.05)。由此说明,10℃~30℃为锈斑蟳的可存活温度,锈斑蟳 20℃~30℃为其适宜温度,25℃为其最适温度。
     在温度22℃~28℃、pH值7.5~8.5、溶解氧浓度6mg/L~6.3mg/L的条件下,设置5、10、15、20、25、30、35、40、45、50和55个盐度梯度进行骤变试验和渐变试验。结果表明,在骤变试验中,20~40盐度组的存活时间长,与其他组差异显著(p<0.05)。20~35盐度下的蟹存活率高,没有显著差异(p>0.05),但与15一下盐度组、45以上盐度组的蟹存活率差异显著(p<0.05),与40盐度下存活率没有显著差异(p>0.05)。盐度20~35下,锈斑蟳的摄饵率较高,与40以上盐度组,15一下盐度组有显著的差异(p<0.05);40盐度与15以下盐度组和45以上盐度组的摄饵率也有显著差异(p<0.05);这说明,20~40为锈斑蟳摄饵的适宜盐度,25~35为摄饵的较适宜盐度。而15以下盐度组,45以上盐度组为不适摄饵盐度。通过对锈斑蟳体重变化得出,20以下盐度组、40以上盐度组、25~35盐度内的体重变化都不存在显著差异(p>0.05)。而25~35盐度内的体重变化较少,而且与20以下盐度组、40以上盐度组都存在显著差异(p<0.05)。说明:盐度对锈斑蟳体重的影响在25~35内是最少的。
     盐度对锈斑蟳存活和摄饵的影响:在盐度渐变条件下,对于成活率,15~40盐度组蟹存活率高,与50以上盐度组和10以下盐度组存在显著差异(p<0.05),与45盐度组蟹存活率差异不显著(p>0.05);对于存活时间,20~40蟹存活时间长,与50以上、10以下盐度组存在显著差异(p<0.05),与15盐度组和45盐度组蟹的存活时间差异不显著(p>0.05);对于摄饵率,25~35盐度条件下摄饵率高,与其他各组差异显著(p<0.05),20和40盐度次之,与其余各组也存在显著差异(p<0.05)。由此可见5~15、50~55为不摄饵盐度,20~45为可摄饵盐度,25~35为最佳摄饵盐度。
     氨氮对锈斑蟳存活和摄饵的影响:在温度23℃~28℃、盐度30、pH值7.5~8.5、溶解氧浓度6mg/L~6.3mg/L的条件下,设置了0mg/L、5mg/L、10mg/L、20mg/L、40mg/L、80mg/L和160mg/L共7个氨氮浓度梯度进行氨氮对锈斑蟳存活及摄饵影响的试验。试验结果表明:低浓度氨氮(0mg/L~40mg/L)条件下的锈斑蟳的摄饵率和存活率高、存活时间长,与高浓度氨氮(80mg/L~160mg/L)有显著的影响(p<0.05),综合分析发现,在氨氮浓度0mg/L~40mg/L,利于远锈斑蟳的摄饵和存活,80mg/L~160mg/L浓度时,锈斑蟳摄饵量降低,死亡率升高。
     亚硝酸盐氮对锈斑蟳存活和摄饵的影响:在温度22℃~27℃、盐度30、pH值7.5~8.5、溶解氧浓度6mg/L~6.3mg/L的条件下,设置0mg/L、10mg/L、20mg/L、40mg/L、80mg/L、160mg/L和320mg/L共7个亚硝酸盐氮浓度梯度进行亚硝酸盐氮对锈斑蟳存活及摄饵影响的试验。试验结果表明:不同亚硝酸盐氮浓度对锈斑蟳的摄饵和存活都有显著的影响,在0mg/L~40mg/L浓度时,锈斑蟳的摄饵率高,存活时间长,成活率为100%,当浓度达到80mg/L~160mg/L时,摄饵率低,死亡率高。
In this study, the effects of dissolved oxygen, temperature, salinity, ammonia-N and nitrite on the survival and food intake of Charybdis feriatus are investigated, all the results are as following.
     Effects of dissolved oxygen on the survival and food intake of Charybdis feriatus: Under the conditions of temperature of 23℃~27℃, salinity of 30 and pH 7.5~8.5, we put the Charybdis feriatus into seawater with different dissolved oxygen(DO) concentrations(1mg/L~6mg/L), to identify the effect of the DO concentration in seawater on the survival and food intake. The results are as following: The DO cocentration of 1mg/L and 2 mg/L is not suitable for Charybdis feriatus as it shows a low chance of survival, weak vatality and low food intake rate. Under the DO concentration of 4mg/L~6mg/L, the survivorship has no significant difference (p>0.05), but the significant difference appears when the DO concentration is 1mg/L~2 mg/L (p<0.05). The food intake rate of the DO cocentration of 3mg/L is lower than that of the DO concentration of 4mg/L~6mg/L.However, there is not significant difference with between them (p>0.05). The results suggest that the DO cocentration of 3mg/L is a milestones. Above this concentration , the crab shows a higher survival rate and food intake rate, while below this concentration both rates begin to go down. Thus the optimal concentration of DO for the crab to survive and food intake should be higher than 3mg/L.
