光路中镜面与气体的热效应及其波前预补偿仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光功率水平的不断提高,激光传输通道中的镜面和气体的热效应问题愈发严重,导致激光系统光学性能的下降。本文从镜面热变形和气体热效应的基础理论出发,以Comsol多物理场耦合软件和Matlab数学软件为计算工具,采用理论分析和仿真模拟等方法,围绕内光路通道的镜面热变形像差、气体热效应分析以及整体热效应的波前预补偿等内容展开了较为系统的研究。
     开展了内光路通道中反射镜热变形像差的数值研究,并建立了内光路通道的镜面热效应缩比模型。首先,分析了高反膜层的体变形对反射镜总体热变形的影响,并对不同的激光能量吸收方式下的反射镜热变形进行了对比,确定了在进行反射镜热变形像差计算时采用的面热源吸收条件。其次,对不同激光辐照条件下的反射镜热变形像差进行了计算和分析:在强度均匀分布的激光辐照条件下,分别计算了不同的吸收总功率、入射角度、辐照时间和相对尺寸等条件下的反射镜热变形分布,对计算结果进行了分析,并定义像差比率nm来量化热变形像差与各影响因素的关系;在强度分布不均匀的激光辐照条件下,对采用光束旋转的方式时反射镜的热变形像差进行了仿真计算,旋转角速度的增加可以有效的减少热变形像差中的高阶项成份。最后,依据反射镜的热变形尺度律和光学传输的等Fresnel数条件建立了内光路通道的等比缩放计算模型,并通过对其热变形像差分布及其Zernike多项式拟合系数的分析,建立了缩放模型与原始模型之间的数值反演关系。
     开展了L型内光路通道中气体热效应像差的仿真研究,并实现了内光路通道中镜面和气体的整体热效应像差仿真计算。对长时间加热条件下L型管道中气体热效应进行了仿真计算,并分析了气体热效应像差分布的时间特性,结果表明,随着工作时间的增长,气流的温度和密度极值位置会向管道出口处移动,且气体热效应像差的“双鱼眼型”结构也随之消失。结合镜面热变形和气体热效应的数值计算,实现了内光路通道中光场、温度场、应力/应变场和流场的多物理场耦合仿真,并对L型内光路通道的整体热效应像差和出射激光的光束质量进行了分析,结果表明:随着激光加热时间的增长,管道内的反射镜和气体的温升均趋于稳定,热效应像差均方根值的增加和出射激光远场光束质量的下降均趋于平缓。
     开展了内光路通道中反射镜热变形和气体热效应的波前预补偿仿真研究,并对热变形像差波前预补偿的不稳定性进行了分析。首先,分别对不同激光辐照条件下的热变形像差波前预补偿进行了计算和研究,结果表明:当激光的强度分布不均匀时,对于Fresnel数为NF=95的内光路通道,在反射镜吸收功率较大的情况下波前预补偿方式对系统光学性能的改善会更加明显;在强度分布均匀的激光辐照条件下,结合对反射镜热变形像差的分析结论,利用Zernike拟合多项式建立了内光路通道中热变形像差波前预补偿的简化计算模型,其数值仿真结果与原始模型能够较好的吻合。其次,分别考察了信标光的畸变相位误差、共轭校正精度和系统Fresnel数等因素对内光路通道中反射镜热变形像差波前预补偿的影响:当采用信标光的畸变波前作为共轭补偿相位时,分光镜的端面效应会使出射激光的畸变波前中高阶像差成分的比重增加;随着校正精度N的增加出射光的补偿相位残差逐渐减少,且当校正精度N高于20时,波前预补偿能够得到较好的校正效果;出射激光的远场光束质量随着系统Fresnel数的增大而提高,并逐渐趋于稳定。再次,对内光路通道中热变形像差的波前预补偿不稳定性进行了讨论和分析,当工作时间较短时波前预补偿的不稳定性表现较明显,随着系统工作时间的增长,激光的光束质量因子的变化趋于稳定。最后,对长时间激光加热条件下L型内光路通道中的热效应波前预补偿进行了仿真研究,结果表明:随着工作时间的增长,波前预补偿的相位残差均方根值逐渐增加,且其主要像差成分由初级像差变为主球差和第25阶像差。
With the increase of laser power, the thermal effect of mirror and gas in the beampath is serious, which causes the decrease of the optical performance of laser system.Based on the basic theory of the thermal deformation and gas thermal effect, by usingthe Comsol multiphysis simulation software and Matlab calculation software, contentsincluding the aberration caused by thermal deformation and gas thermal effect, thewavefront pre-compensation of whole thermal effect in the inner beam path areinvestigated in theory and simulation in this thesis.
