心力衰竭时大鼠下丘脑室旁核血管紧张素转换酶和血管紧张素1型受体与NMDA受体相互作用对交感神经活动的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心力衰竭时下丘脑室旁核血管紧张素转换酶和血管紧张素1型受体与NMDA受体相互作用对交感神经活动的影响
     慢性心力衰竭(简称心衰),是由各种心血管疾病导致心输出量降低并伴有心功能进行性恶化的临床综合征,是缺血性心脏病等多种心血管疾病的主要并发症。探讨其发病机制和寻找有效的防治手段是目前心衰研究的热点课题。而持续的交感神经过度激活是心衰的重要特征,可以促进心衰的恶化。因此降低交感神经的兴奋性成为心衰治疗的关键。近年来研究发现中枢神经体液机制的改变会使心衰时已经存在的水钠潴留和交感神经激活更加显著,使心功能进一步恶化并形成恶性循环。并且交感神经中枢的激活是构成心衰病理机制的重要因素。因此,关于心衰时中枢调控机制的研究日益受到重视。
     交感神经节前神经元的活动完全受下丘脑室旁核(PVN)和延髓头端腹外侧区(RVLM)等心血管中枢的控制。其中室旁核是调控交感神经传出活动的重要中枢位点。心衰时室旁核神经元被激活,使交感神经活动增强,促进心衰的发展。肾素-血管紧张素系统(RAS)是体内重要的体液调节系统,主要通过血管紧张素Ⅱ(ANGⅡ)与AT1受体(AT1-R)结合起作用。心衰时外周肾素-血管紧张素系统等神经内分泌机制被明显激活并且伴有血流动力学改变和交感神经活动持续增强。而研究证实,心血管中枢PVN、RVLM和孤束核等区域存在血管紧张素转换酶(ACE)和AT1-R的表达,对心血管功能和交感神经的活动具有重要的调节作用。脑内ACE主要介导ANGⅡ的产生,中枢ACE的活性在维持正常大鼠肾交感神经的基础紧张性放电中具有重要作用。给正常大鼠室旁核注入ANGⅡ可明显增强交感神经活动。因此非常有必要对RAS的中枢机制进行更深入的探索。
     室旁核中含有大量的神经递质对交感神经活动和心血管功能具有重要的调节作用。其中最重要的是谷氨酸能系统。研究证实室旁核中神经元激活之所以与心衰有关,主要是室旁核中谷氨酸能机制激活导致的。室旁核内谷氨酸通过谷氨酸受体参与心血管反射,调控交感神经的传出活动和心血管系统的功能。给正常大鼠PVN内微量注入N-甲基-D-天门冬氨酸(NMDA)时,引起血压升高,心率增快,肾交感神经活动增强。NMDA受体是谷氨酸离子型受体的一个主要亚型,由一个NR1亚基(NMDAR1)和一个或多个NR2亚基组成,其功能主要取决于NR1亚基。心衰时刺激室旁核内NMDA受体可使交感神经放电增加,室旁核微量注入NMDA受体拮抗剂则出现相反的情况。此外,心衰时室旁核中去甲肾上腺素增加,引发的外周交感活动增强与心力衰竭的发生发展密切相关;肾交感神经放电活动的调节也受PVN中GABA的内源性抑制作用所控制,参与交感活动的中枢调节。心衰时室旁核中各种神经递质发生改变,参与心血管反射活动的调节,对交感神经兴奋性产生影响。
     体外研究发现,对同时表达AT1-R和NMDAR1的神经元使用ANGⅡ处理后,可以观察到神经元NMDAR1蛋白的表达呈剂量依赖性增加,AT1-R阻断剂氯沙坦则可以阻止该现象的发生,使NMDAR1蛋白表达不能上调。神经元生存环境中ANGⅡ增加可以促进神经元内谷氨酸机制激活,NMDAR1蛋白表达增加,中枢神经系统内RAS与谷氨酸能机制之间可能存在相互作用。
     在本研究中,我们进行了以下工作:采用冠脉结扎术建立大鼠心衰模型,经微型渗透泵给室旁核内持续微量注入不同的药物干预4周后,1、观察心力衰竭时大鼠下丘脑室旁核内ACE和AT1-R的变化及其对交感神经活动的影响;2、观察心衰时下丘脑室旁核神经递质系统中NMD AR1、TH和GAD67的变化及其对外周交感神经活动的影响;3、通过使用血管紧张素1型受体阻滞剂、血管紧张素转换酶抑制剂和NMDA受体拮抗剂研究心衰时室旁核内源性ACE和AT1-R与谷氨酸能机制发生的变化,观察RAS与谷氨酸能机制之间是否存在相互作用,共同影响交感神经的传出活动。
     第一章心力衰竭时大鼠下丘脑室旁核内血管紧张素转换酶和血管紧张素1型受体的变化对交感神经活动的影响
     [目的]心力衰竭时肾素-血管紧张素系统激活,交感神经活动持续加强,最终导致心功能不断恶化。下丘脑室旁核(PVN)是调控交感神经传出活动的重要中枢位点和整合部位。本文主要观察心衰时大鼠下丘脑室旁核内ACE和AT1-R的变化及其对心衰发生发展和交感神经活动的影响。[方法]选取雄性SD大鼠48只,首先进行室旁核插管术。1周后通过冠脉结扎术建立大鼠心衰模型或假手术模型,同时室旁核插管连接微型渗透泵分别持续微量注入AT1-R阻滞剂缬沙坦(VAL,0.05μg/h. PVN),血管紧张素转换酶抑制剂(ACEI)赖诺普利(Lisinopril,0.46μg/h. PVN)或空白对照药人工脑脊液(Vehicle,0.11μl/h.PVN)干预。4周后经血流动力学检测观察心功能;电生理记录肾交感神经放电活动;计算肺/体重比(Lung/BW)和右心室/体重比(RVW/BW);免疫组织化学染色观察下丘脑室旁核内ACE表达的变化;ELISA法测定血浆NE和AngⅡ含量;Western blot技术测定下丘脑室旁核内Fra-like和AT1-R蛋白的含量变化。[结果]与假手术组比较,心衰大鼠心功能明显降低:左心室舒张木压(LVEDP)明显升高,±dp/dtmax和左室射血分数(LVEF)明显下降,左室前负荷增加(RVW/BW和Lung/BW明显升高,p<0.05);肾交感神经放电明显增强;血浆NE和AngⅡ浓度增高(p<0.05);PVN内Fra-like、ACE和AT1-R表达增加(p<0.05)。与空白对照药治疗的心衰大鼠比较,接受缬沙坦或赖诺普利治疗的心衰大鼠LVEDP、RVW/BW和lung/BW有所降低(P<0.05),±dp/dtmax升高(P<0.05),LVEF无明显改变,PVN区域的Fra-like、ACE和AT1-R表达减少(P<0.05),外周血NE和ANGⅡ下降(P<0.05),肾交感神经放电减少(P<0.05)。[结论]心衰时PVN区域内源性的ACE和AT1-R被明显激活引起交感神经放电增加,心功能明显减退。交感神经放电
     第二章心力衰竭时大鼠下丘脑室旁核内NMDA受体的改变及其对交感神经活动的影响
