纳米四氧化三铁对2,4-D和阿特拉津降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,4-D和阿特拉津是广泛使用的有机氯类除草剂,其在环境中残留期长、难以降解,传统的处理技术存在降解不完全、效率低等缺点。纳米技术的发展给污染物的处理带来了一种新的颇具潜力的方法,纳米材料具有比表面积大、高化学反应活性等特点。本文采用纳米四氧化三铁(Fe_3O_4)降解2,4-D和阿特拉津,将分子结构中吸电子基团—氯原子通过还原的方式脱去,虽然不能彻底达到矿化2,4-D和阿特拉津的目的,但脱氯增加了2,4-D和阿特拉津的可生化性。主要的研究内容和结果如下;
     1采用Fe_3O_4降解水溶液中2,4-D和阿特拉津,结果表明:Fe_3O_4对水溶液中2,4-D和阿特拉津有明显的降解作用,且纳米Fe_3O_4的降解效果优于微米Fe_3O_4。农药初始浓度为10 mg/L、溶液pH 3.0、纳米Fe_3O_4投加量300 mg/L,反应48 h内2,4-D和阿特拉津的浓度分别降为5.2 mg/L、6.2 mg/L;氯离子浓度分别升高到85μmol/L、34μmol/L,2,4-D和阿特拉津的降解是一个脱氯的过程。溶液中2,4-D和阿特拉津的降解符合准一级反应动力学。利用LC-MS和化学动力学模型确定了2,4-D降解的主要产物是苯酚,其它中间产物是2,4-DCP、4-CP、2-CP。
     2考察了不同因素对2,4-D和阿特拉津降解的影响。2,4-D和阿特拉津初始浓度在0~10 mg/L、纳米Fe_3O_4投加量0~300 mg/L范围内,2,4-D和阿特拉津的降解率随初始浓度和纳米Fe_3O_4投加量的增加而增大;添加H2O2构成类Feton试剂和升高温度可以提高降解率;阴离子对2,4-D和阿特拉津的降解存在抑制作用。溶液pH对2,4-D和阿特拉津的降解有显著影响,pH为3.0~3.5时,纳米Fe_3O_4对2,4-D和阿特拉津的降解效果最好。同时,反应过程中溶液pH逐渐升高,至反应结束,2,4-D和阿特拉津降解体系中pH分别升高至4.9和3.9。纳米Fe_3O_4对2,4-D和阿特拉津的降解是一个耗氢过程,酸性条件有利于降解反应的进行。
     3采用纳米Fe_3O_4降解土壤中的2,4-D和阿特拉津。纳米Fe_3O_4对不同性质土壤中的2,4-D和阿特拉津都有显著的降解效果。纳米Fe_3O_4投加量为1%、2,4-D和阿特拉津初始浓度为100 mg/kg,反应7 d后,2,4-D在红壤、黄褐土、砂姜黑土中的残留率分别为18%、33%、42%,一级动力学拟合出2,4-D在3种土壤上的降解半衰期分别为2.8 d、5.2 d、7.1 d。阿特拉津降解实验中能得到类似的结果。
     4从生物效应的角度考察了纳米Fe_3O_4对土壤微生物和酶活性的影响。纳米Fe_3O_4对细菌和放线菌具有激活效应,且随着纳米Fe_3O_4投加量的增加,激活效应逐渐增强,纳米Fe_3O_4投加量为8%时激活效应最显著,对细菌和放线菌的激活率分别为50%和20%;纳米Fe_3O_4对真菌存在抑制作用,投加量为8%,抑制率为48%。纳米Fe_3O_4对淀粉酶、脲酶、中性磷酸酶、过氧化氢酶具有激活效应,纳米Fe_3O_4投加量为2%时,对淀粉酶的激活效应最强,淀粉酶活性从0.075 mg/g增加到0.12 mg/g;投加量从1%~8%时,脲酶、过氧化氢酶的活性分别从0.065 mg/g、0.065 mg/g增加到0.092 mg/g和0.081 mg/g;中性磷酸酶在纳米Fe_3O_4投加量为4%时活性最强,从0.102 mg/g增加到0.15 mg/g。
The 2,4-Dichlorophenoxyacetic acid (2,4-D) and atrazine are most commonly used organochlorine pesticides, which are of strong toxicity and difficult to biodegraded. Traditional technologies have some disadvantages such as incomplete degradation, low efficiency and so on. Nanoscale particles represent a new generation of environmental remediation technologies that provide cost-effective solutions to some of most challenging environmental cleanup problems. Nanoscale particles have large surface areas and high surface reactivity. Degradation of 2,4-D and atrazine by Fe_3O_4 nanoparticles were investigated, and Fe_3O_4 can reductively transform the electron-withdrawing chlorine groups to chlorine ion. Even though the further mineralization of the 2,4-D and atrazine could not achieve, the biodegradation of its intermediates and products would become quick and easy because of the reductive dechlorination. The concrete research contents and results were as follows:
     1. Degradation of 2,4-D and atrazine by nanoscale and microscale Fe_3O_4 were studied. The results showed that 2,4-D and atrazine could be degraded by Fe_3O_4 particles very well, and the removal efficiency by Fe_3O_4 nanoparticles was prior to Fe_3O_4 microparticles. The concentration of 2,4-D and atrazine decreased from 10 mg/L to 5.2 and 6.2 mg/L respectively within 48 h in the presence of 300 mg/L Fe_3O_4 nanoparticles. Meanwhile, the concentration of chloride ion was increased to 85 and 34μmol/L, and the degradation of 2,4-D and atrazine were