     The thermal deformation aberration of mirrors in inner beam path is studied insimulation, and the scaling model for an inner optical system is designed. Firstly, theinfluence of deformation of reflection coating on the thermal deformation of mirror isanalysed. The thermal deformations on different absorbtion conditions are comparatedand the surface heat condition is choosed to calaulating of thermal deformationaberration. Secondly, the thermal deformation of reflector is calculated and analysed onvary laser irradiation condition. When the distribution of absorption intensity is even,the influence of absorptiton power, angle of incidence, irradiation time and relative sizeon thermal deformation is studied respectively, and the abrration ratio nmis defined todescribe this relation. When the distribution of absorption intensity is uneven, theinfluence of beam rotation on thermal deformation is analysed, and the result shows thatwith the increase of rotation velocity the high-order aberration is decreased. Finally,based on the angular spectrum diffraction theory of light, the heat conduction theory andthe thermal elastic theory, the thermal deformation aberration and the wavefrontpre-compensation are simulated for both models. The scaling model can be numericallytransformed to original model.
     The distribution and time characteristic of gas thermal effect in a L shaped innerbeam path is discussed, and the thremal effect containing thermal deformation and gasthermal effect is claculated in simulation.The gas thermal effect distribuytion in a Lshaped inner beam path is calculated by using Comsol muli-physics software. Onconditon that the irradiation time is long the peak value spot of temperature and densityis moved to exit of pipe and the characteristic of 'double pearl eye' structure is disappear.The coupling of beam field, temperature field, stress/strain field and fluid field in aninner beam path is simulated. The thermal effect of L shaped path and the beam qualityof outgoing laser are analysed. With the increase of heat time the temperature rise ofmirror and gas in pipe is steady, and the thermal effect and beam quallity of laser arechanged no more.
     The wavefront pre-compensation of thermal deformation and gas thermal effect ininner bam path is studied in simulation and the thermal effect compensation instabilities is analysed. Firstly, the thermal deformation pre-compensation on vary laser irradiationcondition is calculated and studied respectively. The results show that on condition thatthe distribution of absorption intensity is uneven, the active influence of wavefrontpre-compensation on the optical performance is more obvious when the value ofirradiation power is higher. On condition that the distribution of absorption intensity iseven, based on the analysis conclusion of thermal deformation aberration of mirrors, thesimplification calculation model of thermal deformation pre-compensation in innerbeam path is established with Zernike polynomials. Secondly, the influence of distortionphase error of beacon, precisions of adaptive conjugation correction and general Fresnelnumber on thermal deformation pre-compensation in inner beam path is studiedrespectively. When the distortion phase of beacon is used as conjugation correctionphase the proportion of high-order aberration in outgoing laser phase is increasedbecause of thermo-optic effect. The residual phase is decreased with increase ofprecisions of adaptive conjugation correction N, and when N>20, the correction ofthermal deforamtion aberration is more obvious. With the increase of general Fresnelnumber the beam quality in far field of outgoing laser is increased. Then, the thermaldeformation pre-compensation instability in inner beam path is studied and analysed.When the irradiation time is little, the instability of compensation is obvious. With theincrease of irradiation time the increase of beam quality factor is slow down.Finally, on condition that the irradiation time is long the thermal effect compensation ofL shaped path is studied in simulation. The results show that with the long irradiationtime the residual phase is increased.
引文
[1]苏毅,万敏,高能激光系统[M].北京:国防工业出版社,2004.