     [目的]室旁核中含有大量的神经递质对交感神经活动和心血管功能具有重要的调节作用。其中最重要的是谷氨酸能系统。此外,心衰时室旁核去甲肾上腺素增加,GABA的内源性抑制作用减弱也参与交感活动的中枢调节。本部分主要探讨心衰时大鼠下丘脑室旁核内NMDAR1、TH和GAD67的变化及其对交感神经活动的影响。[方法]选取雄性SD大鼠36只,首先进行室旁核插管。1周后采用冠脉结扎术建立大鼠心衰模型或假手术模型,同时各组经室旁核插管连接微型渗透泵持续给予特异性NMDA受体阻滞剂AP5 (0.02μg/h.PVN)或空白对照药人工脑脊液(vehicle,0.11μl/h. PVN)进行干预。4周后经血流动力学检测观察心功能;电生理记录肾交感神经放电活动;计算肺/体重比(Lung/BW)和右心室/体重比(RVW/BW); ELISA法测定血浆NE和AngⅡ含量;免疫组织化学染色观察下丘脑室旁核内TH表达的变化;使用Western blot技术测定下丘脑室旁核内NMDAR1和GAD67蛋白含量变化。[结果]与假手术大鼠比较,心衰大鼠心功能明显下降:左心室舒张末压(LVEDP)明显升高,±dp/dtmax明显降低,左室射血分数(LVEF)明显下降,(p<0.05),左室前负荷增加(Lung/BW和RVW/BW明显升高,p<0.05);肾交感神经放电明显增强,血浆NE和AngⅡ的浓度增高(p<0.05);室旁核内NMDAR1和TH表达增加,GAD67的表达减少(p<0.05)。与空白对照药治疗的心衰大鼠比较,接受AP5治疗后心衰大鼠LVEDP、RVW/BW和lung/BW有所降低(P<0.05),±dp/dtmax升高(P<0.05),LVEF无明显改变,室旁核区域的NMDAR1和TH表达减少,GAD67表达增加(P<0.05),外周血NE和AngⅡ浓度下降(P<0.05),肾交感神经放电活动减少。[结论]心衰时下丘脑室旁核中谷氨酸能机制(NMDAR1)被明显激活,TH活性增强,GAD67活性降低,可以使交感神经的放电增加,促进心力衰竭的发生发展。
     第三章心力衰竭时下丘脑室旁核血管紧张素转换酶和血管紧张素1型受体与NMDA受体相互作用对交感神经活动的影响
     [目的]肾素-血管紧张素系统是体内重要的体液调节系统,心血管中枢下丘脑室旁核内存在血管紧张素转换酶(ACE)和血管紧张素1型受体(AT1-R)的表达,对心血管功能和交感神经的活动具有重要的调节作用。同时室旁核内谷氨酸能系统的激活可以增加交感神经放电,影响心血管功能。本部分主要探讨心力衰竭时室旁核内ACE、AT1-R与NMDA受体之间可能存在的相互作用及其对外周交感神经放电活动的影响。[方法]选取雄性SD大鼠60只,首先进行室旁核插管术。1周后采用冠脉结扎术建立大鼠心衰模型或假手术模型,同时各组室旁核插管连接微型渗透泵持续给予AT1-R阻滞剂缬沙坦(VAL,0.05μg/h. PVN),ACEI赖诺普利(Lisinopril,0.46μg/h. PVN),特异性NMDA受体阻滞剂AP5(0.02μg/h.PVN)或空白对照药人工脑脊液(vehicle,0.11μl/h. PVN)干预。4周后经血流动力学检测观察心功能;电生理记录肾交感神经放电活动;计算肺/体重比(Lung/BW)和右心室/体重比(RVW/BW);免疫组化染色观察下丘脑室旁核内ACE和TH表达的变化;ELISA法测定血浆NE和AngⅡ含量;采用Western blot技术测定室旁核内Fra-like、AT1-R、NMDAR1和GAD67蛋白含量的变化。[结果]与假手术组比较,心衰大鼠心功能明显降低,左心室舒张末压(LVEDP)明显升高,左室射血分数(LVEF)明显下降,±dp/dtmax明显降低(p<0.05),左室前负荷增加(Lung/BW和RVW/BW明显升高,p<0.05);肾交感神经放电明显增强,血浆NE和AngⅡ浓度增高(p<0.05);室旁核内Fra-like、ACE、AT1-R、NMDAR1和TH的表达增加,GAD67表达减少(p<0.05)。与空白对照药治疗的心衰大鼠比较,接受缬沙坦、赖诺普利或AP5治疗后心衰大鼠LVEDP, RVW/BW和lung/BW有所降低(P<0.05),±dp/dtmax升高(P<0.05),室旁核区域的Fra-like、ACE和AT1-R、NMDAR1和TH表达减少,GAD67表达增多(P<0.05),外周血NE和ANGⅡ下降(P<0.05);肾交感神经放电活动减少。[结论]心衰时室旁核区域的ACE和AT1-R被明显激活,使交感神经活动增强,并且可以对室旁核内谷氨酸能机制产生影响,ACE和AT1-R的激活可以增强NMDA的作用。在中枢水平针对二者同时采用相应的治疗措施,有望更有效地改善心衰症状,使交感神经放电减少,提高慢性心衰患者的生存率和生活质量。
Interaction Between the Angiotensin Converting Enzyme or Angiotensin Type 1 Receptor and NMDA Receptor in the Paraventricular Nucleus Contribute to Sympathoexcitation in Heart Failure
     Congestive heart failure (CHF) is a malignant clinical symptom accompanied by decreased cardiac output and aggravated heart function in progress. It is the main complication of various kinds of cardiovascular disease especially in coronary artery disease. The elevated sympathetic nerve activity is the most important characteristic symptom of CHF, which is a major factor contributing to the worsen heart function of CHF. Inhibition of sympathoexcitation is the basic therapy for CHF. The mechanism(s) of it remained to be unresolved. It has been considered that left ventricular dynamics and overactive renin-angiotensin system are the cardinal manifestation of CHF. Recent studies pointed to a central mechanism that contributes to the vicious cycle of volume accumulation, elevated sympathetic nerve discharge and declining heart function in CHF. Central neurohumoral excitation induced a sympathetic dysfunction.
