周期性微纳光子器件的谱线调控与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用户对多媒体等大容量数据通信需求的持续增大促进了新一代光通信技术的快速发展。作为构建光信息系统的基础,光子器件也受到了极大的关注。光纤布拉格光栅(FBG)由于其插入损耗小、易与光纤耦合等优点,在光纤通信领域扮演了重要的角色,可以用于色散/色散斜率补偿、多信道滤波与增益平坦等。但是面对新型光通信系统与信号处理技术的发展需求,仍然存在许多挑战。另一方面,区别于传统光子器件,表面等离子体激元(SPPs)的出现为纳米尺寸集成光子回路的实现提供了解决方案,而新型SPPs功能器件在光信号传输与处理领域存在巨大的应用潜力。因此,本文围绕微纳光子器件(FBG与SPPs亚波长器件)光谱特性和调控开展研究,包括采样光纤光栅(SFBG)特性分析与滤波器设计,SPPs波与光谱相关的物理现象研究以及功能器件(滤波器、环形器等)的设计。
     首先采用Fourier级数展开法对SFBG的折射率调制进行分析,给出了SFBG反射峰带宽分布的解析模型,结果表明其具有类似Sinc函数的分布特性,零阶中心峰的带宽具有最大值,两侧信道的带宽递减且具有一定的不对称性,即k阶信道的带宽大于-k阶的带宽。进一步基于多相移(MPS)技术,将多个布拉格周期相异的SFBG级联(称之为超结构SFBG,SSFBG),获得反射率基本一致的高信道数滤波器,信道的波长范围、间隔与数量可由SSFBG采样周期内的子光栅数量、占空比以及MPS的致密因子调整。另外根据gold序列的码元跳变关系定义SSFBG采样周期间的相移,设计光码分多址编解码器。在采样周期内级联的子光栅数决定了信道的个数,仿真验证了二、四和八个信道的编解码器性能,各信道的自相关比均大于17dB。然后根据弱FBG的反射谱与折射率调制函数存在的Fourier变换关系,通过设计预定频谱幅度响应的反射谱函数,将其反Fourier变换获得的强度和相位信息用于设计光栅折射率调制可以获得任意反射谱。仿真实现了正余弦、对称三角形、直角三角形、倒三角形和对称梯形等幅频响应。在反射率远远低于1的情况下,还可对其带宽等进行调制。
     其次在纳米尺寸的金属-介质-金属(MIM)主波导一侧引入单个矩形或者V-型凹槽,在一定的波长范围内实现阻带传输,中心波长与槽长成线性关系。进一步着重考虑凹槽存在一定倾斜度对透射谱的影响。为便于分析,以含凹槽高度的表达式等效描述倾斜角,并结合凹槽的材料特性、长度、宽度等因素,给出了该类结构的SPPs阻带中心波长的物理解析模型。解析模型与时域有限差分方法(FDTD)的结果证明阻带的中心波长首先随着凹槽高度的增加而降低,拐点为在凹槽高度与斜边等长,然后波长将逐渐增加。接着采用在MIM波导的一侧设计T-型谐振腔或倒T-型谐振腔的结构,研究SPPs亚波长结构的电磁诱导透明现象。谐振腔可视为由分别平行与垂直于MIM波导的两个腔体组成,简称为平行腔与垂直腔。FDTD仿真结果证明当谐振腔对称分布时,该结构为一个阻带滤波器,T-型谐振腔结构的中心波长仅由平行腔的长度决定,而倒T-型谐振腔结构的中心波长和平行腔与垂直腔的长度均有关系。当垂直腔偏移谐振腔的中心位置时,将在阻带的中心波长位置出现一个透射峰,其透射率由不对称度所决定,同时在透明窗口中相位出现π跳变,因此在信道带宽范围内引入了一定的色散。
     进而将MIM结构的波导等效为一个FP腔,谐振波长由波导的长度以及有效折射率决定。在波导特定位置三个耦合通道,可将一阶、二阶、三阶的低阶谐振波长独立地耦合输出,每个通道提供的信道透射率均大于0.1。然而由于四阶或以上的高阶谐振波长间隔较近,不利于分别耦合输出,因此该方案的局限性是提供的通道数有限且透射率较低。为了改善性能,提出了在MIM波导的两侧放置多个长度不一的谐振腔的方案,由于谐振波长与腔体长度成正比,那么每个谐振腔提供的谐振波长均不同。在每个谐振腔中间以及四分之一的位置设置耦合通道,可将一阶、二阶的谐振波长分别输出,通道的总数量由谐振腔以及耦合通道的数量共同决定。基于FDTD算法的结果验证了二通道、四通道以及八通道的滤波效应,每信道的透射率均大于0.5,信道数量以及透射率等参数得到改进。
     区别于多物理通道的滤波器设计,提出了一种基于MIM波导的多信道滤波结构,由一对平行的单向导通输入输出MIM波导与两个谐振腔构成一个半封闭的环路。由于波导与谐振腔并非直接相连,因此两者支持的谐振模式有一定的差异。在波导中磁场强度为零的SPPs不能耦合进谐振腔,将从输入波导直接反射,相反地,耦合进谐振腔的SPPs可从输出波导中透射出去,因此可得到多信道滤波响应。在确定结构的金属与介质材料后,信道的中心波长与信道间隔分别由两个谐振腔的间隔以及腔长决定。采用FDTD算法对结构的反射谱进行仿真,通过调整参数分别获得3、4、5个信道的反射谱,反射率接近0dB,旁瓣抑制比大于9dB,信道间隔满足1:1/2:1/3的关系。将MIM波导的填充物变为二氧化硅后,由于有效折射率实部大幅度提高,可实现信道更为致密的多信道滤波。
     最后以MIM波导为基础,研究了SPPs定向传输结构。四个谐振腔构成一个开放的环路,每个谐振腔中间设置一个耦合波导,则在同一轴向的两耦合通道构成一对输入/输出口,透射谱中仅有一个透射峰,且中心波长由谐振腔长决定。设腔长为300nm和400nm,FDTD仿真验证了该结构四通道的交叉传输功能,透射率高于0.6,光隔离度大于14dB。其次提出了四端口纳米结构的光环形器设计方案。该结构包括四个互相垂直的主波导,各以一对平行的狭缝相连。当SPPs在双狭缝出口的相位差为0.5π,满足干涉效应的条件时,实现了SPPs定向传输的功能,即SPPs从某一特定的端口输入时,能量仅能从逆时针方向的唯一端口输出。437.6nm中心波长的透射率达到0.4以上,且在其余输出口的消光比大于20dB。通过调整主波导以及狭缝的参数,还可实现中心波长的改变。
     上述研究可以扩展微纳光子器件的应用范围,包括多波长滤波、特殊光信号产生、参量传感以及色散补偿等领域。
Because of the large demands for large-capacity-data communication, the development of optical communication technology has been promoted greatly. Photonics devices, which are considered as the fundamental of the optical information system, have also received a lot of interests. To take the advantages of low insertion loss and easily coupling with fiber, fiber Bragg gratings (FBGs) play an important role in the optical communication area. Series of research theories and experiment demonstrations for FBG devices have been obtained, such as dispersion/dispersion-slope compensation, multi-channel filtering, gain equalizing, and so on. However, there are still many challenges for FBGs because of the development of optical signal processing technology. Besides, surface plasmon polaritons (SPPs), which have been considered as one of the most promising solutions to overcome the diffraction limit of optical devices, are therefore attracted lots of attentions. According to SPPs, researchers have studied and designed various novel optical devices with nano scale. Against such a deep background of the micro-nano devices, in this dissertation we will study the spectral manipulation and characteristics of periodical micro-nano photonics devices, including analysis on the filtering characteristics of sampled FBGs (SFBGs), design of filters based on FBG; design of SPPs waveguide filters; study on the spectral physical phenomena in the nano-size structure, and so on.