     Effects of temperature on the survival and food intake of Charybdis feriatus: Under the conditions of salinity of 30, pH 7.5~8.5 and DO of 6mg/L~6.3mg/L, we put the Charybdis feriatus into seawater with different temperature (5℃、10℃、15℃、20℃、25℃、30℃、35℃and 40℃), to identify the effect of quick and gradual temperature change on survival and food intake. The results are as following: Crabs show the highest mortality, shortest survival time and lowest food intake rate at the temperature of 5℃and below or at 35℃and above. Within the temperature of 10℃~30℃, crabs show higher survival rate and longer survival time. Especially within the temperature of 20℃~30℃, crabs show the highest food intake rate which has a significant difference with other group (p<0.05). The results suggest that crabs can survive within the temperature of 10℃~30℃. The temperature of 20℃~30℃is viable for the crabs, and the optimal temperature is 25℃.
     Effects of salinity on the survival and food intake of Charybdis feriatus: Under the conditions of temperature of 22℃~28℃, pH7.5-8.5 and DO of 6mg/L~6.3mg/L, we put the Charybdis feriatus into seawater with different sanility (5、10、15、20、25、30、35、40、45、50 and 55) , to identify the effect of quick and gradual salinity change on survival and food intake of the crabs. The results are as following:With a quick salinity change, the survival time of Charybdis feriatus is the longest at salinity levels 20~40 which has a significant difference with other group (p<0.05). With a quick salinity change, the survival rate of Charybdis feriatus is the highest at salinity levels 20~35 which has a significant difference with salinity levels 15 and below or 45 and above (p<0.05), while has no significant difference with salinity levels 40 (p>0.05). There is a significant difference between salinity levels 40 and above or 15 and below with salinity levels 20~35, that thelatter group has a higher food intake rate (p<0.05). There is a significant difference between salinity levels 45 above and 15 below with salinity levels 40 (p<0.05). The results suggest that salinity levels 20~40 is suitable for the crabs food intake. The crabs are fed best at salinity 25~35. The result about the change of weight suggests that: There is a significant difference between salinity levels 40 and above or 20 and below with salinity levels 25~35 which has a lower change of weight (p<0.05).
     With a gradual salinity change, the survival rate of Charybdis feriatus is the highest at salinity levels 25~40 which has a significant difference with salinity levels 10 and below or 50 and above (p<0.05), but has no significant difference with salinity levels 45 (p>0.05). The survival time of Charybdis feriatus is the highest at salinity levels 20~40 which has a significant difference with salinity levels 10 and below or 50 and above (p<0.05), but has no significant difference with salinity levels 15 and 45 (p>0.05). The crabs are fed best at salinity 25~35 which has a significant difference with other salinity levels. The results suggest that salinity levels 20~45 is suitable for the crabs food intake. The crab are fed best at salinity 25~35.
     Effects of ammonia-N on the survival and food intake of Charybdis feriatus: Under the conditions of temperature of 23℃~28℃, salinity of 30, pH 7.5~8.5 and dissolved oxygen of 6mg/L~6.3mg/L, we put the Charybdis feriatus into seawater with different concentration of ammonia-N (0mg/L、5mg/L、10mg/L、20mg/L、40mg/L、80mg/L and 160mg/L), to identify the effects of the ammonia-N concentration in seawater on the survival and food intake. The results are as following: Under low concentration group of ammonia-N (0mg/L~40mg/L), crabs show high food intake rate , survivorship and long survival time which has a significant difference with high concentration group of ammonia-N (80mg/L~160mg/L) (p<0.05). The result suggests that the optimal concentration of ammonia-N for the crab to survive and to have a positive food intake rate should be lower than 40mg/L. Crabs show lower food intake rate and higher mortality when the concentration group of ammonia-N exceed 80mg/L.
     Effects of nitrite-N on the survival and food intake of Charybdis feriatus: Under the conditions of temperature of 22℃~27℃, salinity of 30, pH7.5~8.5 and DO of 6mg/L~6.3mg/L, we put the Charybdis feriatus into seawater with different concentration of nitrite-N (0mg/L、10mg/L、20mg/L、40mg/L、80mg/L、160mg/L and 320mg/L), to identify the effect of the nitrite concentration in seawater on the survival and food intake rate. The results are as following: Different concentrations of nitrite have significant difference on the food intake rate and survivoship.The best condition for food intake and survival is at the concentration of nitrite 0mg/L~40mg/L. When exceeding the concentration of nitrite 80mg/L, crabs show lower food intake rate and higher mortality.
引文
[1]沈嘉瑞,戴爱云.中国动物图谱·甲壳动物·第二册[M].北京:科学出版社, 1964. 45~64.
    [2]堵南山.甲壳动物学[M].北京:科学出版社, 1993. 675~914.