     The activation of sympathetic preganglionic neurons is controlled directly by the paraven-tricular nucleus (PVN) and the rostral ventrolateral medulla (RVLM). PVN of the hypothalamus is an important region that mediate sympathetic nerve outflow. The increased neuronal excitation accompanied by neurohumoral changes in PVN in HF rats. It will contribute to the aggravated heart function and increased sympathetic nerve activity. The renin-angiotensin system is a major component of the neuroendocrin system. ANGⅡ, the central member of RAS, carries out its functions via AT1 receptors. AT1 receptors and angiotensin converting enzyme have been identi-fyied in the PVN, RVLM and nucleus tractus solitarii(NTS). They may play an essential role in regulating sympathetic nerve activity and cardiovascular function. Injection of ANGⅡinto PVN induced an augment in renal sympathetic nerve activity (RSNA). And the brain ACE activity plays an important role in the baseline RSNA in normal rats.It is necessary for us to investigate the central mechanism(s) of CHF.
     A number of neurotransmitters in PVN play a key role in regulating sympathetic nerve activity and cardiovascular function. The glutamatergic system is the most important one. The increased glutamatergic mechanisms within the PVN induced the overacting of sympathetic drive in CHF. Functional studies have indicated that glutamatergic mechanisms in the PVN are involved in the accommodation of cardiovascular reflexes. It has been reported that functional NMDA receptor is one of the main subtype of ionotropic glutamate receptor, which was composed of at least one NR1 subunit in combination with one or more NR2 subunits. The function of NMDA receptor may be limited to NR1 subunit. Recent studies from Li et al found that in rat with CHF, stimulation of the NMDA receptor in the PVN has been shown to induce increased fire of renal sympathetic nerve. In contrast, microinjection of the NMDA receptor antagonist into the PVN caused significant decreases in BP, HR and RSNA in rats with HF. Furthermore, the norepinephrine level in the PVN was increased during heart failure and influe-nce sympathetic outflow. The basic RSNA is largely due to diminish in basal GABAergic synaptic activity. It is considered that the alterations in neuronal transmissions in the PVN of HF rats play a key role in the regulation of RSNA.
     In a vitro study, neurons was incubated with ANGⅡ, which have both AT1-R and NMDAR1.can be observed a dose-dependent increase in the expression of NMDAR1 protein, In addition losartan can prevent it, the expression of NMDAR1 can not be upregulated. ANGⅡcan promote the activation of neuronal mechanisms of glutamate, increase NMDAR1 protein expression, There may be interactions between RAS and GLU system in the central nervous system
     The purposes of the present study are:(1) investigate the changes of ACE and AT1-R within the PVN in CHF rats and their contribution to RSNA,these rats received different drug treatment through chronic PVN infusion via osmotic minipump after four weeks. (2) observe the changes of NMDAR1, TH and GAD67 in the PVN in CHF rats and their effects on RSNA. (3) through chronic PVN infusion with AT1-R antagonist, ACEI or AP5 via osmotic minipump, observe the changes of AT1-R or ACE in the PVN, the interaction between RAS and glutamate-ergic mechanisms and its influence on sympathoexcitation.