     According to the Fourier series expansion (FSE) method, the refractive index modulation of SFBG has been analyzed. The simulation results demonstrate that the distribution of the bandwidth performs as a Sine function. The maximum value arises in the0-order reflective peak, and the bandwidths of channels in both sides will decrease. However, the bandwidth of the k-th order peak is larger than that of the-k-th order one. Furthermore, multiple SFBGs with different Bragg wavelengths have been cascaded in a sampling period, so called super-structured SFBG (SSFBG). According to the multiple phase shift (MPS) technology, a high-channel-count filter with identical reflectivity is achieved. The wavelength range, channel spacing and channel count can be controlled by adjusting the sub-gratings count in a period, the duty cycle, and the MPS dense factor. The center wavelength for each peak of the SSFBG filter can be predicted accurately by the FSE method. The analytical results are in high accordance with the simulated ones based on transfer matrix (TM) method. Besides, an en/decoding SSFBG is designed based on the gold sequence. There will be a π phase shift in a sampling period when the adjacent codes are different. A2-channel,4-channel and8-channel en/decoders are designed in a single SFBG with optimized performance for their auto-correlation peak over the maximum wing level ratios and peak over the maximum cross-correlation level ratios being larger than17dB, respectively.
     The reflective spectrum of weak FBGs might be regarded as the spatial Fourier transform (FT) of the refractive index modulation when the reflection is low. Therefore, the normalized amplitude and the phase, which are obtained from the inverse FT of the expected reflection shape, are the significant factors for designing the intensity and phase modulation of the index change, respectively. By carefully incorporating and designing the intensity and the phase modulations, we obtain FBGs with arbitrary reflective spectra including cosine/sine, triangle, sawtooth, trapezium and upside-down triangle shapes, whose reflections are much lower than1. Moreover, their bandwidths can be modulated by adjusting the FBG parameters. Simulation results based on the TM method further confirm the proposed method.
     Spectral characteristics of surface plasmon polaritons (SPPs) in metal-insulator-metal (MIM) waveguides with a rectangular-or V-groove are analyzed. Theoretical and simulation results indicate that both schemes can achieve wavelength filtering functionality with the center wavelength possessing a linear relationship with the length of the groove. We further consider the plasmonic MIM waveguide with a tilted groove whose effects can be equivalently described by a function of the height. Characteristics of such waveguides are further investigated numerically by the finite-different time-domain (FDTD) method. The center wavelength of such structure has a nonlinear relationship with the height of the groove. Specifically, the wavelength will decrease firstly and then increase when the height increases. Furthermore, the electromagnetically induced transparency-(EIT) like transmission phenomenon in the MIM waveguide is studied. A plasmonic bus waveguide with a side-coupled T-shaped (TS) or a reverse T-shaped (RTS) resonator, which consists of a parallel and a perpendicular cavity, is proposed. This compact system can be performed as a wavelength de-multiplexing device as a forbidden band is achieved when the resonators are symmetrical. By shifting one cavity away from the center of the resonator, the scheme exhibits EIT like transmission at the wavelength of the former forbidden band. The electromagnetic responses of the structure can be flexible handled by changing the asymmetry degree of the TS or RTS resonator. In these cases, similar performances for two proposed structures can be obtained except for the center wavelength which are determined by both cavities for the RTS resonator or only determined by the cavity parallel to bus waveguide for the TS resonator. Besides, a π phase shift will arise in the transparency window, which will introduce dispersion in the transmission channel.
