培养基工艺对哈茨木霉H-13发酵产物及作用效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化肥和农药的过量施用,造成土壤有机质不足、板结、生态结构破坏、导致耕作环境恶化,农产品有机磷、氯超标。根据国际上所提出“可持续农业”,近年来,我国生物肥料的研究和开发利用发展迅速,提出了发展“生态农业”的规划,提倡施用微生物肥料,促进研究和开发,实现改善土壤结构,控制农残超标。
     哈茨木霉(Trichoderma harzianum)是木霉属中应用最为广泛的真菌,具有调节作物生长作用,其发酵产物能提高作物相关酶活性和抗衰老作用(如硝酸还原酶活力增强、丙二醛含量降低等),能促进植物对氮、磷、钾的吸收;同时与根际微生物的相互作用,优化土壤的微生物环境,促进植物生长。
     本课题属国家863计划项目2003AA241171《哈茨木霉突变株H-13作物生长调节剂的产业化》,本文以N~+注入哈茨木霉后所筛选的突变株(H-13)为发酵菌株,结合黄瓜盆栽和小面积田间实验,测量萌发、生长过程和收获的生物量,采用正交法从温度、pH、培养时间、基质培养基、碳氮源、碳氮比方面研究H-13培养工艺;从培养时间、碳氮源、微量元素方面研究H-13生产赤霉素的液体发酵工艺。
     结果表明,pH7、26℃、7d为该菌株最适产孢条件;pH7、28℃、8d最适菌丝生长,该菌株发酵最适培养时间为9d。培养基最适碳氮比为20:1;有机氮源较无机氮源更适于木霉H-13生长,以血红蛋白为氮源的培养基菌丝生长最好、产孢量最大;硝酸盐抑制发酵产物的产生。碳源中单糖利于菌丝生长,以葡萄糖/果糖(1:2)为最佳;双糖则利于产孢,以纤维二糖/麦芽糖(2:1)为最佳。不同碳源产赤霉素量均在0.2-0.3g/L范围内,其中以麦芽糖产赤霉素量最大,达到0.308g/L;从菌丝干重看,纤维二糖利于发酵阶段菌丝的生长。微量元素的种类、数量影响哈茨木霉H-13目的产物的合成,其中MgSO_4·7H_2O对赤霉素含量影响最大,FeSO_4 100mg/L、MgSO_4·7H_2O1g/L、K_2HPO_4 0.4g/L、NaNO_3 6g/L、CaCO_3 0.2 g/L最适于赤霉素的生成,而对菌丝干重影响不明显。
     采用发酵产物梯度浓度喷施黄瓜叶面,并通过测定硝酸还原酶、丙二醛、叶绿体色素、过氧化物酶、超氧化物歧化酶(SOD),表明原发酵液浓度稀释100倍时,硝酸还原酶活力为4.807μg/g.h,丙二醛含量仅为4.155μmol/g,叶绿素的含量为1.746 mg/g,超氧物歧化酶活性为341.95μ·gF.W/min,过氧化物酶活性为50μg/(g·min)。
     通过发酵液的不同稀释倍数对各时段黄瓜进行喷施,提高黄瓜生物量最佳喷施浓度为原发酵液稀释100倍,最适喷施时段为营养期(移栽至开花);生殖生长期喷施发酵液抑制黄瓜生长,增加黄瓜的死果率;种子发芽率97.33%、发芽势98.8%、苗长5.48cm、根长5.12cm、幼苗干重为8.87mg。移植后的65d左右,株高达79.35cm并开始坐果,比对照组提前一周,结实高峰期长达4周,比对照组延长两周。发酵液的喷施对单株果重量无影响,雌雄比增大,死果率小、坐果数增多是增产的主要因素,幅度高达50.8%。
     综上所述,将H-13接入含0.1%血红蛋白,2%纤维二糖/麦芽糖(2:1)的制种培养基中,于pH7、26℃,培养7d,后转入添加2%麦芽糖、0.1%血红蛋白、FeSO_4 100mg/L、MgSO_4.7H_2O 1g/L、K_2HPO_4 0.4g/L、NaNO_3 6/L、CaCO_3 0.2 g/L培养基中发酵9d,将所得发酵产物稀释100倍,在营养生长期喷施植株。采用上述培养基组合发酵,相应产物的浓度在不同生长期的使用参数等工艺路线合理,黄瓜的每亩产量比对照组增加50.8%
The over-used of chemical fertilizer and the pesticide had caused inadequate organic matter,hardening of soil,organism's structure worsened,cultivation environment destroyed,leading to cultivation,the organic phosphorus and chlorine of agricultural product gone beyond standard.In recent years,according to "the sustainable agriculture ",which was brought forward by the international,our country's bio-fertilizer research and exploitation developed fastly,brought up the plan of "eco-agriculture ", microorganism-fertilizer research and development was advocated,which will improvement soil structure and controll residual pesticide beyond standard.