    [3]戴爱云,杨思谅,宋玉枝,等.中国海洋蟹类[M].北京:海洋出版社, 1986. 213~214.
    [4] Padayatti P S. Notes on population characteristics and reproductive biology of the portunid crab Charybdis feriatus (Linnaeus) at Cochin [J]. Indian Fisheries, 1990, 37 (2):155~158.
    [5]王红勇,姚雪梅.虾蟹生物学[M].北京:农业出版社, 2007.274~282.
    [6]俞存根,宋海棠,姚光展.东海中南部海域锈斑蟳渔业生物学和数量分布[J].湛江海洋大学学报, 2005, 25(3): 24~28.
    [7]应雪萍.锈斑蟳(Charybdis feriatus)精子超微结构的研究[J].河南科学, 2004, 22(5): 245~247.
    [8]黄国庆,王小兵.锈斑蟳雌性生殖系统的组织学研究[J].水产科学, 2009, 28(4):218~221.
    [9]王克行,吴琴瑟,纪成林,等.虾蟹类增养殖学[M ].北京:中国农业出版社, 1997, 18.
    [10] Subramoniam T. Crustacean ecdysteroids in reproduction and embryo genesis [J]. Comparative Biochemistry and Physiology, 2000, l125 (7): 135~156.
    [11] Hitoshi A, Toshiki M. Structure of the ovary and mode of ogenesis in a freshwater crab Potamon dehaani [J]. Morphology, 1999, 239: 107~114.
    [12] Mak A S C, Choi C L, Tiu S H K, et al. Vitellogenesis in the red crab Charybdis feriatus: hepatopancreas specific expression and farnesoic acid stimulation of vitellogenin gene expression [J]. Molecular Reproduction and Development, 2005, 70(3): 288~300.
    [13] Li K, Chen L, Zhou Z. The site of vitellogenin synthesis in Chinese mitten–handed crab Eriocheir sinensis[J]. Comparative Biochemistry and Physiology, 2006, 143: 453~458.
    [14] Xue P, Wan X, Yong P Z. Comparative studies on fatty acid composition of the ovaries and hepatopancreas at different physiological stages of the Chinese mittencrab [J]. Aquaculture, 2006, 256(1~4): 617~623.
    [15] Campbell G. R, Fielder D R. Egg extrusion and egg development in three species of commercially important portunid crabs from S. E.Queensland [J]. Proceedings of the Royal Society, 1988, 99: 93~100.
    [16]江新琴,俞存根,陈全振.蟹类繁殖力和卵巢发育研究进展[J].上海水产大学学报,2007, 16(3): 281~286.
    [17]王能钦,廖永岩,岳立芳,等.锈斑蟳室内人工育苗研究[J].广东海洋大学学报, 2008, 28(6): 81~85.
    [18]黄美珍.福建海区拥剑梭子蟹、红星梭子蟹和锈斑蟳的食性与营养级研究[J].台湾海峡, 2004, 23(2): 59~66.
    [19] Ingles J A. Status of the blue crab fisheries in the Philippines. In DA-BFAR (Department of Agriculture—Bureau of Fisheries and Aquatic Resources). In turbulent seas: The status of Philippine marine fisheries[J]. Coastal Resource Management Project, 2004, 378: 47~52.
    [20] Yan Y, Huang L M, Miao S Y. Occurrence of the epizoic barnacle Octolasmis angulata on the crab Charybdis feriatus from Daya Bay, China [J]. Marine Biological Association of the UK, 2004, 84(3): 619~620.
    [21] Sukumaran K K, Sreedharan B, Muniyappa Y. Portunid crab, Charybdis feriatus - an emerging fishery resource of Mangalore coast [J]. Marine Fisheries Information Service Technical and Extension Series, 1997, 146: 5~7.
    [22] AbellóP, Hispano C. The capture of the Indo-Pacific crab Charybdis feriata (Linnaeus, 1758) (Brachyura: Portunidae) in the Mediterranean Sea [J]. Aquatic Invasions, 2006, 1(1): 13~16.
    [23] Blanco G J, Lopez J V. Philippine Swimming Crabs of the Family Port-Unidae [M]. Bureau of Fisheries, Division of Fish Culture and Fisheries Biology, 1956, 24~36.
    [24] Manisser M. K., Radhakrishnan E. V. Marine crabs [M]. Status of exploited marine fishery resources of India, 2003, 188~194.
    [25] Devi S. L. The fishery and biology of crabs of Kakinada region. Indian journal of fisheries[J]. Ernakulam, 1985, 32(1): 18~32.
    [26] Del Norte-Campos A G C, Panes J B. Reproductive cycle and fecundity of the crucifix crab Charybdis feriatus (Linnaeus) from Capiz and Pilar Bays, Northern Panay. UPV[J]. Nature Science, 2004, 9 (1): 136~146.