     Morevoer, the propagation characteristics of the surface plasmon waves supported inside the MIM waveguide, which are considered as a FP cavity, are studied. The resonance wavelengths are significantly related to the effective index of the mode in the slit and the length of the slit. After estimating the resonance wavelength, three slot cavities which perform as the drop waveguides can be designed in the MIM waveguide with the positions of half of the resonance wavelengths. The lst-order,2nd-oder and3rd-oder resonance wavelengths can be coupled out from the corresponding slot cavities, and all the transmittances are larger than0.1. The limitations for this device are the low transmittance and the limited channel count. To overcome these disadvantages, series of slot cavities have been proposed to array on both sides of the MIM slit. SPPs are captured into the cavities resulting in multiple resonance modes. Two drop waveguides lay on the middle and a quarter of the each cavity, and then the first and the second resonance wavelengths can be coupled out from the corresponding exports, respectively. A2-,4-, and8-channel filters have been designed and numerically demonstrated by2D finite FDTD method. The transmittances are larger than0.5for all the cases. Compared to the previous scheme, the channel count and the transmittance have been improved greatly.
     A subwavelength plasmonic comb-like filter is proposed by using dual symmetric slot cavities which are placed between two parallel MIM structure waveguides. The structure can be considered as a resonance loop which consists of slot-cavity resonators and MIM-waveguide resonators. As the waveguides and the cavities are not connected directly, the SPPs modes supported inside them are not completely identical. SPPs modes with zero magnetic field intensity in the waveguides can not be coupled into the cavities and will be reflected in the input waveguide. On the contrary, those captured into the cavities can pass through the output waveguide. The reflective wavelength range and channel spacing are determined by the lengths of slot cavities and MIM waveguides, respectively.3-,4-,5-reflective channels with high reflection are achieved in a small wavelength range. Higher channel count can be available by increasing the length or the real part of effective index of the MIM waveguides.
     Based on MIM waveguides, a plasmonic intersection structure is proposed. An open loop consists of four resonance cavities, in the center of which a drop waveguide is laid. Then two parallel waveguides provide to be a pair of input/output port. There is only one transmission peak whose center wavelength is determined by the length of the cavity. After defining L=300nm and400nm, simulation results based on FDTD method demonstrate that cross propagation for SPPs in this structure is achieved. The transmittance and the isolation degree are higher than0.6and14dB, respectively. Moreover, a MIM-based four-port quasi-circulator consisting of four bus waveguides and eight narrow inside/outside slits is proposed without using nonreciprocity. The phase difference of SPPs at the exports of two slits should satisfy0.5π. Simulation results based on FDTD method demonstrate that the transmittance at the center wavelength437.6nm of the appropriate output port can reach0.4while the extinction ratios of the other two output ports are larger than20dB. Therefore, we can consider that once the input port is defined, only a specific output port is available. Through adjusting the parameters of the waveguides and slits, the center wavelength can be changed.
     In conclusion, the above researches can develop the applications of the nano-micro devices, such as multi-channel filter, special optical signal generation, parameter sensing, dispersion compensation, and so on.
引文
[1]. R. J. Essiamber, R. W. Tkach. Capacity trends and limits of optical communication networks. Proc. IEEE,2012,100(5):1035-1055.
    [2]. S. Gringeri, E. B. Basch, T. J. Xia, et al. Technical condiseration for supporting d ata rates beyond 100 Gb/s. IEEE Commun. Mag.,2012,50(2):21-30.
    [3]. E. Yamazaki, M. Tomizawa, Y. Miyamoto.100 Gb/s optical transport network and beyond employing digital signal processing. IEEE Commun. Mag.,2012,50(2): 43-49.
    [4]. S. A.Vasiliev. Photoinduced fiber gratings. Proc. SPIE,2001,4537:1-12.
    [5]. J.Canning. Grating confinement in a photonic crystal fiber [J]. Opt. Commun.,2000, 176(1):121-124.
    [6]. V. Bhatia. Properties and applications of fiber gratings. Proc. SPIE,2001,4417: 154-160.
    [7]. K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. App. Phys. Lett.,1978,32 (10):647-649.
    [8]. B. S. Kawasaki, K. O. Hill, D. C. Johnson, et al. Narrow-band Bragg reflectiors in optical fiber. Opt. Lett.,1978,3:66-68.
    [9]. G. Meltz, W. W. Morey, and W. H. Glenn. Formation of Bragg gratins in optical fibers by a transverse holographic method. Opt. Lett.,1989,14(15):823-825.
    [10]. B. Malo, K. O. Hill, F. Bilodeau, et al. Point-by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques. Electron. Lett.,1993,29(18):1668-1669.
    [11]. G. Meltz, W. W. Morey, and W. H. Glenn. Formation of Bragg gratins in optical fibers by a transverse holographic method. Opt. Lett.,1989,14(15):823-825.