     Trichoderma harzianum is the most widely used fungi in Trichoderma,it can adjust crop growth,its fermentation product can increase crop-related enzyme's activity and resist aging effects(such as nitratase's activity increased,MDA's content decreased,etc.).it also can promote plant uptake nitrogen,phosphorus and potassium;Meanwhile it can inhibit proliferation of pathogenic fungi,optimize the soil microbial environment,reduce the incidence of pests and diseases with the rhizosphere microbial interactions,so it can promote plant growth.
     This research used H-13,which is selected after N~+ iron implantation Trichoderma harzianum,for the fermentation bacteria.Measure biomasses of bourgeon and growth with a small pot field experiments.Research H-13's culture conditionsfrom temperature,pH, incubation time,substrate media,the source of carbon and nitrogen,the ratio of carbon and nitrogen by orthogonality experiment.Study the liquid fermentation conditions from the incubation time,carbon and nitrogen sources and trace element.
     The results showed that the optimum conditions of sporulation and mycelial growth are pH7,26℃,7 days and pH7,28℃,8days,respectively.The optimum fermentation time is 9days.the optimum ratio of carbon and nitrogen is 20:1;organonitrogen is more suitable for H-13 growth than inorganic nitrogen,the best nitrogen of medium for mycelial growth and sporulation is hemoglobin;Nitrate inhibit generation of fermentation products. In Carbon,monosaccharide is good for mycelial growth,glucose/fructose(1:2)as the best; Disaccharide is good for sporulation,cellobiose/maltose(2:1) as the best.the output of GA is within 0.2-0.3g/L in different carbon,maltose is the best for form of GA,the output can get 0.308g/L;according to the dry weight of mycelium,cellobiose is benefit for mycelial growth during the stage of fermentation,the kind and quantity of trace Elements can impact synthesis of fermentation product,MgSO_4.7H_2O is most serious.The optimum conditions for the form of gibberellin are FeSO_4100mg/L,MgSO_4.7H_2O1g/L, K2HPO_40.4g/L,NaNO_36g/L,CaCO30.2 g/L,but this conditions don't impact dry mycelium.
     Spraying diffirent concentration of fermentation product on cucumber leaf,measure nitrate reductase,MDA,chloroplast pigment,peroxidase,superoxide dismutase(SOD),the results show that when concentration as 2.4~4.8μg/L,nitrate reductase activity can get 4.807μg/g.h,MDA content is only 4.155μg,The chlorophyll content is 1.746mg/g. Superoxide dismutase activity get 341.95μgF.W/min,Peroxidase activity get 50μg /(g.min).
     Spray diffirent dilution multiples of fermentation on different stage of cucumber,the results show that the best conditions for increasing cucumber biomass are the 100 multiple as the best concentraton and trophophase as the best spraying stage,concentration of spraying the best original broth diluted 100 times.When spray fermentation in reproductive stage,it will inhibit growth of cucumber,and increase the death rate of fruit; Seed germination rate is 97.33%,germination potential is 98.8%,the long of plant is 5.48cm,the long of rootis 5.12cm,dry weight of seedling is 8.87mg.After transplantation about 65days,the heightof plant up to 79.35cm and begin fruiting.it is earlier one week than the control group,solid peak for four weeks,it prolong two weeks than the control group.but fermentation did not affect single plant fruit.The major factor of increasing is the sex ratio increased,death rate of fruit decreased and fruiting production increased, the extent of incresing is as high as 50.8%.
     To sum up,H-13 inoculate in the culture with the content of 0.1%hemoglobin and cellobiose / maltose(2:1),after culture 7d at pH7、26℃,it was switched into another liquid culture,which 0.1%hemoglobin,sucrose / maltose(2:1)、FeSO_4 100mg/L, MgSO_4.7H_2O 1g/L,K_2HPO_4 0.4g/L,NaNO_3 6g/L and CaCO_3 0.2 g/L in it,then spray the cucumber with the 100 multiples of fermentation dilution at trophophase.With the combination descried above,it is logic for the results of-differents concentrations and increased 50.8%per mu.