the reductive dechlorination process. Disappearance of the parent species and formation of reaction intermediates and products were analyzed by LC/MS. The transformation of 2,4-D followed a primary pathway of its complete reduction to phenol and a secondary pathway of sequential reductive hydrogenolysis to 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) or 2-chlorophenol (2-CP) and phenol. The degradation equations of 2,4-D and atrazine by Fe_3O_4 nanoparticles conformed to pseudo- first-order kinetics.
     2. The effects of 2,4-D and atrazine initial concentration, the dosage of Fe_3O_4 nanoparticles, pH and temperature on degradation rate of 2,4-D were investigated, respectively. The degradation rate increased with the increase in the initial concentration of 2,4-D from 0 mg/L to 10 mg/L, and increasing the dosage of nanoscale Fe_3O_4 from 0 mg/L to 300 mg/L. Adding H2O2 and raising the reaction temperature will increasing the degradation of 2,4-D and atrazine. The reaction will be hindered in the presence of different anion. The pH of reaction solution significantly influenced on the degradation of 2,4-D and atrazine, and the optimum pH value was 3.0~3.5. Besides, the solution pH increased from 3.0 to 4.9 and 3.9 respectively during the whole experiments.
     3. The Fe_3O_4 nanoparticles were used to degraded the 2,4-D and atrazine in different soils. The results indicated that 2,4-D and atrazine could be effectively removed by Fe_3O_4 nanoparticles. The residual rate of 2,4-D decreased from 100% to18%, 33% and 42% respectively within 7 d in the presence of 1% Fe_3O_4 nanoparticles in red soil, vertisol and alfisol. The 2,4-D degradation in soils could be described by first-order kinetic equation. The half-lives (t1/2) of 2,4-D were 7.1 d, 5.2 d and 2.8 d for red soil, vertisol, and alfisol, respectively. The degradation of atrazine in soils had the same results as the 2,4-D.
     4. The magnetic effect of Fe_3O_4 nanoparticles on the activity of the microorganism and enzyme were investigated. The bacteria and antinomies were stimulated by the magnetite treatment, and the stimulation increased along with the percentage of the Fe_3O_4 nanoparticles. The activation rates of bacteria and antinomy were 50% and 20% at the Fe_3O_4 nanoparticles percentage of 8%. However, the fungi was restrained by the magnetite treatment. The Fe_3O_4 nanoparticles could improve the activities of amylase, urease and catalase, and the higher the dosage of Fe_3O_4 nanoparticles the stronger the stimulation. The activity of amylase increased from 0.075 mg/g to 0.12 mg/g, which 2% Fe_3O_4 nanoparticles was added to soil. The activity of urease and catalse increased from 0.065 mg/g to 0.092 mg/g, 0.65 mg/g to 0.81 mg/g in the presence of Fe_3O_4 nanoparticles from 1% to 8%.
引文
[1]刘维屏.农药环境化学.北京:化学工业出版社,2005.
    [2]施开良.环境·化学与人类健康.北京:化学工业出版社,2003.
    [3]史雅娟,吕永龙,任鸿昌,等.持久性有机污染物研究的国际发展动态[J].世界科技发展动态,2003,25 (2):73~78.
    [4] Brandt I. Developmental and reproductive toxicity of persistent environmental pollutants[J]. Arch. Toxicology, 1998, 20 (Suppl.): 111~119.