     ChapterⅠThe Changes of the Angiotensin Converting Enzyme and Angiotensin Type 1 Receptor in the Paraventricular Nucleus Contribute to Sympathoexcitation in Heart Failure
     Aims:The elevated renin-angiotensin system and sympathetic nerve activity, with aggravated heart function are the cardinal manifestation of congestive heart failure (CHF). The paraventricular nucleus (PVN) of the hypothalamus is an important region that mediate sympathetic nerve outflow. The purposes of the present study are to investigate the expression changes of the angiotensin converting enzyme (ACE) and the angiotensin type 1 receptor (AT1-R) within the PVN in CHF rats and its contribution to RSNA. Methods:Adult male Sprague-Dawley rats weighing 230-250g were implanted with PVN cannulae. A week later, HF was induced by ligation of the left anterior descending coronary artery and SHAM rats underwent the same surgery but did not undergo coronary ligation. Subsequently, animals were PVN treated with the AT1-R antagonist Valsartan (0.05μg/h), ACE inhibitor Lisinopril (0.46μg/h) or vehicle (VEH,0.11μl/h) for 4 weeks. After 4 weeks, Left ventricular function was measured by the hemodynamic parameters. Renal sympathetic nerve discharge was recorded by electrophysiological techniques; Lung/body weight ratio (Lung/BW) and right ventricle/ body weight ratio (RVW/BW) was calculated; Immunohistochemical staining was used for expression of ACE in the hypothalamic paraventricular nucleus; Plasma NE and Angll content were measured using ELISA techniques; Fra-like and AT1-R protein levels of the hypothalamic paraventricular nucleus was measured with Western blot technique. Results:HF rats had a decrease in±dp/dtmax and LV ejection fraction (LVEF), a significant increase in left ventricular end diastolic pressure (LVEDP), sympathetic nerve activity,the expression of Fra-LI (markers of activated neurons), AT1-R and ACE in the PVN, and plasma angiotensinⅡ(ANGⅡ) and norepinephrine (NE) levels when compared with SHAM rats. In contrast, PVN treated with Valsartan or Lisinopril attenuated Fra-LI, AT1-R and ACE expression in the PVN compared with VEH-treated HF rats, and recovered cardiac function partly by elevating±dp/dtmax and reducing LVEDP. The treatment also decreased RVW/BW and lung/BW and reduced plasma levels of NE and ANGⅡ. Conclusion:These findings confirm that activated AT1-R and ACE in the PVN contribute to the increased sympathetic nerve activity and the pathophysiology of congestive heart failure.
     ChapterⅡThe Changes of NMDA Receptor in the Paraventricular Nucleus Contribute to Sympathoexcitation in Heart Failure
     Aims:A number of neurotransmitters in the paraventricular nucleus (PVN) play a key role in regulating sympathetic nerve activity and cardiovascular function. The glutamatergic system is the most important one. Furthermore, the norepinephrine level in the PVN is increased and GABAergic synaptic activity was diminishe during heart failure and influence sympathetic outflow. The purposes of the present study are observe the changes of NMDAR1, TH and GAD67 in the PVN in congestive heart failure (CHF) rats and its contribution to sympathoexcitation in heart failure. Methods:Adult male Sprague-Dawley rats were implanted with PVN cannulae and HF was induced by ligation of the left anterior descending coronary artery and SHAM rats did not undergo coronary ligation. Subsequently, animals were PVN treated with the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5,0.02μg/h) or vehicle (VEH,0.11μl/h) for 4 weeks. After 4 weeks, Left ventricular function was measured by the hemodynamic parameters. Renal sympathetic nerve discharge was recorded by electrophysiological techniques; Lung/body weight ratio (Lung/BW) and right ventricle/ body weight ratio (RVW/BW) was calculated; Immunohistochemical staining was used for expression of TH in the hypothalamic paraventricular nucleus; Plasma NE and Angll content were measured using ELISA techniques; NMDAR1 and GAD67 protein levels of the hypothalamic paraventricular nucleus was measured with Western blot technique. Results:HF rats had a decreased 67-kDa isoform of glutamate decarboxylase (GAD67), a significant increase in the expression of NMD A receptor subunit NR1(NMDAR1) and tyrosine hydroxylase(TH) in the PVN, and in plasma levels of norepinephrine (NE) and angiotensinⅡ(ANGⅡ) when compared with SHAM rats. In contrast, PVN treated with AP5 increased GAD67 in the PVN, and PVN treated with AP5 also attenuated NMDAR1 and TH in this region,reduced plasma levels of norepinephrine, angiotensinⅡ, and decreased LVEDP and increased±dp/dtmax. compared with VEH-treated HF rats. Conclusion:These results suggest that NMDAR1 in the PVN in HF is activated and contribute to the increased sympathetic nerve activity. Treatment with NMD A receptor antagonists will be a potential way to delay the process of HF.
     ChapterⅢInteraction between the Angiotensin Converting Enzyme or Angiotensin Type 1 Receptor and NMDA Receptor in the Paraventricular Nucleus Contribute to Sympathoexcitation in Heart Failure
     Aims:The renin-angiotensin system is a major component of the neuroendocrin system. The angiotensin type 1 receptor (AT1-R) and the angiotensin converting enzyme (ACE) have been identified in the paraventricular nucleus (PVN) and play an essential role in regulating sympathetic nerve activity and cardiovascular function. The glutamatergic system in the PVN also play an important role in regulating sympathetic nerve activity and cardiovascular function. The purposes of the present study are retrieval whether the changes of AT1-R or ACE in the PVN contribute to the activation of glutamatergic mechanisms in congestive heart failure (CHF). And investigate the effect on renal sympathetic nerve activity (RSNA) or the influence to the progre-ssion of CHF. Methods:Adult male Sprague-Dawley rats were implanted with PVN cannulae and CHF was induced by ligation of the left anterior descending coronary artery and SHAM rats did not undergo coronary ligation. Subsequently, animals were PVN treated with AT1-R antagonist Valsartan(0.05μg/h), ACE inhibitor (ACEI) Lisinopril(0.46μg/h), the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5,0.02μg/h)or vehicle (VEH, 0.11μl/h) for 4 weeks. After 4 weeks, Left ventricular function was measured by the hemodynamic parameters. Renal sympathetic nerve discharge was recorded by electrophysiological techniques; Lung/ body weight ratio (Lung/ BW) and right ventricle/ body weight ratio (RVW/ BW) was calculated; Immunohistochemical staining was used for expression of ACE and TH in the hypothalamic paraventricular nucleus; Plasma NE and AngⅡcontent were measured using ELISA techniques; Fra-like、AT1-R、NMDAR1 and GAD67 protein levels of the hypothalamic paraventricular nucleus was measured with Western blot technique. Results:HF rats had a decrease in±dp/dtmax, LV ejection fraction (LVEF) and 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN, a significant increase in left ventricular end diastolic pressure (LVEDP), sympathetic nerve activity, the expression of Fra-LI (markers of activated neurons), AT1-R, ACE, NMDAR1 and TH in the PVN, and plasma angiotensinⅡ(ANGⅡ) and norepinephrine (NE) levels when compared with SHAM rats. In contrast, PVN treated with Valsartan, Lisinopril or AP5 attenuated Fra-LI, AT1-R, ACE, NMDAR1 and TH in the PVN compared with VEH-treated HF rats, increased GAD67 in the PVN and recovered cardiac function partly by elevating±dp/dtmax and reducing LVEDP. The treatment also decreased RVW/BW and lung/BW and reduced plasma levels of NE and ANGⅡ. Conclusion:These results suggest that NMDAR1 in the PVN in HF is activated by increased AT1-R and ACE. Perhaps combination therapy with AT1-R antagonist or ACEI and NMDA receptor antagonist will be a effective way to delay the process of CHF.