引文
[1]屈海泳,罗曼,蒋立科等.T90-1木霉菌的筛选和对草莓灰霉病菌作用机制的研究,微生物学报[J],2004,44(2):244-247
    [2]黄有凯,罗曼,蒋立科等.H-13对水稻硝酸还原酶及氮磷钾的影响.微生物学报[J],2003,30(6):13-16
    [3]赵蕾.木霉菌的生物防治与防治效果初探.植物保护,1998,24(2):36-37
    [4]Katayama A,Matsumura F.Degradation of organochlorine pesticides,particularly endosulfan,by Trichodermaharz ianum[J].Environ.Toxicol.Chem,1993,12:1059-1065
    [5]Patil K C,Matsumura F,Boush GM.Degradation of endrin and DTT by soil microorganisms[J].Appl.Microbiol,1970,19:879-881
    [6]张中义等,植物病原真菌学[M].四川科学技术出版社,1991.
    [7]文成敬,陶家凤,陈文瑞.中国西南地区木霉属分类研究[J].真菌学报,1993,12(2):118-130
    [8]汪华源.生物肥料研究进展及其文献研究,农业图书情报学刊[J],2003,5:127-130
    [9]Weinding R.Experimental consideration of the mold toxins of Gliocladium and Trichoderma [J].Phytopathology,1941,31:991-1003.
    [10]Hader Y,Chet I andHenis Y.Biological Control of Rhizoctonia solani Damping-off with Wheat Bran Culture of Trichoderma harzianum[J].Phytopathology,1979,69(1):64-68
    [11]Sivan A,Elad Y,Chet I.Biological congtyol effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum[J].Phytopathology,1999,104:127-132
    [12]杨合同,唐文华 木霉菌在植病生防中的研究与应用生命科学研究进展,中国农业大学出版社[M],1996,287-292
    [13]郭润芳,刘小光等.拮抗木霉菌在生物防治中的应用与研究进展,中国生物防治[J],2002,18(4):180-184
    [14]刘梅,徐同,木霉生长及发酵条件,云南农业大学学报[J],2000,15(3):263-268
    [15]Papavizas G C,Dunn T,Lewis J A.Liquid fermentation technology for experimental production of biocontrol fungi[J].Phytopathology,1984,74:1171-1175
    [16]Jackson A M,Whipps J M,Lynch J M.Effects of temperature,pH and water potential on growth of four fungi with disease biocontrol potential[J].World J.Microbiol.Biotechnol,1991,7:494-501
    [17]Lewis J A,Papavizas G C,Biocontrol of plant disease:the approach for tomorrow[J].Crop Protechtion,1991,10:95-105
    [18]王慧中,赵培洁,陈卫辉.哈茨木霉浅层液体培养最适pH的研究[J].江西农业大学学 报,1995b,17(1):77-79
    [19]陈卫辉,赵培洁,王慧中等.哈茨木霉液体培养技术研究[J].江西农业大学学报,1998,20(2):170-174
    [20]赵培洁,王慧中,陈卫辉.利用虫草头孢菌发酵废液培养哈茨木霉[J].中国生物防治,1995a,11(1):48
    [21]赵培洁,王慧中,陈卫辉.哈茨木霉浅层液体培养最适采收时间的研究[J].植物病理学报,1995b,25(3):220
    [22]王慧中,赵培洁,陈卫辉.哈茨木霉浅层液体培养适宜条件的研究[J].浙江农业学报,1995a,7(1):61'62
    [23]郑亚平,余晓斌,碳源对绿色木霉ZC产中性纤维素酶的影响[J].无锡轻工大学学报,2003,22(2):30-33
    [24]曹健,郭德宪,曾实,汪晨辉,一株里氏木霉产纤维素酶的条件及酶系的优化[J].郑州工程学院学报,2003,24(1):10-15
    [25]Sawant I S,Sawant S D.A simple method for achieving high CFU of Trichoderma harz ianum on organic wastes for field applications[J].Indian Phytopathology,1996,49(2):185-187
    [26]张德强,黄镇亚,张志毅,绿色木霉纤维素酶AS3.3032固态发酵的研究[J].北京林业大学学报,2001,23(2):57-60
    [27]崔素萍,朱桂华,刘颖,绿色木霉3711在稻壳基上产生纤维素酶条件的研究[J].黑龙江八一农垦大学学报,2000,12(3):94-97
    [28]姜秋会,熊亚,刁治民,康氏木霉固态发酵纤维素酶的初步研究[J].青海草业,3004,13(1):6-9
    [29]吴克 蔡敬民等,木霉菌株T6木聚糖酶固态发酵条件和酶学性质研究[J].菌物系统,2001,20(2):191-195
    [30]勇强,徐勇等,分批补料合成纤维素酶扩大试验[J].南京林业大学学报(自然科学版),,28(1):9-12
    [31]Manczinger L,Polner G.Cluster analysis of carbon source utilization patterns of Trichoderma isolates[J].System.Appl.Microbiol,1985,9:214-217
    [32]李栎,何月秋一,苏春丽,不同条件对哈茨木霉菌株Th-B菌丝生长的影响[J]云南农业大学学报,2004,19(6):(677-680)