    [5] Sala M, Ribas-Fito N, Cardo E, et al. Levels of hexachlorobenzene and other organochlorine compounds in cord blood: Exposure across placenta[J]. Chemosphere, 2001, 43 (4~7): 895~901.
    [6] Zhang Y B, Sun J. Survey of organic phosphorus pesticide both at home and abroad and suggestion of the development of Domentic organic phosphorus pesticides[J]. Pest, 1999, 3: 1~3.
    [7]孙肖瑜,王静,金永堂.我国水环境农药污染现状及健康影响研究进展[J].环境与健康,2009,26 (7):649~653.
    [8]常娜,袁聚祥.有机氯农药对人体健康的危害及其研究进展[J].华北煤炭医学院学报,2008,10 (2):174~176.
    [9]于惠芳,张晓鸣,赵旭东,等.婴儿自母乳摄入有机氯农药的估算[J].卫士研究,2002,31 (1):17~18.
    [10]仝青,冯沈迎,阮玉英,等.空气中有机氯农药在不同粒径颗粒物上的分布[J].环境化学,2000,19 (4):306~312.
    [11]吴水平,草军,李本纲,等.城区大气颗粒物中有机氯农药的含量与分布[J].环境科学研究,2003,16 (4):36~39.
    [12]杨嘉谟,王赟,苏青青.长江武汉段水体悬浮物中有机氯农药的残留状况[J].环境科学研究,2004,17 (6):27~30.
    [13]干爱华,刘军,丁辉,等.海河干流表层沉积物中的有机氯农药残留[J].农业环境科学学报,2006,25 (1):232~236.
    [14]安琼,董元华,王辉,等.南京地区土壤中有机氯农药残留及其分布特征[J].环境科学学报,2005,25 (4):470~474.
    [15] Park J W, Dec J, Kin J E, et al. Dehalogenation of xenobiotics as a consequence of binding to humic materials[J]. Arch. Environ. Contam. Toxicol., 2000, 38: 405~410.
    [16] Richard S, Louis M. Evalution of Mesoporous Cyclodextrin-Silica Nano- composites for the removal of Pesticides from Aqueous Media[J]. Environ. Sci. Technol., 2005, 40, 1978~1983.
    [17] Hites R A, Foran J A, Carpenter D O,et al. Global assessment of organic contaminants in farmed salmon[J]. Science, 2004, 303, 226.
    [18]乌锡康.有机化工废水治理技术.北京:化学工业出版社,1999.
    [19]孙磊,蒋新,周健民.五氯酚污染土壤的热修复初探[J].土壤学报,2004,41:462~465.
    [20]武晓峰,唐杰,藤间幸久.土壤、地下水中有机污染物的就地处置[J].环境污染治理技术与设备,2000,1 (4):46~51.
    [21]周家祥,刘铮.铬污染土壤修复技术研究进展[J].环境污染治理技术与设备,2000,4 (1):51~55.
    [22] Semer R, Reddy K R. Evalution of soil washing process to remove mixed contaminants from a sandy loam[J]. J. Hazard. Mater., 45 (1): 45~57.
    [23] Pinto L J, Moore M M. Release of polycyclic aromatic hydrocarbons from contaminated soils by surfactant and remediation of this effluent by Penicillium spp[J]. Environ. Toxicol. Chem., 2000, 17 (9): 1741~1748.
    [24] Sun S, Inskeep W P. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant[J]. Environ. Sci. Technol., 1995, 29 (4), 903~913.
    [25] Mata-Sandocal J C, Karns J, Torrents A. Influence of Rhamnolipids and triton X-100 on the desorption of pesticides from soils[J]. Environ. Sci. Technol., 2002, 36 (21): 4669~4675.
    [26] Lagader A J M, Miller D J, Lilke V. Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon and pesticide-contaminated soil[J]. Environ. Sci. Tehnol., 2000, 34 (8): 1542~1548.
    [27] Lee C C, Huffman G L. Innovative thermal destruction technologies[J]. Environmental Progress, 1998, 8: 190.
    [28] Hawnrl J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of aroclorl 254 in soil samples by solar radiation[J]. Environ. Sci. Technol., 1992, 26: 2022.
    [29] Jitlada K, Wansiri P, Kosin P, et al. Activity of nanosized titania synthesized from thermal decomposition of titanium(IV) n-butoxide for the photocatalytic degradation of diuron[J]. Science and Technology of Advanced Materials, 2005, 6: 290~295.