    [12]. A. Othonos. Fiber Bragg gratings (review article). Rev. Sci. Instrum.,1997,68(12): 4309-4341.
    [13]. R. Kashyap, J. R. Armitage, R. Wyatt, et al. All-fiber narrowband reflection grating at 1550 nm. Electron. Lett.,1990,26(11):730-732.
    [14]. B. J. Eggleton, P. A. Krug, L. Poladian, et al. Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings. Opt. Lett.,1994,19(12):877-879.
    [15]. K. O. Hill, B. Malo, F. Bilodeau, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 1993,62(10):1035-1037.
    [16]. D. Z. Anderson, V. Mizrahi, T. Erdogan, et al. Production of in-fiber gratings using a diffractive optical element. Electron. Lett.,1993,29(6):566-568.
    [17]. 高志鹏,余震虹,刑丽华.一种重构强反射光纤布拉格光栅的新方法.光学学报,2006,26(7):991-996.
    [18]. 戴一堂.新型光纤布拉格光栅的研究与应用.清华大学,博士学位论文,2006.
    [19]. L. R. Chen, Jose Azana. Spectral Talbot phonomena in sampled arbitrarily chirped Bragg gratings. Opti. Commun.,2005,250(6):302-308.
    [20]. Y. Dai, X. Chen, H. Ji, et al. Optical arbitrary waveform generation based on sampled fiber Bragg gratings. IEEE Photon. Lett.,2007,19(23):1916-1918.
    [21]. X. Zou, W. Pan, B. Luo, et al. Periodically chirped sampled fiber Bragg gratings for multichannel comb filter. IEEE Photon. Technol. Lett.,2006,18(12):1371-1373.
    [22]. 邹喜华,潘炜,罗斌,等.倾角对光纤Bragg光栅型OADM性能的影响.光电子·激光.2004,15(8):20-22.
    [23]. 邹喜华.光梳状滤波器在光通信和微波信号处理中的研究及应用.西南交通大学,博士学位论文,2009.
    [24]. 黄勇林,董孝义,李杰,等.基于马赫-曾德尔干涉仪和光纤光栅的光分插复用器.中国激光,2005,32(3):423-426.
    [25]. W. H. Loh, F. Q. Zhou, J. J. Pan. Novel design for sampled grating-based multiplexers-demultiplexers. Opt. Lett.,1999,24(21):1457-1459.
    [26]. F. Bilodeau, D. C. Johnson, S. Thriault, et al. An all-fiber dense-wavelength-division multiplexer/demultiplexer using photo imprinted Bragg gratings. IEEE Photon. Technol. Lett.,1995,7(4):388-390.
    [27]. V. Mizrahi. Four channel fiber grating demultiplexer. Electron. Lett.,1994,30(10): 780-781.
    [28]. X. Zou, F. Wang, and W. Pan. Flat-top and ultra-narrow bandpass filter designed by sampled fiber Bragg grating with multiple equivalent phase shifts. Appl. Opt.,2009, 48(4):691-694.
    [29]. W. H. Loh, F. Q. Zhou, J. J. Pa. Sampled fiber grating based-dispersion slope compensator. IEEE Photon. Technol. Lett.,1999,11(10):1280-1282.
    [30]. M. P. Nellen, P. Mauron, A. Frank, et al. Reliability of fiber Bragg grating based sensors for downhole applications. Sensors and Actuat. A,2003,103(3):364-376.
    [31]. B. A. L. Gwandu, X. Y. Shu, Y. Liu, et al. Simultaneous measurement of strain and curvature using superstructure fiber Bragg gratings. Sensors Actuat. A,2002,96(2): 133-139.
    [32]. 王圣根,闫连山,潘炜,等,基于匹配光栅解调的FBG轨道传感器研究,铁道学报,2011,33(9):68-71.
    [33]. L.-S. Yan, Z. T. Zhang; P. Wang; et al. Fiber sensors for strain measurements and axle counting in high-speed railway applications. IEEE Sensors J.,2011,11(7):1587-1594.
    [34]. V. Jayaraman, Z. M. Chuang, and L. A. Coldren. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE J. Quantum Electron.,1993,29(6):1824-1834.
    [35]. B. J. Eggleton, P. A. Krug, L. Poladian, et al. Long periodic superstructure Bragg gratings in optical fibres. Electron. Lett.,1994,30(19):1620-1622.
    [36]. X. F Chen, Y. Luo, C. C. Fan, et al. Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system. IEEE Photon. Technol. Lett.,2000,12(8):1013-1015.
    [37]. 贾宝华,盛秋琴,冯丹琴,等.超结构光纤布拉格光栅的理论研究.中国激光,2003,30(3):247-251.
    [38]. 刘玉敏,俞重远,杨红波,等.优化二元相位取样光纤布喇格光栅以及对色散和色散斜率补偿的应用.光子学报,2005,34(11):1701-1705.
    [39]. 王庆亚,秦莉,韦占雄,等.光纤光栅梳状滤波器的设计及制作.光电子·激光,2000,11(1):20-22.
    [40]. 林宗强,王国忠,李栩辉,等.取样光栅周期中等效啁啾的实验研究.光电子·激光,2002,13(5):487-490.
    [41]. 曹辉,孙军强,张新亮,等.一种新颖的超结构光纤Bragg光栅梳状滤波器的设计.物理学报,2004,53(9):3077-3082.