    [27] Williams M J, Primavera J H. Choosing tropical portunid species for culture,domestication and stock enhancement in the Indo-Pacific [J]. Asian Fisheries Science, 2001, 14 (2): 121~142.
    [28] Sarada P T. Crab fishery of the Calicut coast with some aspects of the population characteristics of Portunus sanguinolentus, Portunus pelagicus and Charybdis cruciata [J]. Indian Fisheries , 1998, 45 (4): 375~586.
    [29] Wu R S S, Shin P K S. Food segregation in three species of portunid crabs [J]. Hydrobiologia, 1997, 362(1-3): 107~117.
    [30] Selvin J., Ismail T., Stephen J., George C. Biochemical and nutritional evaluation of crab meat [J]. Advances and priorities in fisheries technology, 1988, 358~361.
    [31] Otta S K, Chakraborty A, Joseph B, et al. PCR detection of white spot syndrome virus in wild crustaceans in India. Fourth Symposium on Diseases in Asian Aquaculture [J]. Aquatic Animal Health for Sustainability, 1999, 22~26.
    [32] Shi Z, Huang C, Zhang J, et al. White spot syndrome virus (WSSV) experimental infection of the freshwater crayfish [J]. Cherax quadricarinatus Journal of Fish Diseases, 2000, 23( 4): 285~288.
    [33] Lo C F, Ho C H, Peng S E, et al. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods [J]. Diseases of Aquatic Organisms, 1996, 27(3): 215~225.
    [34] Yano Y, Kaneniwa M, Satomi M, et al. Occurrence and Density of vibrio parahaemolyticus in live edible crustaceans from markets in China[J]. Journal of Food Protection, 2006, 69(11): 2742~2746.
    [35] Leung P S C, Chen Y C, Gershwin M E, et al. Identification and molecular characterization of Charybdis feriatus tropomyosin, the major crab allergen [J]. Journal of Allergy and Clinical Immunology, 1998, 102(5): 847~852.
    [36] Sudakaran E, Fernando S A. Studies on Octolasmis Gray 1825 (Cirripedia: Pedunculata) the gill infesting barnacles of crabs of Porto Novo[J]. Journal of the Marine Biological Association of India, 1987, 29(1): 201~207.
    [37] Trott L B. Portunid crab Charybdis feriatus (Linnaeus) commensal with the scyphozoan jellyfish Stomolophus nomurai (Kishinouye) in Hong Kong [J]. Crustaceana, 1972, 23(3): 305~306.
    [38] Takween W, Qureshi N A. Population structure and reproductive biology of four species of swimming crabs (Crustacea: brachyura: Portunidae) from coastal area of Karachi, Pakistan and Pakistan [J]. Journal of Marine Sciences, 2005, 14(2): 107~121.
    [39] Chan S M, Mak A S C, Choi C L, et al. Vitellogenesis in the red crab, Charybdisferiatus: Contributions from Small Vitellogenin Transcripts (CfVg) and Farnesoic Acid Stimulation of CfVg [J]. Expression Annals of the New York Academy of Sciences, 2005, 1040: 74~79.
    [40] Pillai K K, Nair N B. Observations on the breeding biology of some crabs from the southwest coast of India [J]. J. Mar. Biol. Assoc. India, 1973, 15(2): 754~770.
    [41] Babu K V R, Benakappa S, Mohan K C, et al. Breeding biology of Charybdis feriatus (Linnaeus) from Mangalore[J]. Indian journal of fisheries, 2006, 53(2): 181~184.
    [42] Chung H Y. Volatile components in crabmeats of Charybdis feriatus [J]. Journal of agricultural and food chemistry, 1999, 47(6): 2280~2287.
    [43] Chan S M, Chen X G. PCR cloning and expression of the molt-inhibiting hormone gene for the crab Charybdis feriatus[J]. Gene, 1998, 224: 23~33.
    [44] Greenwood J G, Fielder D R. Acute toxicity of zinc and cadmium to zoeae of three species of portunid crabs (Crustacea: Brachyura) [J]. Comparative Biochemistry and Physiology, 1983, 75(1): 141~144.
    [45] Parado-Estepa F D, Quinitio E T, Rodriguez E M. Seed Production of the Crucifix Crab Charybdis feriatus (Linnaeus) [J]. Aquaculture Research, 2007, 38: 1452~1458.
    [46] Baylona J, Suzuki H. Effects of changes in salinity and temperature on survival and development of larvae and juveniles of the crucifix crab Charybdis feriatus (Crustacea: Decapoda: Portunidae)[J]. Aquaculture, 2007, 269: 390~401.
    [47] Motoh H, Villaluz A. Larvae of Decapod Crustacea of the Philippines. The zoeal stages of a swimming crab,Charybdis cruciata (Herbst) reared in the laboratory [J]. Bulletin of the Japan Sea Science Fisheries, 1976, 42(5): 523~531.
    [48] Fielder D R, Greenwood J G, Campbell G. The megalopa of Charybdis feriata (Linnaeus) with additions to the zoeal larvae descriptions (Decapoda, portunidae)[J]. Crustacean, 1984, 46(2): 160~165.