    [30] Liu Y J, Claus R O. Blue light emitting nanosized TiO2 colloids[J]. Journal of American Chemical Society, 1997, 353: 737.
    [31] Pelizzett E, Borgarello M, Minero C, et a1.Photocatalytic degradation of polychlorinated dioxins and polychlorinated biphenyls in aqueous suspensions of semiconductors irradiated with simulated solar light[J]. Chemosphere. 1998, 17 (3): 499~510..
    [32] Alnaizy R, Akgerman A. Advanced oxidation of phenolic compounds[J]. Adv. Environ. Res., 2000, 4: 233~244.
    [33] Watts R J, Udell M D, Rauch P A. Treatment of pentachlorophenol-contaminated soils using Feton,s reagent[J]. Hazardous Waste and Hazardous Materials, 1990, 7 (4): 335~345.
    [34]曾华冲,杨利芝,徐宏勇,等. Feton试剂氧化法修复2,4-二氯酚污染土壤的研究[J].生态环境,2008,17 (1):221~226.
    [35] Miller C M, Valentine R L, Roehl M E, et al. Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Feton,s reagent[J]. Water Research, 1996, 30 (11): 2579~2586.
    [36] Weeks K R, Bruell C J, Mohanty N R. Use of Feton,s reagent for the degradation of TCE in aqueous system and soil slurries[J].Soil and Sediment Contaminateion, 2000, 4: 331~345.
    [37] Amarante D. Applying in situ chemical oxidation several oxidzers provide an effective first step in groundwater and soil remediation[J]. Pollution Engineering, 2000, 2: 40~42.
    [38] Aguiar A, Ferraz A. Fe~(3+) and Cu~(2+) reductive by phenol derivatives associated with Azure B degradation in Feton-like reactions[J]. Chemosphere, 2007, 66: 947~954.
    [39] Qing H F, Tang Y, Jian J, Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum[J]. Process Biochemistry, 2002, 37: 1375~1379.
    [40] Clotaire .Y.,N. G ..Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain[J]. Environ. Microbiol., 1994, 60: 4297~4302.
    [41] Anchana P, Hiroyasu N, Eiko S, et al. Degradation of carbendazim and 2,4-dichlorophenoxyacetic acid by immobilized consortium on loof sponge [J]. Journal of Bioscience and Bioengineering, 2004, 98: 28~33.
    [42] Sweedy, K.H., Reductive degradation treatment of industrial and municipal wastewaters. In: Water Reuse Symposium Proceedings, Vol. 2, March 25~30,washington, DC. 1979.
    [43] Gillham, R.W., O’Hannesin, S.F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Water, 1994, 32: 958~967.
    [44] Ghauch A, Rima J, Amine C, et al. Rapid treatment of water contaminated with atrazine and parathion with zero-valent iron[J]. Chemosphere, 1999, 39 (8): 1309~1315.
    [45] Ghauch A, Rima J, Amine C, et al. Rapid treatment of water contaminated with atrazine and parathion with zero-valent iron[J]. Chemosphere, 1999, 39 (8): 1309~1315.
    [46] Dombek T, Dolan E, Schultz J, et al. Rapid reductive dechlorination of atrazine by zero- valent iron under the acidic conditions[J]. Environmental Pollution, 2001, 111: 21~27.
    [47] Roberts A L, Totten L A, Arnold W A. Reductive elimination of chlorinated ethylenes by Zero-valent iron metals[J]. Environ. Sci. Technol., 1996, 30: 2654~2659.
    [48] Matheson L J, Tratnyek P G.. Reductive dehalogenation of chlorinated methanes by iron metal [J]. Environ. Sci. Technol., 1994, 28: 2045~2053.
    [49] Arnold W A, Roberts A L. Pathways and kinetics of chlorinated ethylene and chloriated acetylene reaction with Fe0 particles[J]. Environ. Sci. Technol., 2003, 34 (9): 1794~1801.
    [50] Chuang F W, Larson R A, Wessman M S. Zero-valent iron promoted dechlorination of polychlorinated biphenyls[J]. Environ. Sci. Technol., 1995, 29 (9): 2460.
    [51] Chen J L, Abed S R, Ryan A, et al. Effects of pH on dechlorination of trichloro- ethylene by zero-valent iron[J]. Journal of Hazardous Materials B83, 2001, 243~254.
    [52]李太友,刘琼玉,肖菲.零价铁体系对2,4-二氯酚的催化还原脱氯实验研究[J].江汉大学学报,2002,19 (3):27~30.