    [42]. 蔡海文,黄锐,瞿荣辉,等.基于马赫-曾德尔干涉仪和取样光纤光栅的全光纤梳状滤波器.中国激光,2003,30(3):243-246.
    [43]. X. Liu. A dual-wavelength sampled fiber Bragg grating and its application in L-band and dual-wavelength Erbium-doped fiber lasers. IEEE Photon. Technol. Lett.,2006, 18(20):2114-2116.
    [44]. X. Liu, Y. Gong, L. Wang, et al. Identical dual-wavelength fiber Bragg gratings. J. Lightwave Technol.,2007,25(9):2706-2710.
    [45]. C. Wang, J. Azana, and L. R. Chen. Spectral Talbot-like phenomena in one-dimensional photonic bandgap structures. Opt. Lett.,2004,29(14):1590-1592.
    [46]. C. Wang, J. Azana, and L. R. Chen. Efficient technique for increasing the channel density in multiwavelength sampled fiber Bragg grating filters. IEEE Photon. Technol. Lett.,2004,16(8):1867-1869.
    [47]. J. Azana, C. Wang, and L. R. Chen. Spectral self-imaging phenomena in sampled Bragg gratings. J. Opt. Soc. Am. B,2005,22(9):1829-1841.
    [48]. L. R. Chen and J. Azana. Spectral Talbot phenomena in sampled arbitrarily chirped Bragg gratings. Opt. Commun.,2005,250(6):302-308.
    [49]. J. Magne, P. Giaccari, S. LaRochelle, et al. All-fiber comb filter with tunable free spectral range. Opt. Lett.,2005,30(16):2062-2064.
    [50]. Y. Dai, X. Chen, L. Xia, et al. Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp. Opt. Lett.,2004, 29(12):1333-1335.
    [51]. Y. T. Dai, X. F. Chen, D. J. Jiang, et al. Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period. IEEE Photon. Technol. Lett.,2004,16(10): 2284-2286.
    [52]. D. Jiang, X. Chen, Y. Dai, et al. A novel distributed feedback fiber laser based on equivalent phase shift. IEEE Photon. Technol. Lett.,2004,16(12):2598-2600.
    [53]. Y. T. Dai, X. F. Chen, J. Sun, et al. Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts. Opt. Lett.,2006, 31(3):311-313.
    [54]. Y Dai, X. Chen, J. Sun, et al. High-performance, high-chip-count optical code division multiple access cncoders-decoders based, on a reconstruction equivalent-chirp technique. Opt. Lett.,2006,31(11):1618-1620.
    [55]. F. Ouellette, P. A. Krug, T. Stephens, et al. Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings. Electron. Lett.,1995, 31(11):899-901.
    [56]. C. H. Wang, L. R. Chen, and P. W. E. Smith. Analysis of chirped-sampled and sampled-chirped fiber Bragg grating. Appl. Opt.,2002,41(9):1654-1660.
    [57]. H. Li, Y. Sheng, Y. Li, et al. Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation. J. Lightwave Technol.,2003, 21(9):2074-2083.
    [58]. H. Li, M. Li, K. Ogusu, et al. Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings. Opt. Express,2006,14(8):3152-3160.
    [59]. X. Wang, C. Yu, Z. Yu, et al. Sampled phase-shift fiber Bragg gratings. Chin. Opt. Lett., 2004,2(4):190-191.
    [60]. H. Lee, and G. P. Agrawal. Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings. IEEE Photon. Technol. Lett.,2004,16(2):635-637.
    [61]. H. Lee,and G.P. Agrawal. Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation. IEEE Photon. Technol. Lett.,2003, 15(8):1091-1093.
    [62]. J. E. Rothenberg, H. Li, Y. Sheng, et al. Phase-only sampled 45 channel fiber Bragg grating written with a diffraction-compensated phase mask. Opt. Lett.,2006,31(9): 1199-1201.
    [63]. H. Li, M. Li, Y. Sheng, et al. Advances in the design and fabrication of high-channel-count filber Bragg gratings. J. Lightwave Technol.,2007,25(9): 2739-2750.
    [64]. M. Ibsen, M. K. Durkin, M. J. Cole, et al. Sine-sampled fiber Bragg gratings for identical multiple wavelength operation. IEEE Photon. Technol. Lett.,1998,10(6): 842-844.
    [65]. Y. Nasu and S. Yamashita. Densification of sampled fiber Bragg gratings using multiple phase shift (MPS) technique. J. Lightwave. Technol.,2005,23(4):1808-1817.
    [66]. P. Petropoulos, M. Ibsen, M. N. Zervas, et al. Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating. Opt. Lett.,2000,25(8): 521-523.
    [671. J. Magne, J. Bolger, M. Rochette, et al. Generation of a 4×100 GHz pulse-train from a single wavelength 10-GHz mode-locked laser using superimposed fiber Bragg gratings and nonlinear conversion. J. Lightwave. Technol.,2006,24(5):2091-2099.
    [68]. J. Azana and M. A. Muriel. Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings. Opt. Lett.,1999,24(23):1672-1674.
    [69]. F. Zeng and J. P. Yao. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photon. Technol. Lett.,2006,18(19):2062-2064.
    [70]. D. B. Hunter, M. E. Parker, and J. L. Dexter. Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating. IEEE Trans. Microw. Theory Tech.,2006,54(2):861-867.