    [49]黄培民.东海南部锈斑蟳数量分布及生物学特点[J].福建水产,1965, (1): 23~25.
    [50]吴国凤.闽东北渔场主要经济蟹类的生物学特性及其时空分布[J].现代渔业信息, 2002, 17(3): 16~18.
    [51]戴聪杰,王桂忠,李少菁,等.斑纹蟳凝集素(CFW)的初步研究Ⅱ.CFL的分子组成及性质鉴定[J].海洋学报, 2006, 28(3): 98~102.
    [52]王红勇,黄勃,陈雪芬.锈斑蟳的胚胎发育的初步观察[J].虾蟹养殖研究,2001, 318~320.
    [53]王红勇,黄渤,赖秋明,等.锈斑蟳的亲蟹培育试验初报[J].水产科技情报, 2003, 30(6): 254~255.
    [54]王红勇,赖秋明,王君.锈斑蟳人工育苗技术的初步研究[J].海洋渔业, 2001, 23(4): 185~187.
    [55]廖永岩,李峰,董学兴,等.远海梭子蟹成体盐度适应性研究[J].海洋通报, 2000, 19(4): 42~48.
    [56]廖永岩,李晓梅.远海梭子蟹对主要环境条件的要求[J].海洋学报, 2002, 24(3): 40~145.
    [57] Romano N, Zeng C S. Ontogenetic changes intolerance to acute ammonia exposureand associated gill histological alterations during early juvenile development of the blue swimmer crab, Portunus pelagicus[J]. Aquaculture, 2007, 266: 246~254.
    [58] Romano N, Zeng C S. Subchronic exposuretonitrite, potassium and their combination onsurvival, growth, total haemocytecount and gill structure of juvenile blue swimmer crabs, Portunus pelagicus[J]. Ecotoxicology and Environmental Safety, 2009, 72:1287~1295.
    [59]廖永岩,肖展鹏,袁耀阳.三疣梭子蟹幼体和幼蟹的温度适应性[J].水生生物学报, 2008, 32(4): 534~538.
    [60]吕敢堂,王志铮,王海平,等.亚硝酸钠对三疣梭子蟹幼体的急性毒性[J].浙江海洋学院学报(自然科学版), 2006, 25(3): 244~248.
    [61] Kang J C, Matsuda O. Yamamoto T. Effects of low dissolved oxygen and hydrogen sulfide on early developmental stages of blue crab, Portunus trituberculatus in Hiroshima Bay, Japan[J]. Journal of the Faculty of Applied Biological Science, Hiroshima University, 1993, 32(2): 61~70.
    [62] Kang J C, Matsuda O, Chin P. Combined effects of hypoxia and hydrogen sulfide on survival, feeding activity and metabolic rate of blue crab, Portunus trituberculatus[J]. Korean Fisheries Society, 1995, 28(5): 549~556.
    [63]丁理法,竺俊全,叶荣华,等.锯缘青蟹低盐度养殖试验[J].中国水产, 2002, 9: 58~59.
    [64]乔振国,张虎,归从时.环境因子变化对锯缘青蟹后期幼体及仔蟹变态存活率的影响[J].海洋渔业, 2004, 26(1): 40~43.
    [65] Romano N, Zeng C S. Effects of temperature and salinity on the survival and development of mud crab, Scylla serrata (Forsskal), larvae[J]. Aquaculture Research, 2007, 38(14): 1529~1538.
    [66] Hamasaki K. Effects of temperature on the egg incubation period, survival and developmental period of larvae of the mud crab Scylla serrata (Forskal) (Brachyura: Portunidae) reared in the laboratory[J]. Aquaculture, 2003, 219: 561~572.
    [67]黄鹤忠,李义,宋学宏,等.氨氮胁迫对中华绒螯蟹(Eriocheir sinensis)免疫功能的影响[J].海洋与湖泊, 2006, 37(3): 198~204.
    [68]臧维玲,江敏,戴习林,等.盐度对中华绒螯蟹幼体发育的影响[J].上海水产大学学报, 1999, 8(2): 174~178.
    [69] Hong M L, Chen L Q, Qin J, et al. Acute tolerance and metabolic responses of Chinese mitten crab (Eriocheir sinensis) juveniles to ambient nitrite[J]. Comparative Biochemistry and Physiology, 2009, 149(3): 419~426.
    [70] Anger K. Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae)[J]. Marine ecology progress series, 1991, 72(1~2): 103~110.
    [71]修宏宇,贺新洋.国内外微量溶解氧测定检定及校准的现状[J].现代测量与试验管理, 2005, (1): 17~19.
    [72]孙耀,郭素英,姜红如.对虾养成环境中水溶性硫化物的分布及其对对虾生长的影响[J].海洋科学,1987, (2) : 97~102.