    [33]王芊,不同条件对木霉菌菌丝生长的影响[J].中国农学通报,2002,18(5):57-59
    [34]顾赛红,孙建义等,里氏木霉(Trichoderma reesei)产β-葡聚糖酶和木聚糖酶的条件研究[J].浙江大学学报(农业与生命科学版),2003,29(5):545-549
    [35]张婕,黄镇亚,培养基成分对木霉菌合成木聚糖酶的影响[J].北京林业大学学报,2003,25(6):68-70
    [36]于晓丹,张彩霞等,哈茨木霉T-23产几丁质酶发酵条件的研究[J].生物技 术,2005,15(3):34
    [37]Nelson E B,Harman G E,Nash G T.Enhancement of Trichodermar induced biological control of Pythium seed rot and preemergence damping-off of pees.[J]Soil.Biol.Biochem,1988,20:145-150
    [38]Tronsmo A,Harman G E.Coproduction of chitinases and biomass for biological control by Trichoderma harz ianum on media containing chitin[J].Biol.Contr,1992,2:272-277
    [39]Danielson R M,Davey C B.Carbon and nitrogen nutrition in Trichoderma[J].Soil Biol.Biochem,1973c,5:506-515
    [40]Biossoy E,Delaigue M,Sallaud C,Esnault R,Kahmlim G.Predominant expression of a peroxidase gene in staminate flowers of Mercurialis amua.Physiol Plant,1996,251-257
    [41]Lagrimini L.M,Bradford S,Rothstein S.Peroxidase-induced wilting in transgenic tobacco plants.Plant Cell.1990,2:7-18.
    [42]李坤平,潘天玲等,β-聚糖酶的诱导合成Ⅰ碳源、氮源及碳氮比的影响[J].中南林学院学报,2004,24(2)56
    [43]毛连山,徐勇等,以酶解渣为碳源制备木聚糖酶的研究[J].林产化学与工业,2001,21(4):33-38
    [44]Gaunt D M,Trinci A P J,Lynch J M,Metal ion composition and physiology of Trichoderma reesei grown on a chemically defined medium prepared in two different ways[J].Trans.Br.Mycol.Soc,1984,83:575-583
    [45]Krystorova S,Varecka L,Betina V.The 45Ca~(2+) uptake by Trichoderma vi ride mycelium [J].Corretation with gnowth and conidiation.Gen.Physiol.Biophys,1995,14:323-337
    [46]Frank V,Tamova G,Takacsova L.Effects of cadmium and mercury on growth and differentiation of Trichoderma vi ride[J].Zentralbl.Microbiol,1993,148:229-232
    [47]Brian P W,Hemming H G.Some nutritional conditions affecting spore production by Trichoderma vi ride Pers.ex Fries[J[.Trans.Br.Mycol.Soc,1950.33:132-141
    [48]Lewis J A,Papavizas G C,Biocontrol of plant disease the approach for tomorrow[J].Crop Protechtion,1991,10:95-105
    [49]陈小均,燕嗣皇,吴石平,氮磷钾肥对木霉菌丝生长和产孢的影响[J].贵州农业科学2005,33(2):(34-35)
    [50]吕淑霞,于晓丹,张彩霞,陈捷,发酵条件对木霉菌株T23的菌丝生长及几丁质酶活性的影响[J].沈阳农业大学学报.2005,36(3):332-335
    [51]Brown D E,Halsted D J.Effect of acid pH on the growth kinetics of Trichoderma vi ride[J].Biotechnol.Bioeng,1975,17:1199-1210
    [52]Lejeune R,Nielsen J,Baron G V.Influence of pH on the morphology of Trichoderma reesei QM 9414 in submerged culture[J].Biotechnol.Lett,1995,17:341-344
    [53]林志伟,靳学慧,四种木霉菌对稻瘟病菌作用能力的比较研究[J].黑龙江八一农垦大学学报.2006,18(4):8-12
    [54]刘任,卢兆金,哈茨木霉T2菌株对辣椒士传真菌病害的控制作用[J].仲恺农业技术学院学报.2003,16(1):6-11
    [55]孙冬梅,杨谦,宋金柱,黄绿木霉菌代谢产物对杨树烂皮病菌抑菌能力的研究.北京林业大学学报.2006,28(1):76-79
    [56]陈方新,齐永霞,戴庆怀等,哈茨木霉对几种植物病原真菌的拮抗作用及其抗药性测定[J].植物保护科学.2005,21(1):314-318
    [57]王慧中,赵培杰.多效有机菌肥的研制及其特性研究.江西农业学报,1999,11(3):19-23
    [58]于新,田淑慧,徐文兴等,木霉菌生防作用的生化机制研究进展[J].中山大学学报(自然科学版),2005,44(2):86-90
    [59]王慧中,赵培杰.有机菌肥在马铃薯上的应用.江西农业学报,2002,14(1):41-43.