    [71]. Y. Kim, S. Coucet, M. E. M. Pasandi, et al. Optical multicarrier generator for radio-over-fiber systems. Opt. Express,2008,16(2):1068-1076.
    [72]. F. Zeng, J. Wang, and J. P. Yao. All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings. Opt. Lett.,2005,30(17):2203-2205.
    [73]. J. Capmany, B. Ortega, and D. Pastor. A tutorial on microwave photonic filters. J. Lightwave Technol,2006,24(1):201-229.
    [74]. R. W. Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc.,1902,18:269-275.
    [75]. R. H. Ritchie. Plasma losses by fast electrons in thin films. Phys. Rev.,1957,106: 874-881.
    [76]. C. J. Powell, and J. B. Swan. Origin of the characteristic electron energy losses in aluminum. Phys. Rev.,1959,115:869-875.
    [77]. A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik A,1968,216:398-410.
    [78]. E. Kretschmann, H. Raether. Radiative decay of non-radiative surface plasmons excited by light. Z. Natureforsch. A,1968,23:2135-2136.
    [79]. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391(6668):667-669.
    [80]. J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett.,2000,85(18): 3966-3969.
    [81]. S. A. Maier, M. L. Brongersma, P. G. Kik, et al. Plasmonics-A route to nanoscale optical devices. Adv. Mater.,2001,13(19):1501-1505.
    [82]. H. J. Lezec, A. Degiron, E. Devaux, et al. Beaming light from a subwavelength aperture. Science,2002,297:820-822.
    [83]. J. P. Guo, and R. Adato. Control of 2D plasmon-polariton mode with dielectric nanolayers. Opt. Express,2008,16(2):1232-1237.
    [84]. Y. C. Chang, J. Y. Chu, T. J. Wang, et al. Fourier analysis of surface plasmon waves launched from single nanohole and nanohole arrays:unraveling tip-induced effects. Opt. Express,2008,16(2):740-747.
    [85]. X. G. Luo, and T. Ishihara. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett.,2004,84(23):4780-4782.
    [86].刘敏敏,张国平,邹明.二元矩形金属光栅衍射增强电磁理论团.物理学报,2006,55(9):460-4612.
    [87]. B. Kante, A. de Lustrac, and J. M. Lourtioz. In-plane coupling and field enhancement in infrared metamaterial surfaces. Phys. Rev. B,2009,80(3):035108.
    [88]. 白文理,郭宝山,蔡利康,等.亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究.物理学报,2009,58(11):8021-8026.
    [89]. S. A. Maier, P. G. Kik, H. A. Atwater, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater.,2003,2(4):229-232.
    [90]. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, et al. Plasmon slot waveguides:Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B,2006, 73(3):035407.
    [91]. P. Berinia, R. Charbonneau, N. Lahoud, et al. Characterization of long-range surface-plasmon-polariton waveguides. J. Appl. Phys.,2005,98(4):043109.
    [92]. G. Veronis, and S. H. Fan. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett.,2005,30(24):3359-3361.
    [93]. D. K. Gramotnevm, and D. F. P. Pilea. Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface. Appl. Phys. Lett., 2004,85(26):6323-6525.
    [94]. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature,2006, 440(7083):508-511.
    [95]. G. Fleming, S. Y. Lin, I. El-Kady, et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature,2002,417(6884),52-55.
    [96]. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, et al. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phy. Rev. Lett.,2006,92(18):183901.
    [97]. L. V. Hau, S. E. Harris, Z. Dutton, et al. Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature,1999,397(6720):594-598.
    [98]. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, et al. Slow light in semiconductor quantum wells. Opt. Lett.,2004,29(19):2291-2293.
    [99]. H. Gersen, T. J. Karle, R. J. P. Engelen, et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett.,2005,94(7):073903.
    [100]. Y. Okawachi, M. Foster, J. Sharping, et al. All-optical slow-light on a photonic chip. Opt. Express,2006,14(6):2317-2322.
    [101]. M. Sandtke, and L. Kuipers. Slow guided surface plasmons at telecom frequencies. Nature Photon.,2007,1(10):573-576.
    [102]. Q. Q. Gan, Z. Fu, Y. J. Ding, et al. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys. Rev. Lett.,2008,100(25): 256803.
    [103]. X. Guo, M. Qiu, J. M. Bao, et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett.,2009,9(12):4515-4519.
    [104]. J. Tian, S. Q Yu, W. Yan, et al. Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Appl. Phys. Lett.,2009,95(1):013504.
    [105]. W. Nomuraa, M. Ohtsub, and T. Yatsui. Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. Lett.,2005, 86(18):181108.
    [106]. H. T. Gao, H. F. Shi, C. T. Wang, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt. Express,2005,13(26): 10795-10800.
    [107]. X. J. Yu and H. S. Kwok. Optical wire-grid polarizers at oblique angles of incidence. J. Appl. Phys.,2003,93(8):4407-4412.
    [108]. M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, et al. Full Poincare sphere coverage with plasmonic nanoslit metamaterials at Fano resonance. Phys. Rev. B, 2010,82(19):193402.
    [109]. J. Park, S.-Y Lee, and B. Lee. Polarization singularities in the metal-Insulator-metal surface plasmon polariton waveguide. IEEE J. Quantum Electron.,2010,46(11): 1577-1581.