    [73]李健,孙修涛,赵法箴.温度、溶解氧含量对中国对虾消化速率的影响[J].海洋科学, 1993, (5) : 4~6.
    [74]胡钦贤,陆建生.中国对虾生长与环境因子关系的初步探讨[J].东海海洋, 1990, 8 (2) : 58~62.
    [75] Mugnier C, Soyez C. Response of the blue shrimp Litopenaeus stylirostris to temperature decrease and hypoxia in relation to molt stage[J]. Aquaculture, 2005, 244 (5): 315~322.
    [76] Mugnier C, Zipper E, Goarant C, et al. Combined effect of exposure to ammonia and hypoxia on the blue shrimp Litopenaeus stylirostris survival and physiological response in relation to molt stage[J]. Aquaculture, 2008, 274 (9): 398~407.
    [77] Taylor D L, Eggleston D B. Effects of hypoxia on an estuarine predator-prey interaction: Foraging behaviour and mutual interference in the blue crab Callinectes sapidus and the infaunal clam prey Mya arenaria[J]. Marine Ecology Progress Series, 2000, 196: 221~237.
    [78] Mistri M. Effects of hypoxia on predator-prey interactions between juvenile Carcinus aestuarii and Musculista senhousia[J]. Marine ecology progress series, 2004, 275: 211~217.
    [79]宋长太,戴子坚.水中溶氧与水产养殖[J].江西水产科技, 2001, 3: 42.
    [80] Jiang Jinnan. Study of oxygen Consumption Rate, CO2 Exhaust, Respiratory Quoteient and Tolerance to Low Dissolved Oxygen in Four Prawn Species. Proceedings on international Symposium on Shirmp Culture in Asia-Pacific Region,1993,124.
    [81] Manthe D P, Malone R, Perry H M. Water quality fluctuations in response to variable loading in a commercial, closed shedding facility for blue crabs[J]. Journal of Shellfish Research, 1983, 3(2): 175~182.
    [82] Manthe D P , Malone R, Perry H M. Factors affecting molting success of the blue crab Callinectes sapidus Rathbun held in closed, recirculating seawater systems[J]. Journal of Shellfish, 1985, 5(1): 40~41.
    [83] Johnson D A, Welsh B L. Detrimental effects of Ulva lactuca (L.) exudates and low oxygen on estuarine crab larvae[J]. Journal of Experimental Marine Biology and Ecology, 1985, 86(1): 73~83.
    [84] Vargo S L, Sastry A N. Acute temperature and low dissolved oxygen tolerances of brachyuran crab (Cancer irroratus) larvae[J]. Marine Biology, 1997, 40(2): 165~171.
    [85]张汉祥.鱼虾养殖的生命元素——溶解氧[J].渔业致富指南, 2004, (3): 29.
    [86]施祥元,伊祥华,郑凯宏,等.三疣梭子蟹底氧养殖模式的研究[J].河北渔业, 2008, (3): 13~15.
    [87] AardtW J van. The influence of temperature on the haemocyan in function and oxygen up take of the freshwater crab Potamonautes warreni Calman [J]. Comparative Biochemistry and Physiology, 1993, 106 (1A) : 31~35.
    [88] Kondzela C M, Shirley T C. Survival, feeding, and growth of juvenile Dungeness crabs from southeastern Alaska reared at different temperatures [J]. Crustacean Biology, 1993, 13: 25~35.
    [89] Kittaka J, Onoda S. Effect of temperature on growth and maturity of the king crabs Paralithodes brevipes and P. camtschaticus in the laboratory [J]. Fisheries Science, 2002, 68 (1): 921~924.
    [90] Brylawski B J, Miller T J. Temperature-dependent growth of the blue crab (Callinectes sapidus): a molt process approach[J]. Fisheries and Aquatic Sciences, 2006, 63(6): 1298~1308.
    [91]曾朝曙,李少菁.温度对锯缘青蟹幼体存活和发育的影响[J].水产学报, 1992, 16(3):213~221.
    [92]廖永岩,吴蕾,蔡凯,等.盐度和温度对中华虎头蟹(Orithyia sinica)存活和摄饵的影响[J].生态学报, 2007, 27(2): 628~638.
    [93] Weiss Monika, Thatje Sven, Heilmayer Olaf, et al. Influence of temperature on the larval development of the edible crab, Cancer pagurus[J]. Marine Biological Association of the United Kingdom, 2009, 89(4):753~759.
    [94] Jimenez A G, Bennet W A. Metabolic responses of sand fiddler crabs, Uca pugilator,in northwest Florida to seasonal temperature change[J]. Journal of Thermal Biology, 2007, 32(6): 308~313.
    [95] Monika W, Sven T, Olaf H, et al. Influence of temperature on the larval development of the edible crab, Cancer pagurus[J]. Marine Biological Association of the United Kingdom, 2009, 89(4):753~759.
    [96] Katsuyuki Hamasaki, Mio Sugizaki, Shigeki Dan, et al. Effect of temperature on survival and developmental period of coconut crab (Birgus latro)larvae reared in the laboratory[J]. Aquaculture, 2009, 292(3~4): 259~263.