    [60]王革,李天福,孙超岷等,烟草木霉菌剂的肥效测定及叶面、根部定殖研究[J].中国烟草学报.2002,8(3):27-34
    [61]陆宁海,徐瑞富等,哈茨木霉对小麦和玉米幼苗生长的影响[J]江苏农业学报,2005,21(3):238-240
    [62]梁志怀,魏林,郑明福,哈茨木霉发酵产物对豇豆产量和品质的影响[J].湖南农业科学,2005,(5):38-40
    [63]梁志怀,魏林,罗赫荣等.哈茨木霉发酵产物对豇豆萌发及苗期生长的影响[J].湖南农业科学,2004,(1):18-20
    [64]魏林,梁志怀,罗赫荣.哈茨木霉T2-16发酵产物对豇豆种子胚根组织的影响[J].湖南农业科学,2004,(4):23-24,271
    [65]魏林,梁志怀,罗赫荣等.木霉代谢产物对豇豆种子活力及幼苗生理特性的影响[J].湖南农业科学,2004,(6):14-16,181
    [66]刘云龙,何永宏,哈茨木霉对辣椒生长的影响[J].云南农业大学学报,2002,17(4):345-346
    [67]曾华兰,叶鹏盛,李琼芳等,哈茨木霉T23对花生的促生增产作用[J].云南农业大学学报.2005,20(1):145-146
    [68]赵培杰.高效微生物态氮及其对白菜的增产效果.园艺学报,2001,28(3):275
    [69]肖志壮,杨加华,邢红宏等.赤霉素分光光度法测定.烟台大学报,1997,10:265-268
    [70]程俊霖.赤霉素提取方法及得率比较研究.生物技术.2004,14(1):42-43
    [71]孟海.哈茨木霉H-13液体发酵工艺的研究.安徽:安徽农业大学,2005
    [72]郝再彬,苍晶等 植物生理实验 哈尔滨工业大学出版社,1999
    [73]黄有凯,罗曼,蒋立科等H-13对水稻硝酸还原酶及氮磷钾的影响 微生物学报,2003, 30(6):13-16
    [74]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [75]Curtis M D.et al.Nucleotide sequence of a cationic POD gene from the tropical forage legume stylosanthes humilis.Plant Physiol.1995,108:1303-1305.
    [76]陈天寿.微生物培养基的制造与应用.中国农业出版社,1995.
    [77]刘晓艳,刘毅.根霉液态发酵产生纤溶酶的培养条件优化[J]生物技术,2006,16(2):71-73
    [78]梅汝鸿等 植物微生态学[M].中国农业出版社,1998.
    [79]贾永华,王飞,张占艳.硫酸和PEG处理对多叶羽扁豆种子萌发和某些生理生化指标的影响[J].西北农业学报,2006,15(3):104-108
    [80]许明丽等.水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用[J].植物生理
    [81]Lagrimini L.M,Bradford S,Rothstein S.Peroxidase-induced wilting in transgenic tobacco plants.Plant Cell.1990,2:7-18.
    [82]邱瑾,杨盛昌等.矿质营养对水仙若干生理生化指标的影响[J].亚热带植物科学,2005,34(2):21-24
    [83]吴能表,叶腾丰,王小佳.NaCl胁迫对豌豆幼苗生理生化指标的动态影响.西南农业大学学报,2006,28(1):37-49
    [84]刘亚萍,周小云,葛春辉等.氮离子注入燕麦种子对M1-M2代幼苗生理生化指标的影响.生物技术,2006,16(1):65-68.
    [85]王敏,姚维传,张从宇.植物生长调节剂对干旱胁迫下大豆幼苗生长的影响.水土保持学报,2005,19(4):190-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700