    [110]. A. V. Zayatsa, W. Dicksc.i, I. I. Smolyaninov, et al. Polarization superprism effect in surface polaritonic crystals. Appl. Phys. Lett.2003,82(25):4438-4440.
    [111]. N. Sedoglavich, R. Kunnemeyer, and J. C. Sharpe. Polarization tunable selective polariton generator. Appl. Phys. Lett.,2009,94(10):101111.
    [112].张亮,李承芳,刘文,等.一种亚波长偏振分波/合波器的研制.光学学报,2006,26(7):1048-1052.
    [113].赵华君,杨守良,张东,等.亚波长金属偏振分束光栅设计分析.物理学报,2009,58(9):6236-6242.
    [114]. D. Yi, Y. Yan, H. Liu, S. Lu, et al. Broadband polarizing beam splitter based on the form birefringence of a sub wavelength grating in the quasi-static domain. Opt. Lett., 2004,29(7):754-756.
    [115]. F. Romanato, K. H. Lee, G. Ruffato, et al. The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting. Appl. Phys. Lett., 2010,96(11):111103.
    [116]. Q. Zhang, X.-G. Huang, X.-S. Lin, et al. A subwavelength coupler-type MIM optical filter. Opt. Express,2009,17(9):7549-7554.
    [117]. J. C. Weeber, A. Bouhelier, F. G. Des,et al. Submicrometer in-plane integrated surface plasmon cavities. Nano Lett.,2007,7(5):1352-1359.
    [118]. F. F. Hu, H. X. Yi, and Z. P. Zhou. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt. Lett.,2011,36(8):1500-1502.
    [119]. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, et al. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express, 2010,18(6):6191-6204.
    [120]. J. Tao, X. G. Huang, X. S. Lin, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. J. Opt. Soc. Am. B,2010, 27(2):323-327.
    [121]. X. S. Lin, and X. G. Huang. Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett.,2008,33(23):2874-2976.
    [122]. L., S. Chung, S. Kim, S. Han, et al. Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography. IEEE Photon. Technol. Lett., 2006,18(23):2532-2534.
    [123]. P. Berini, R. Charbonneau, S. Jette-Charbonneau, et al. Long-range surface plasmon-polariton waveguides and devices in lithium niobate. J. Appl. Phys.,2007, 101(11):113114.
    [124]. K. Gong, X. M. Liu, and L. R. Wang. High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings. Opt. Lett.,2010,35(3):285-287.
    [125]. A. Hansel, O. A. Egorov, S. B. Hasan, et al. Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity. Phys. Rev. A,2012,85(5):053843.
    [126]. J. Lee, F. Lu, and M. A. Belkin. Broadly wavelength tunable bandpass filters based on long-range surface plasmon polaritons. Opt. Lett.,2011,36(19):3744-3746.
    [127]. A. Yariv. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron., 1973,9(9):919-993.
    [128]. M. Yamada, K. Sakuda. Analsis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach. Appl. Opt.,1987,26(16):3474-3478.
    [129]. K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat.,1966, AP-14(3):302-307.
    [130]. T. Erdogan. Fiber grating spectra. J. Lightwave Technol.,1997,15(8):1277-1294.
    [131]. A. V. Zayatsa,I.I. Smolyaninovb, A. A. Maradudinc. Nano-optics of surface plasmon polaritons. Phys. Reports,2005,408:131-314.
    [132].葛德彪,闫玉波.电磁场时域有限差分法.西安电子科技大学出版社,2005.
    [133]. K.-H. Wen, W. Pan, L.-S. Yan, et al. Accurate analytical expression for the bandwidth of reflection-peak of uniform sampled fiber Bragg grating.Opt. Eng.,2008,47(9): 094403.
    [134].赵东晖,杨秀峰,刘志国,等.相移光纤光栅的特性分析及其应用.光电子·激光,1998,9(3):176-180.
    [135]. K.-H. Wen, L.-S. Yan, W. Pan, et al. Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design. Appl. Opt.,2009,48(29):5438-5444.
    [136]. X. H. Zou, W. Pan, B. Luo, et al. Accurate analytical expression for reflection-peak wavelengths of sampled Bragg grating. IEEE Photon. Technol. Lett.,2006,18(3): 529-531.
    [137].孙英志,余重秀,林金桐,等.啁啾光纤光栅色散补偿变迹函数的研究.光电子·激光,1996,10(3):228-231.
    [138]. K.-H. Wen, L.-S. Yan, W. Pan, et al. Design of fiber Bragg gratings with arbitrary reflective spectrum. Opt. Eng.,2011,50(5):054003.
    [139]. S. I. Bozhevolnyi, V. S. Volkov, et al. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett.,2005,95(4):046802.
    [140]. A. Krishnan, L. Grave de Peralta, M. Holtz, et al. Finite element analysis of lossless propagation in surface plasmon polariton waveguides with nanoscale spot-sizes. J. Lightwave Technol.,2009,27(9):1114-1121.
    [141]. S. I. Bozhevolnyi, and J. Jung. Scaling for gap plasmon based waveguides. Opt. Express,2008,16(4):2676-2684.
    [142]. K.-H. Wen, L.-S. Yan, W. Pan, et al. Spectral characteristics of plasmonic metal-insulator-metal waveguides with a tilted groove. IEEE Photon. J.,2012,4(5): 1794-1800.