    [2]周炳琨,高以智,陈倜嵘,陈家骅,激光原理[M].北京:国防工业出版社,2004
    [3] James A. Horkovich. Directed Energy Weapons: Promise&Reality[J].AIAA,2006,3753:1~17;
    [4] J.R.Cook, J.R.AIbertine. The Navy’S high-energy laser system. SPIE.1997,2988:364~271
    [5]黄涛,林明辉,程祖海.强激光全反腔镜热变形模型及计算[J].强激光与粒子束.1995,7(3)
    [6]刘倚红.多层水冷硅镜的设计和研究[D].武汉:华中科技大学硕士论文,2005
    [7] MA Menglin, GUO Jin, YANG Gaofeng. Cooling technology applied in opticalelements of high power laser[J]. Infrared and Laser Engineering.2007,36(1):86~89,146
    [8] J.R. Albertine.’Recent high energy laser system tests using theMIRACL/SLBD’.SPIE,1993
    [9] Larry D.Buelow, Frank Hassell and Chris Lieto.‘Overview of fabricationprocesses for uncooled laser optics’.SPIE,1995
    [10]张耀平,张云洞.沉积方式对ZnS薄膜表面缺陷影响研究[J].光学仪器.2009,31(5):78~81
    [11]熊胜明,张云洞.短波长化学激光系统反射镜研制[J].强激光与粒子束,1997,9(3):423~428
    [12] K.L.Lewis, A.M.Pitt et al.’ Progress In optical coatings for mid Infrared’. SPIE,1996
    [13] M. Sparks. Optical Distortion by Heated Windows in High-Power LaserSystems[J]. JOURNAL OF APPLIED PHYSICS.1971,42:5029~5046
    [14] Bernard Bendow and Peter D. Gianino. Optics of Thermal Lensing in Solids[J].APPLIED OPTICS.1973,12(4):710~718
    [15] Claude A.Klein. Optical distortion coefficients of high-power laser windows[J].Opitical Engnieering.1990,29(4):343~350
    [16]刘文广,饶鹏,华卫红.非均匀激光辐照下硅镜热变形对光束传输特性的影响[J].强激光与粒子束.2008,20(10):1615~1619
    [17]杜少军,陆启生,舒柏宏.激光窗口热效应和应力双折射的分析[J].强激光与粒子束.2004,16(5):575~581
    [18]孙峰,程祖海,张耀宁,余文峰,周次明.激光器腔镜夹持方式对热变形的影响[J].强激光与粒子束.2003,15(8):75~754
    [19] Yufeng Peng, Zuhai Cheng, Yaoning Zhang, and Junli Qiu. Temperaturedistributions and thermal deformations of mirror substrates in laser resonators[J].APPLIED OPTICS.2001,40(27):4824~4830
    [20]于德利,桑凤亭,金玉奇,孙以珠.高能量密度激光器腔镜的有限元分析[J].强激光与粒子束.2001,13(2):129~132
    [21] Jianzhu An, Youkuan Li, and Xiangwan Du. Thermal effects of a laser beamtube consisting of a window and nonflowing gas[J]. OPTICS LETTERS.2004,29(14):2899~2901
    [22] Weiping Wang, Fuli Tan, Baida Lü, and Cangli Liu. Three-dimensionalcalculation of high-power annularly distributed, laser-beam-inducedthermaleffects on reflectors and windows[J]. APPLIED OPTICS.2005,44(34):7442~7450
    [23] McClellan C, Munn M. W, Norris H, Nourie D. Optical Effects of Gas FlowThrough an Optical Train: an Experimental Determination [J]. Applied Optics,1979,18(23):3984~3989
    [24] Mohammad H M, Babak L. Two-Dimensional-Simulation of Thermal BloomingEffects in Ring Pattern Laser Beams [J]. Optical Engineering,2005,44(9):096001.