引文
1. Mommersteeg PM, Denollet J, Spertus JA, et al. Health status as a risk factor in cardiovascular disease: a systematic review of current evidence. Am Heart J.2009; 157(2); 208-218. Review.
    2. Francis J, Wei SG, WeissRM a et al. Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. Am J Physiol Heart Circ Physiol.2004; 287; H2138-H2146. 3. Catelli M, Feldman J, Bousquet P,et al. Protective effects of centrally acting sympathomodulatory drugs on myocardial ischemia induced by sympathetic overactivity in rabbits. Braz J Med Biol Res. 2003;36(1);85-95.
    4. Allison C. Kleiber, Hong Zheng, et al.Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. Am J Physiol Regulatory Integrative Comp Physiol.2008; 294; 1863-1872.
    5. Li DP and Pan HL. Glutamatergic Inputs in the Hypothalamic Paraventricular Nucleus Maintain Sympathetic Vasomotor Tone in Hypertension. Hypertension.2007;49; 916-925.
    6. Jiang N, Shi P, Li Hw, et al.Phosphate-Activated Glutaminase-Containing Neurons in the Rat Paraventricular Nucleus Express Angiotensin Type 1 Receptors. Hypertension.2009; 54; 845-851. 7. Yi-Fan Li, Kurtis G. Cornish et al.Alteration of NMDA NR1 Receptors Within the Paraventricular Nucleus of Hypothalamus in Rats With Heart Failure.Circ. Res.2003; 93; 990-997.
    8. Tibiriga E, Catelli M, Lessa MA, et al.Inhibition of the centrally induced increases in myocardial oxygen demand in rabbits by chronic treatment with baclofen, a selective GABAB agonist. British Journal of Pharmacology.1995; 115; 1331-1335.
    9. Stern JE.Electrophysiological and morphological properties of preautonomic neurones in the rat hypothalamic paraventricular nucleus. Journal of Physiology.2001;537(1); 161-177. 10. Zhang ZH, Kang YM, Yu Y, et al.11beta-HSD-2 activity in hypothalamic paraventricular nucleus modulates sympathetic excitation. Hypertension.2006; 48; 127-133. 11. Kang YM, He RL, Francis J, et al. Brain tumor necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res.2009; 83(4);737-746. 12. Yu Y, Kang YM, Zhang ZH, et al. Increased cyclooxygenase-2 expression in hypothalamic paraventricular nucleus in rats with heart failure:role of NF-κB. Hypertension.2007; 49; 511-518. 13. Kang YM, Zhang ZH, Johnson RF, et al. Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res.2006; 99; 758-766. 14. Kang YM, Zhang ZH, Felder RB, et al. Inhibition of Brain Proinflammatory Cytokine Synthesis Reduces Hypothalamic Excitation in Rats with Ischemia-induced Heart Failure. American Journal of Physiology-Heart and Circulatory Physiology.2008; 295(1); H227-H236.
    15. Kang YM, Ma Y, Elks C, et al.Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure:role of nuclear factor-KB. Cardiovasc Res.2008;79(4);671-678.
    16. Lindley TE, Doobay MF, Sharma RV, et al.Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ Res.2004; 94; 402-409.
    17. Zhu GQ, Patel KP, Zucker IH et al.Microinjection of ANG Ⅱ into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats. Am J Physiol Heart Circ Physiol.2002; 282; H2039-H2045.
    18. Lila P. LaGrange,Toney GM, Vernon S. Bishop. Effect of Intravenous Angiotensin Ⅱ Infusion on Responses to Hypothalamic PVN Injection of Bicuculline. Hypertension.2003; 42; 1124-1129
    19. Wei SG and Felder RB. Forebrain renin-angiotensin system has a tonic excitatory influence on renal sympathetic nerve activity. Am J Physiol Heart Circ Physiol.2002,282; H890-H895.
    20. Madden CJ and Morrison SF.NMDA-mediated increase in renal sympathetic nerve discharge within the PVN:role of nitric oxide. Am J Physiol Heart Circ Physiol.2009; 296 (3); R831-R843.
    21. Chen Q, Li DP, and Pan HL.Presynaptic al Adrenergic Receptors Differentially Regulate Synaptic Glutamate and GABA Release to Hypothalamic Presympathetic Neurons. JPET.2006; 316; 733-742.
    22. Schelman WR, Kurth JL, Berdeaux RL, et al.Angiotensin Ⅱ type-2 (AT2) receptor-mediated inhibition of NMDA receptor signaling in neuronal cells. Mol Brain Res.1997; 48; 197-205.
    23. Nicola Montano, Raffaello Furlan, Stefano Guzzetti, et al.Analysis of sympathetic neural discharge in rats and humans. Phil Trans R Soc A.2009; 367; 1265-1282.