    [53] Johson T L, Scherer M M, Tratnyek P G.. Kinetics of halogenated organic compound degradation by iron metal [J]. Environ. Sci. Technol., 1996, 30: 2634~2640.
    [54]何小娟,刘菲,黄园英,等.利用零价铁去除挥发性氯代脂肪烃的实验[J].环境科学,2003,,24 (1):139~142.
    [55]刘菲,汤鸣皋,何小娟,等.零价铁降解水中氯代脂肪烃的实验室研究[J].地球科学—中国地质大学学报,2002,27 (2):186~188.
    [56] Sayles G D, You G, Wang M, et al. DDT DDD and DDE Dechlorination by zero-valent iron[J]. Environ. Sci. Technol., 1997, 31 (12): 3448~3454.
    [57] Boronina T, Klabunde K I. Dectruction of Organohalides in Water Using Metal Particles: Carbon Tetrachloride/Water Reactions with Magnesium, Tin, and Zinc[J] Environ. Sci. Technol., 1995, 29 (6): 1511~1517.
    [58] Muftikian R Q, Fernando N, Korte A. A method for rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J]. Water. Res., 1995, 29: 2434~2439.
    [59] Grittini C, Malcomson M, Fernando Q, et al. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system[J]. Environ. Sci. Technol., 1995, 29 (11): 2898~2900.
    [60] Lowery G V, Reinhard M. Hydrodehalogenation of 1-to3-carbon Halogenated Organic Compounds in Water Using a Palladium Catalyst and Hydrogen Gas[J]. Environ. Sci. Technol., 1999, 33 (11): 1905~1910.
    [61]全燮,刘会娟,杨凤林,等.二元金属体系对水中多氯有机物的催化还原脱氯特性[J].中国环境科学,1998,18 (4):333~336..
    [62] Paknikar K M, Nagpal V, Pethkar A V, et al. Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers[J]. Science and Technology of Advanced Materials, 2005, 6: 370~374.
    [63] Butler E C, Hayes K F. Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide[J]. Environ. Sci. Technol., 1998, 32 (9): 1276~1284.
    [64] Butler E C, Hayes K F. Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide[J]. Environ. Sci. Technol., 1999, 33 (12): 2021~2027.
    [65] Butler E C, Hayes K F. Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide[J]. Environ. Sci. Technol., 2000, 34 (3): 422~429.
    [66] Krlegmanklng M R, Reinhard M. Transformation of cabon tetrachloride by pyrite in aqueous solution[J]. Environ. Sci. Technol., 1994, 28 (4): 692~700.
    [67]梁震,王焰新.纳米级零价铁的制备及其用于污水处理的机理研究[J].环境保护,2002,1:14~16.
    [68] Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environ. Sci. Technol., 1997, 31 (7): 2154~2156.
    [69] Deng B, Burris D R, Campbell T J. Reductive of vinyl chloride in metalliciron-water systems[J]. Environ. Sci. Technol., 1999, 33: 2651~2656.
    [70] Tratnyek P G, Johnson R. Nanotechnologies for environmental cleanup[J]. Nanotoday, 2006, 1: 44~48.
    [71] Cheng R, Wang J, Zhang W. Comparison of reductive dechlorination of p- chlorop -henol using Fe0 and nanosized Fe [J]. Journal of Hazardous Materials, 2007, 144: 334~339.
    [72] Chang M C, Shu H Y. Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil[J]. Journal of the Air and Waste Management Association, 2005, 55: 1200~1207.
    [73] Tee T H, Grulke E, Bhattacharyya D. Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water[J]. Ind. Eng. Chem. Res, 2005, 44: 7062~7077.
    [74] Elliott D W, Zhang W X. Field assessment of nanosale biometallic particles for groundwater treatment[J]. Environ. Sci. Technol., 2001, 35: 4922~4926.
    [75] Lien H L, Zhang W X. Nanoscale iron particles for complete reduction of chlorinated ethenes[J]. Colloid. Surf. A, 2001, 119: 97~105.
    [76] Maleki N, Safavi A, Shahbaazi H R. Electrochemical determination of 2,4-D at a mercury electrode[J]. Analytica Chimica Acta, 2005, 530: 69~74.
    [77]司友斌,孟雪梅.除草剂阿特拉津的环境行为及其生态修复研究进展[J].安徽农业大学学报,2007,34(3):451~455.