    [97] Jinbo Tadao, Hamasaki Katsuyuk, Ashidate Masakazu. Effects of water temperature on survival, development and feeding of larvae of the horsehair crab Erimacrus isenbeckii (Crustacea, Decapoda, Brachyura) reared in the laboratory[J]. Nippon Suisan Gakkaishi , 2007, 73(6): 1081~1089.
    [98] Kogane T, Hamasaki K, Nogami K. Effect of temperature on survival and developmental period of larval snow crab Chionoecetes opilio (Brachyura : Majidae) reared in the laboratory[J]. Nippon Suisan Gakkaishi , 2005, 71(2): 161~164.
    [99] Mohamedeen H, Hartnoll R G. Larval and postlarval growth of individually reared specimens of the common shore crab Carcinus maenas(L.)[J]. Experimental Marine Biology and Ecology, 1990, 134(1): 1~24.
    [100] Brown S D, Bert T M, Tweedale W A, et al. The effects of temperature andsalinity on survival and development of early life stage Florida stone crabs Menippe mercenaria (Say)[J]. Experimental Marine Biology and Ecology, 1992, 157(1): 115~136.
    [101]江新琴,俞存根,陈全震.温度和盐度对锈斑蟳卵孵育时间的影响[J].水产学报, 2008, 32(6): 915~918.
    [102] Anger K. The Biology of Decapod Crustacean Larvae[M]. Crustacean Issues, 2001, 14: 1~420.
    [103] Sang H M, Fotedar R. Growth, surviva,l haemolymphosmolality and organosomatic indices of the western king prawn (Penaeus latisulcatus Kishinouye, 1896) reared at different salinities[J]. Aquaculture, 2004, 234(1~4): 601~614.
    [104] Towle D W. Molecular approaches to understanding salinity adaptation of estuarine animals[J]. American Zoologist, 1997, 37(6): 575~584.
    [105] Ong K, Costlow J D. The effect of salinity and temperature on the larval development of the stone crab, Menippe mercenaria (Say), reared in the laboratory[J]. Chesapeak Science, 1970, 11(1): 16~29.
    [106] Young A M, Hazlett T L. The effect of salinity and temperature on the larval development of Clibanarius vittatus(Bosc) (Crustacea: Decapoda: Diogenidae) [J]. Experimental Marine Ecology, 1978, 34(2):131~141.
    [107] Minagawa M. Influence of temperature on survival, feeding and development of larvae of the red frog crab, Ranina ranina(Crustacea: Decapoda: Raninidae) [J]. Nippon Suisan Gakkaishi, 1990, 56(5): 755~760.
    [108] Nagaraj M. Combined effects of temperature and salinity on the zoeal development of the crab Liocarcinus puber (Decapoda: Portunidae)[J]. Marine Ecology, 1992, 13:233~241.
    [109] Nagaraj M. Combined effects of temperatureand salinity on the zoeal development of the green crab, Carcinus maenas (Linnaeus, 1758) (Decapoda: Portunidae)[J]. Scientia Marina, 1993, 57(1): 1~8.
    [110] Papaclopoulos Isabelle, Newman Brent K, Schoeman Dave S, et al. Influence of salinity and temperature on the larval development of the crown crab, Hymenosoma orbiculare (Crustacea : Brachyura : Hymenosomatidae)[J]. African Journal of Aquatic Science, 2006, 31(1):43~52.
    [111] Brito Simith, Darlan de Jesus, Diele, et al. The effect of salinity on the larval development of the uca-crab, Ucides cordatus (Linnaeus, 1763) (Decapoda : Ocypodidae) in Northern Brazil[J]. Acta Amazonica, 2008, 38(2): 345~350.
    [112] Baylon J C, Failaman A N, Vengano E L. Effect of salinity on survival and metamorphosis from zoea to megalopa of the mud crab Scylla errata Forskal (Crustacea:Portunidae)[J]. Asian Fisheries Science, 2001, 14(2): 143~152.
    [113] Romano N, Zeng, C. The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus[J]. Aquaculture, 2006, 260(1~4): 151~162.
    [114]安邦超,杜荣斌.海水名优虾蟹蟹养殖技术[M].北京:中国农业出版社, 1997. 237~276
    [115]孙颖名,高振亮,刘洪尧,等.三疣梭子蟹池养生物学的初步观察[J].海洋科学, 1992 (4): 40~43.
    [116] James B O, Cheryl A G. Acute and sublethal effects of ammonia on striped bass and hybrid striped bass[J] . The World Aquaculture Society, 1991, 24 (1): 90~101.
    [117] Koo J G, Kim S G, Jee J H. Effects of ammonia and nitrite on survival, growth and moulting in juvenile tiger crab, Orithyia sinica(Linnaeus) [J]. Aquaculture Research, 2005, 36:79~85.