    24. Kaye D,Esler M. Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovascular Research.2005; 66; 256-264. (Review).
    25. Cohn JN. Sympathetic Nervous System in Heart Failure. Circulation.2002; 106;2417-2418
    26. Akselrod S, Gordon D, Ubel FA, et al. Power spectrum analysis of heart rate fluctuation:a quantitative probe of beat-to-beat cardiovascular control. Science.1981; 213; 220-222.
    27. Esler M, Kaye D. Sympathetic nervous system activity in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol.2000; 35; 1-7.
    28. Esler M, Jennings G, Lambert G, et al.Overflow of cathecolamine neurotransmitters to the circulation: source, fate and functions. Physiol Rev.1990; 70; 963-985.
    29. Grassi G, Esler M. How to assess sympathetic activity in humans. J Hypertens.1999; 17; 719-734.
    30. Pagani M, Lombardi F, Guzzetti S, et al.Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res,1982; 59; 178-193.
    31. Santajuliana D, Hornfeldt BJ, Osborn JW. Use of ganglionic blockers to assess neurogenic pressor activity in conscious rats. J Pharmacol Toxicol Methods.1996; 35; 45-54.
    32. Thompson JM, O'Callaghan CJ, Kingwell BA, et al.Total norepinephrine spillover, muscle sympathetic nerve activity and heart-rate spectral analysis in a patient with dopamine-hydroxylase deficiency. J Auton Nerv Syst.1995; 55; 198-206.
    33. Burgi K, Cavalleri MT, Alves AS, et al.Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity:simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol.2011;300; R264-R271.
    34. Somsen GA, Dubois EA, Brandsma K, et al.Cardiac sympathetic neuronal function in left ventricular volume and pressure overload. Cardiovasc Res.1996; 31; 132-138.
    35. Ferguson DW, Berg WJ, Sanders JS.Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure:evidence from direct micrneurographic recordings.JAmColl Cardiol.1990;16; 1125-1134.
    36. Petersson M, Friberg P, Eisenhofer G, et al.Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. European Heart Journal.2005; 26; 906-913.
    37. Tae Hee Han, Kiho Lee, Jin Bong Park, et al.Reduction in synaptic GABA release contributes to target-selective elevation of PVN neuronal activity in rats with myocardial infarction.Am J Physiol Regulatory Integrative Comp Physiol.2010; 299; R129-R139.
    38. McKinley MJ, Albiston AL, Allen AM, et al.The brain renin-angiotensin system:location and physiological roles.Int J Biochem Cell Bio1.2003;35(6); 901-918.
    39. Phillips MI, Shen L, Richards EM, et al. Immunohistochemical mapping of angiotensin ATl receptors in the brain. Regul Pept.1993; 44; 95-107.
    40. Pan HL. Brain Angiotensin Ⅱ and Synaptic Transmission. Neuroscientist.2004;10(5);422-431.
    41. Strittmatter SM, Lo MM, Javitch JA, et al. Autoradiographic visualization of angiotensin- converting enzyme in rat brain with [3H]captopril:localization to a striatonigral pathway. Proc Natl Acad Sci USA.1984;81(5);1599-1603.
    42. Chai SY, Mckenzie JS, Mckinley MJ,et al. Angiotensin Converting Enzyme in the Hurnan Basal Forebrain and Midbrain Visualized by In Vitro Autoradiography. The Journal of Comparative Neurology.1990;291; 179-194.
    43. Michael D. Hendel and John P. Collister.Contribution of the subfornical organ to angiotensin Ⅱ-induced hypertension. Am J Physiol Heart Circ Physiol.2005; 288; H680-H685.
    44. Tan J, Wang H, Leenen FH. Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats. Am J Physiol Heart Circ Physiol.2004;286(5); H1665-H1671.
    45. Robinson MM, McLennan GP, Thunhorst RL, et al. Interactions of the systemic and brain renin-angiotensin systems in the control of drinking and the central mediation of pressor responses. Brain Res. 1999;842; 55-61.
    46. Sato T, Yoshimura R, Kawada T, et al.The brain is a possible target for an angiotensin converting enzyme inhibitor in the treatment of chronic heart failure. J Card Fail.1998;4; 139-144.
    1. Swanson LW, Sawchenko PE. Paraventricular nucleus:a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology.1980;31;410-417.
    2. Seong KH, Wonee C,Long HL,et al. Noradrenaline Excites and Inhibits GABAergic Transmission in Parvocellular Neurons of Rat Hypothalamic Paraventricular Nucleus. Neurophysiol.2002;87;2287-2296.
    3. Catelli M, Feldman J, Bousquet P, et al.Protective effects of centrally acting sympathomodulatory drugs on myocardial ischemia induced by sympathetic overactivity in rabbits. Braz J Med Biol Res.2003;36(1); 85-95.
    4. Tibiriga E, Catelli M, Lessa MA, et al.Inhibition of the centrally induced increases in myocardial oxygen demand in rabbits by chronic treatment with baclofen, a selective GABAB agonist. British Journal of Pharmacology.1995;115;1331-1335.
    5. Kang YM, He RL, Yang LM,et al. Brain tumor necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research.2009; 83(4);737-746.
    6. Allison C. Kleiber, Hong Zheng, Harold D,et al. Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure.Am J Physiol Regulatory Integrative Comp Physiol.2008;294; 1863-1872.
    7. Jiang N, Shi P, Li Hw, et al. Phosphate-Activated Glutaminase-Containing Neurons in the Rat Paraventricular Nucleus Express Angiotensin Type 1 Receptors. Hypertension.2009;54;845-851.
    8. Li YF,Jackson KL,Stern JE, et al.Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus. Am J Physiol Heart Circ Physiol. 2006;291;2847-2856.