    [78]吴德礼,马鲁铭,王铮,等.零价金属及其化合物降解污染物的研究进展[J].环境科学动态,2005,2:32~35.
    [79] Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles[J]. J Am Chem Soc, 2002, 124: 8204-5.
    [80] Vijiayakumar R, Koltypin Y, Felner I, et al. Sonochemical synthesis and characteri–zation of pure nanometer-sized Fe3O4 particles[J]. Mater. Sci. Eng. A, 2000, 28 6 : 101-5.
    [81] Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnet–ite nanoparticles and their intracellularuptake[J]. Biomaterials, 2002, 23: 1533– 61.
    [82] Schlimm C, Heitz E. Development of waste water treatment proces: reductive dehalogenation of chlorinated hydrocarbons by metal[J]. Environmemtal Progress, 1996, 15(1): 38~47.
    [83] Brendel P J, Luther G W. Development of a gold amalgam voltammetric microelec–trode for the determination of sissolved Fe, Mn, O2, and S(-II) in porewaters ofmarine and freshwater sediments[J]. Environ. Sci. Technol., 1995, 29: 751~761.
    [84]陈芳艳,付薛红,唐玉斌,等.超声波协同铁粉降解水中2,4-二氯酚的研究[J].化学世界,2007,4(7):414~417.
    [85]中国科学院南京土壤所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    [86]关松萌.土壤酶及其研究法[M].北京:农业出版社,1986
    [87] Weber E J. Iron-mediated reductive transformation: investigation of reaction mech -anism [J]. Environ .Sci. Technol., 1996, 30: 716~719.
    [88] Alfred W, Boyle V K, Knight M M, et al. Transformation of 2,4-dichloropheno -xyacetic acid in four different marine and estuarine sediments: effects of sulfate, hydrogen, and acteate on dehalogenation and side-chain cleavage[J]. FEMS Microbiology Ecology, 1999, 29: 105~113.
    [89] Zhu B, Lin T, Feng J. Reductive dechlorination of 1,2,4-trichlorobenzene with palla -dized nanoscale Fe0 particles supported on chitosan and silica[J]. Chemosphere, 2006, 65: 1137~1145.
    [90] Gimeno O, Carbajo F J, Beltran F J. Phenol and substituted phenols AOPs remedia–tion[J]. J. Hazard. Mater, 2005, 119: 99~108.
    [91]程荣,王建龙,Zhang Weixian.纳米Fe0颗粒对三种单氯酚的降解[J].中国环境科学,2006,26 (6):698~702.
    [92] Deng B, Hu S, Whitworth T M, et al. Trichloroethylene reduction on zerovalent iron: Probing reactive versus nonreactive sites[C]. Henry S M. Innovative strategies for the remediation of chlorinated solvents and DNAPLs in the subsurfaces. New York, NY: Oxford University Press, 2002: 181~205.
    [93] Brian M,Fred W, Roeth. Influence of surface and subsurface soil properties on atrazine sorption and degradation [J]. Weed Science, 1998, 46: 132~138.
    [94]依艳丽,刘孝义.土壤生物磁学研究及应用.沈阳:中国农业出版社,2000.
    [95] Cheng F Y, Su C H, Yang Y S, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications[J]. Biomaterials, 2005, 26: 729~738.
    [96]荆玉祥等.磁场对大豆共生固态氮的效应[J].植物学报,1992, (5): 364~368
    [97]周鸿滨,刘信.磁场对Frankia sp.的生长和固氮作用的影响[J].微生物学报, 1990, (2): 149~153.
    [98]卢高升,俞劲炎.土壤磁学及其应用研究进展[J].土壤学进展,1991,(5):1.
    [1]方国东,司友斌.纳米四氧化三铁对2,4-D降解的研究[J].环境科学与技术,2010,33(1):35~38.
    [2] You-Bin Si, Guo-Dong Fang, Jing Zhou, Dong-Mei Zhou.Reductive transformation of 2,4-dichlorophenoxyacetic acid by nanoscale Fe_3O_4 in aqueous solution. Journal of Environmental Science and Health, Part B, 2010, 45(3)(SCI源刊)
    [3]方国东,司友斌.纳米四氧化三铁对2,4-D的脱氯降解[J].环境科学,2010,30(6)(已接受EI收录)
    [4]王伟萍,司友斌,方国东,汪玉.纳米Fe_3O_4/微生物联合体系对2,4-D和阿特拉津降解的研究[J].农业环境科学学报,2010,29(2):375~380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700