    [118] Neil L L, Fotedar1 R, Shelley C C. Effects of acute and chronic toxicity of unionized ammonia on mud crab, Scylla serrata (Forsskal, 1755) larvae[J]. Aquaculture Research, 2005, 36: 927~932.
    [119] Hong M L, Chen L Q, Sun X J, et al. Metabolic and immune responses in Chinese mitten-handed crab (Eriocheir sinensis) juveniles exposed to elevated ambient ammonia[J]. Comparative Biochemistry and Physiology, 2007, 145(3): 363~369.
    [120] Kinne O. Marine ecology[M] . London (U K) , John Wiley and Sons, 1976, 565.
    [121] Colt J E, Armstrong D A. Nitrogen Toxicity to Crustaceans, Fish and Molluscs [M]. Proceedings of the Bio-Engineering Symposium for Fish Culture, 1981, 34~47.
    [122] Chen J C, Nan F H. Effect of ambient ammonia- Nexcreti on and ATP-ase activity of Penaeus chinensis [J]. Aquat Toxicology, 1992, 23(1): 1~10.
    [123] Chen J C, Nan F H. Oxygen consumption and ammonia-N excretion of juvenile Penaeus chinensis (Osbeck , 1765) at different salinity levels(Decapoda Penaeidse) [J ]. Crustaceana , 1995, 68 (6) : 712~719.
    [124] Cheng S Y, Chen J C. Haemocyanin oxygen affinity and the fractionation of oxyhemocyanin and deoxyhemocyanin for Penaeus monodon exposed to elevated nit rite [J]. Aquatic Toxicology, 1995, 45 :35~46.
    [125] Rebelo M F, Santos E A, Monserrat J M. Ammonia exposure of Chasmagnathus granulata (Crustacea, Decapoda) Dana, 1851: accumulation in haemolymph and effcts on osmoregulation[J]. Comparative Biochemistry and Physiology, 1999, Part A(122): 429~435.
    [126] Zhao J H, LamT J, Guo J Y. 1997. Acute toxicity of ammonia to the early stage-larvae and juveniles of Eriocheir sinensis H. Milne-Edwards, 1853 (Decapoda: Grapsidae) reared in the laboratory[J]. Aquaculture Research, 28(7): 517~525.
    [127]李跃华,王庆真,王让绪.氨氮对罗氏沼虾幼体的影响[J].水产养殖, 1994, (5): 18~20 .
    [128]胡贤德,孙成波,蔡鹤翔,等.不同盐度条件下氨氮对斑节对虾的毒性试验[J].广西科学, 2009, 16 (2) : 206~209.
    [129] Garcon D P, Masui D C, Mantelatto F L M, et al. K+ and NH4+ modulate gill (Na+,K+)-ATPase activity in the blue crab, Callinectes ornatus: Fine tuning of ammonia excretion.[J]. Comparative Biochemistry and Physiology , 2007,147(1):145~155.
    [130] Dvorak P. Selected specificity of aquarium fish disease ( in Czech) [J]. Bulletin VúRH Vodnany, 2004, 40 (3): 101~108.
    [131] Svobodova Z, Machova J, Poleszczuk G, et al. Nitrite poisoning of fish in aquaculture facilitieswith water-recirculating systems : three case studies [J]. Acta Veterinaria, 2005, 74(1) :129~137.
    [132]赵玉宝,袁宝山.生态管理与暴发性鱼病[J].淡水渔业, 1994, 24(1): 23~25.
    [133]蒋艾青,杨四秀,郑陶生,等.池塘鱼类暴发性疾病与主要水化因子关系研究[ J ].水利渔业, 2005, 25(5) : 104~105.
    [134] Svobodova Z, Kolarova J. A review of the diseases and contaminant related mortalities of tench ( Tinca tinca L. ) [J]. Veterinarni Medcina, 2004, 49(1): 19~34.
    [135] Jensen F B. Nitrite disruptsmultiple physiological functions in aquatic animals [J]. Comparative Biochemistry and Physiology, 2003, 135 (1): 9~24.
    [136] Martinez C B R, Souza M M. Acute effects of nitrite on i on regulation in two neotropical fish species [J]. Comparative Biochemistry and Physiology, 2002, 133 (1) : 151~160.
    [137] Wang W, Wang A, Zhang Y, et al. Effects of nitrite on lethal and immune response of Macrobrachium nipponense[J]. Aquaculture, 2004, 232 (1~4): 679~686.
    [138] Watenpaugh D E, Beitinger T L. Nitrite exposure and respiration rates in fathead minnows[J]. Bulletin of Environmental Contamination and Toxicology, 1985, 35(1): 106~111.
    [139]王鸿泰,胡德高.池塘中亚硝酸盐对草鱼种的毒害及防治[J].水产学报, 1989, 13(3): 207~213.
    [140]刘淑梅,孙振中,戚隽渊,等.亚硝酸盐氮对罗氏沼虾幼体的毒性试验[J].水产科技情报, 1999, 26(6): 281~283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700