    9. Li DP and Pan HL.Glutamatergic Inputs in the Hypothalamic Paraventricular Nucleus Maintain Sympathetic Vasomotor Tone in Hypertension. Hypertension 2007;49;916-925.
    10. Dupont AG and Brouwers S. Brain angiotensin peptides regulate sympathetic tone and blood pressure. Journal of Hypertension.2010;28;1599-1610.
    11. Li YF, Cornish KG, et al. Alteration of NMDA NR1 Receptors Within the Paraventricular Nucleus of Hypothalamus in Rats With Heart Failure.Circ. Res.2003;93;990-997.
    12. Kleiber AC, Zheng H, Sharma NM,et al. Chronic AT1 receptor blockade normalizes NMDA-mediated changes in renal sympathetic nerve activity and NR1 expression within the PVN in rats with heart failure. Am J Physiol Heart Circ Physiol.2010;298;H 1546-H1555.
    13. Chen Q, Li DP, and Pan HL. Presynaptic al Adrenergic Receptors Differentially Regulate Synaptic Glutamate and GABA Release to Hypothalamic Presympathetic Neurons. JPET.2006;316;733-742.
    14. Burgi K,Cavalleri MT,Alves AS, et al.Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity:simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol.2011;300;R264-R271.
    15. LaGrange LP, Toney GM, Bishop VS.Effect of intravenous angiotensin Ⅱ infusion on responses to hypothalamic PVN injection of bicuculline. Hypertension.2003;42 (6);1124-1129.
    16. Han TH, Lee K, Park JB, et al. Reduction in synaptic GABA release contributes to target-selective elevation of PVN neuronal activity in rats with myocardial infarction. Am J Physiol Regul Integr Comp Physiol.2010;299;R129-R139.
    1. Kleiber AC, Zheng H, Schultz HD,et al. Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. Am J Physiol Regulatory Integrative Comp Physiol. 2008;294; 1863-1872.
    2. Freeman KL and Brooks VL.AT1 and glutamatergic receptors in paraventricular nucleus support blood pressure during water deprivation.Am J Physiol Regulatory Integrative Comp Physiol.2007;292;1675-1682.
    3. Chelman WR, Kurth JL, Berdeaux RL,et al. Angiotensin Ⅱ type-2 (AT2) receptor-mediated inhibition of NMDA receptor signaling in neuronal cells. Mol Brain Res.1997;48;197-205.
    4. Dupont AG and Brouwers S. Brain angiotensin peptides regulate sympathetic tone and blood pressure. Journal of Hypertension.2010;28; 1599-1610.
    5. Swanson LW, Sawchenko PE. Paraventricular nucleus:a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology.1980;31:410-417.
    6. Chen Q, Li DP, and Pan HL.Presynaptic al Adrenergic Receptors Differentially Regulate Synaptic Glutamate and GABA Release to Hypothalamic Presympathetic Neurons. JPET.2006;316;733-742.
    7. Phillips MI, Shen L, Richards EM, et al. Immunohistochemical mapping of angiotensin AT1 receptors in the brain. Regul Pept.1993;44;95-107.
    8. Kleiber AC, Zheng H, Sharma NM, et al. Chronic AT1 receptor blockade normalizes NMDA-mediated changes in renal sympathetic nerve activity and NR1 expression within the PVN in rats with heart failure. Am J Physiol Heart Circ Physiol.2010;298;H1546-H1555.
    9. Chen QH, Toney GM. Responses to GABA-A receptor blockade in the hypothalamic PVN are attenuated by local AT1 receptor antagonism.Am Physiol Regul Integr Comp Physiol.2003; 285(5); 1231-1239.
    10. Li YF, Jackson KL, Stern JE, et al.Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus.Am J Physiol Heart Circ Physiol.2006;291;2847-2856.
    11. Han TH, Lee K, Park JB, et al. Reduction in synaptic GABA release contributes to target-selective elevation of PVN neuronal activity in rats with myocardial infarction. Am J Physiol Regul Integr Comp Physiol.2010;299;R129-R139.
    12. Summers C, Fleegal MA, Zhu M. Angiotensin AT1 receptor signaling pathways in neurons. Clin Exp Pharmacol Physiol.2002;29; 483-490.
    13. Lindley TE, Doobay MF, Sharma RV, et al. Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ Res.2004;94;402-409.
    14. Seong KH, Wonee C,Long HL,et al. Noradrenaline Excites and Inhibits GABAergic Transmission in Parvocellular Neurons of Rat Hypothalamic Paraventricular Nucleus. Neurophysiol.2002;87;2287-2296.
    15. Kang YM, Ma Y, Elks C, et al.Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure:role of nuclear factor-κB. Cardiovasc Res.2008; 79(4);671-678.
    16. Kang YM, He RL, Francis J, et al. Brain tumor necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res.2009; 83(4);737-746.
    17. Jiang N, Shi P, Li Hw,et al. Phosphate-Activated Glutaminase-Containing Neurons in the Rat Paraventricular Nucleus Express Angiotensin Type 1 Receptors. Hypertension.2009;54;845-851.
    18. Kang YM, Zhang ZH, Yu Y, et al. A novel effect of mineralocorticoid receptor antagonism to reduce hypothalamic activation by pro-Inflammatory cytokines in rats with ischemia-induced heart failure. Circulation Research,2006; 99;758-766.
    19. Lacroix S, Vallieres L, and Rivest S. C-fos mRNA pattern and corticotropin-releasing factor neuronal activity throughout the brain of rats injected centrally with a prostaglandin of E2 type. J Neuroimmunol. 1996; 70; 163-179.
    20. MacNeil BJ, Jansen AH, Greenberg AH, et al. Neuropeptide specificity of prostaglandin E2-induced activation of splenic and renal sympathetic nerves in the rat. Brain Behav Immun,2003; 17:442-52.