    [143]. N. W. Ashcroft, N. D. Mermin, Solid state physics. Philadelphia, PA:Saunders College,1976.
    [144]. M. Fleischhauer, A. Imamoglu, and J. P. Marangos. Electromagnetically induced transparency:Optics in coherent media. Rev. Mod. Phys.,2005,77(2):633-673.
    [145]. R. W. Boyd, and D. J. Gauthier. Photonics:transparency on an optical chip. Nature,2006,441(7094):701-702.
    [146]. P. Tassin, L. Zhang, T. Koschny, et al. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett.,2009,102(5):053901.
    [147]. S. Y. Chiam, R. Singh, C. Rockstuhl, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial.Phys. Rev. B,2009,80(15):153103.
    [148]. P. Tassin, L. Zhang, T. Koschny, et al. Planar designs for electromagnetically induced transparency in metamaterials. Opt. Express,2009,17(7):5595-5605.
    [149]. K. Aydin, I. Bulu, K. Guven, et al. Investigation of magnetic resonances for different split-ring resonator parameters and designs. New J. Phys.,2005,7(168):1-15.
    [150]. K. Aydin, I. M. Pryce, and H. A. Atwater. Symmetry breaking and strong coupling in planar optical metamaterials. Opt. Express,2010,18(13):13407-13417.
    [151]. S. Zhang, D. A. Genov, Y. Wang, et al. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett.,2008,101(4):047401.
    [152]. N. Liu, T. Weiss, M. Mesch,et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett.,2010,10(4):1103-1107.
    [153]. D. D. Smith, H. Chang, K. A. Fuller, et al. Coupled resonator induced transparency. Phys. Rev. A,2004,69(9):063804.
    [154]. Q. Xu, S. Sandhu, M. L. Povinelli, et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett., 2006,96(12):123901.
    [155]. R. D. Kekatpure, E. S. Barnard, W. Cai,et al. Phase-coupled plasmon induced transparency.Phys. Rev. Lett.,2010,104(24):243902.
    [156]. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, et al. Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt. Express,2010,18(3):3210-3218.
    [157]. P. Gay-Balmaz, and O. J. F. Martin. Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys.,2002,92(5):2929-2935.
    [158]. H. Lu, X. M. Liu, D. Mao, et al. Induced transparency in nanoscale plasmonic resonator systems. Opt. Lett.,2011,36(16):3233-3235.
    [159]. Z. H. Han, and S. I. Bozhevolnyi. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt. Express, 2011,19(4):3251-3257.
    [160]. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen,et al. Compact Bragg gratings for long-range surface plasmon polaritons. J. Lightwave Technol.,2006,24(2):912-918.
    [161]. K.-H. Wen, L.-S. Yan, W. Pan, et al. Transmission characteristics and applications of plasmonic slit waveguide based on metal-insulator-metal structure. Opt. Eng.,2012, 51(10):104601.
    [162]. K.-H. Wen, L.-S. Yan, W. Pan, et al. Wavelength demultiplexing structure based on a plasmonic metal-insulator-metal waveguide. J. Opt.,2012,14(7):075001.
    [163]. L. Liu, Z. Han, and S. He. Novel surface plasmon waveguide for high integration. Opt. Express,2005,13(17):6645-6650.
    [164]. K.-H. Wen, L.-S. Yan, W. Pan, et al. Design of plasmonic comb-like filters using loop-based resonators. Plasmonics, in press,10.1007/s11468-013-9504-3,2013.
    [165]. P. B. Johnson, and R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 19726(12):4370-4379.
    [166]. C. Huang, C. L. Du, and X. G. Luo. A waveguide slit array antenna fabricated with subwavelength periodic grooves. Appl. Phys. Lett.,2007,91(14):143512.
    [167]. S. Kim, Y. Lim, H. Kim, et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl. Phys. Lett.,2008,92(1): 013103.
    [168]. J. M. Steele, Z. W. Liu, Y. Wang, et al. Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. Opt. Express,2006,14(12): 5664-5670.
    [169]. T. Xu, Y. H. Zhao, D. C. Gan, et al. Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett.,2008,92(10):101501.
    [170]. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, et al. Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt. Express,2007, 15(25):16667-16680.
    [171]. S. H. Fan, R. Baets, A. Petrov, et al. Comment on "Nonreciprocal light propagation in a silicon photonic circuit". Science,2012,335(6064):38.
    [172]. K.-H. Wen, L.-S. Yan, W. Pan, et al. A four-port plasmonic quasi-circulator based on metal-insulator-metal waveguides. Opt. Express,2012,20(27):28025-28032.
    [173]. H. F. Schouten, N. Kuzmin, G. Dubois, et al. Plasmon-assisted two-slit transmission: Young's experiment revisited. Phys. Rev. Lett.,2005,94(5):053901.
    [174]. Y. H. Guo, L.-S. Yan, W. Pan, et al. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Opt. Express,2012,20(22):24348-24355.
    [175]. Y. H. Guo, L.-S. Yan, W. Pan,et al. A plasmonic splitter based on slot cavity. Opt. Express,2011,19(15):13831-13838.
    [176]. L. Tong, R. R. Gattass, J. B. Ashcom,et al. Subwavelength diameter silica wires for low-loss optical wave guiding. Nature,2003,426(6968):816-819.
    [177]. E. Ozbay. Plasmonics:Merging photonics and electronics at nanoscale dimensions. Science,2006,311(5758):189-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700