    21. Gao L, Wang W, Li YL, et al. Superoxide mediates sympathoexcitation in heart failure:roles of angiotensin Ⅱ and NAD(P)H oxidase. Circ Res.2004; 95;937-944.
    1. Sharov VG, Sabbah HN, Shimoyama H, et al. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am JPathol.1996; 148(1):141-9.
    2. Mommersteeg PM, Denollet J, Spertus JA, et al. Health status as a risk factor in cardiovascular disease:a systematic review of current evidence. Am Heart J.2009; 157(2):208-18. Review.
    3. 社科院.2030年中国将成老龄化程度最高国家,中国新闻网,2010,09,10.
    4. Rector TS,Olivari MT,Levine TB,et al. Predicting survival for an individual with congestive heart failure using the plasma norephnephrine concentrition[J]. Am Heart J.1987; 114:1481
    5. 郭晓曦,张珊珊,张慧敏.心力衰竭的药物治疗新进展.心血管病学进展,2010,31(4):634-637.
    6. Jessup M, Abraham W T, Casey D E, et al.2009 Focused Update In corporated Into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults. J. Am. Coll. Cardiol.2009; 53 (15).
    7. Zhu GQ, Patel KP, Zucker IH and Wang W. Microinjection of ANG Ⅱ into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats. Am J Physiol Heart Circ Physiol.2002;282: H2039-H2045.
    8. 徐东杰,李新立.心力衰竭的药物治疗进展.中国实用内科杂志.2010;30(3):206-209.
    9. Francis J, Wei SG, WeissRM and Felder RB.Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. Am J Physiol Heart Circ Physiol.2004; 287:H2138-H2146.
    10. Vahid-Ansari F and Leenen FH. Pattern of neuronal activation in rats with CHF after myocardial infarction. Am J Physiol.1998; 275:H2140-H2146.
    11. Gao L, Wang W, Li YL, et al.Sympathoexcitation by central Ang Ⅱ:The roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol.2005; 288:H2271-H2279.
    12. Zhang ZH, Kang YM, Yu Y,et al.11beta-HSD-2 activity in hypothalamic paraventricular nucleus modulates sympathetic excitation. Hypertension.2006; 48:127-133.
    13. Kang YM, He RL, Francis J, et al. Brain tumor necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res.2009; 83(4):737-746.
    14. Yu Y, Kang YM, Zhang ZH,et al. Increased cyclooxygenase-2 expression in hypothalamic paraventricular nucleus in rats with heart failure:role of NF-κB. Hypertension.2007; 49:511-518.
    15. Kang YM, Zhang ZH, Johnson RF, et al. Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res.2006; 99:758-66.
    16. Kang YM, Zhang ZH, Felder RB. Inhibition of Brain Pro-inflammatory Cytokine Synthesis Reduces Hypothalamic Excitation in Rats with Ischemia-induced Heart Failure. American Journal of Physiology-Heart and Circulatory Physiology.2008; 295(1):H227-H236.
    17. Kang YM, Ma Y, Elks C, et al.Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure:role of nuclear factor-κB. Cardiovasc Res.2008; 79(4):671-678.
    18. Lindley TE, Doobay MF, Sharma RV, et al.Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ Res.2004;94: 402-409.
    19. 马英,康玉明.中枢RAAS在慢性心衰时对交感神经活动的影响.生理科学进展.2008;39(2):105-108.
    20. Tan J, Wang H, Leenen FH. Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats. Am J Physiol Heart Circ Physiol.2004;286:H1665-H1671.
    21. Francis J, Weiss RM, Wei SG, et al.Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001.281:H2241~H2251.
    22. Swanson LW, Sawchenko PE. Paraventricular nucleus:a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology.1980;31:410-417.
    23. Herman JP, Eyigor O, Ziegler RD, Jennes L. Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. Comp Neurol.2000;422:352-362.
    24. LaGrange LP, Toney GM, Bishop VS.Effect of intravenous angiotensin Ⅱ infusion on responses to hypothalamic PVN injection of bicuculline. Hypertension.2003;42 (6):1124-1129.
    25. Li YF, Kurtis G, Cornish, et al.Alteration of NMDA NR1 Receptors Within the Paraventricular Nucleus of Hypothalamus in Rats With Heart Failure.Circ Res.2003;93;990-997;
    26. Cui LN, Coderre E, Renaud LP. Glutamate and GABA mediate suprachiasmatic nucleus inputs to spinal-projecting paraventricular neurons.Am J Physiol Regul Integr Comp Physiol,2001,281 (4): 1283-1289.
    27. Seong KH, Wonee C,Long HL,et al. Noradrenaline Excites and Inhibits GABAergic Transmission in Parvocellular Neurons of Rat Hypothalamic Paraventricular Nucleus. Neurophysiol.2002;87:2287-2296.
    28. Herman JP, Eyigor O, Ziegler RD, Jennes L. Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. Comp Neurol.2000;422:352-362.
    29. Wang Y, Liu XF, Cornish KG, et al.Effects of nNOS antisense in the paraventricular nucleus on blood pressure and heart rate in rats with heart failure. Am J Physiol Heart Circ Physiol.288:H205-H213,2005.
    30. Zhang K, Li YF, and Patel KP. Blunted nitric oxide-mediated inhibition of renal nerve discharge within PVN of rats with heart failure. Am J Physiol Heart Circ Physiol.281:H995-H1004,2001.
    31.高莉晶,康玉明.脑源性细胞因子与心力衰竭.中西医结合心脑血管病杂志.2008;6(3):316-317.
    32. Campese VM, Ye SH, Zhong HQ, et al. Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am J Physiol Heart Circ Physiol.2004; 286:H695-H703.
    33. Kang YM, Ma Y, Zheng JP, etal. Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin Ⅱ-induced hypertension. Gardiovasc Res.2009;82(3):503-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700