    [25] Steven M. E, Carolyn Duzy. Experimental and Theoretical Investgation ofSmall-Scale Blooming[C]//Proc of SPIE,1990,1221:341~350
    [26] Johnson B. Thermal-Blooming Laboratory Experiments [J]. The LincolnLaboratory Journal,1992,5(1):151~169
    [27] Albertine J R, Sadegn Siahatgar, Bennett H E. High-power Beam Control:Results to Date and Relevance to Power Beaming[C]//Proc of SPIE,1997,2988:257~263.
    [28] Robert E K. Thermal Blooming in Axial Pipe Flow: the Effects of Beam Shapeand Thermal Conditions at the Pipe Wall [J]. Applied Optics,1980,19(18):3037~3039.
    [29] Gavrielides A, Peterson P. Time-dependent Thermal Blooming in Axial PipeFlow [J].Applied Optics,1983,22(21):3359~3365.
    [30] Laderman A J. Thermal Blooming in Axial Pipe Flow: Comment [J]. AppliedOptics,1980,19:2269~2270.
    [31] David C. Johnson and Glenda S. Holderbaum. Beam path conditioning for highenergy laser beam directors[J]. SPIE.1990,1312:422~442.
    [32]冯绚,黄印博,范承玉,王英俭.激光室内传输热晕效应的数值分析[J].强激光与粒子束,2004,16(9):1123~1126
    [33]黄印博,王英俭等.热晕效应相位补偿定标参量的数值分析[J].光学学报,2002,22(12):1461~1464.
    [34]张恩涛,季小玲,吕百达.内光路中大气吸收对远场光束质量的影响[J].激光技术,2006,30(1):96~98
    [35]刘顺发,金钢,柳建,陈洪斌.激光通道传输热特性对远场光束质量的影响[J].强激光与粒子束,2004,16(6):703~706.
    [36]柳建,王世庆,金钢.吹气抑制气体热效应时管道结构对光传输的影响[J],强激光与粒子束,2007,19(3):391~393.
    [37]禹烨,牛燕雄,王秀生等.强激光稳态热晕效应的数值模拟研究[J].激光技术,2007,31(2):182~184.
    [38] Yunqiang Sun, Fengjie Xi, Xiaojun Xu et al. Analysis for angle anisoplanaticeffect of the steady thermal blooming[J], SPIE.2009, Vol.7511.
    [39]孙运强,许晓军,陆启生等.稳态热晕非等晕效应的数值分析[J].强激光与粒子束,2010,22(2):253~256.
    [40]孙运强.激光内通道传输的气体热效应研究[D].长沙:国防科学技术大学博士论文,2011.
    [41] H.W.BabCock, The possibility of compensating astronomical seeing[J].Publications of the Astronomical Society of the Pacific,1953.65(386):229-236.
    [42] V.P. Linnick, On the possibility of reducing the influnce of atmospheric seeingon the image quality of stars[J]. Optics and Spectroscopy,1957.3:401-2.
    [43] F. Roddier, Adaptive Optics in Astronomy[M].1999: Cambridge UniversityPress.
    [44] V. P.Lukin and B. V.Fortes, Adaptive Beaming and Imaging in the TurbulentAtmosphere[M].2002, Washington: SPIE.
    [45] J.W. Hardy, Adaptive Optics for Astronomical Telescopes[M].1998,Oxford,UK.: Oxford U. Press.
    [46] H.X. Yan, et al., Numerical simulation of an adaptive optics system with laserpropagation in the atmosphere[J]. Appl. Opt.,2000.39(18):3023-3031.
    [47] K.N. LaFortune, et al., Technical challenges for the future of high energylasers[M].2007.
    [48] M. Carbon. Laser beam shaping in space using adaptive optics[C]. Proc. of SPIE.2003.5087:83-86.
    [49] S.-W. Bahk, et al., A high-resolution, adaptive beam-shaping system forhigh-power lasers[J]. Opt. Express,2010.18(9):9151~9163.
    [50] J. Wenhan, R. Xuejun, and L. Ning. Laser wave-front measurment of ICFamplifiers using Hartmann-Shack wave-front sensor[C]. Proc. of SPIE.2000.4124:148~157.
    [51] R.K. Tyson, Adaptive optics and ground-to-space laser communications[J]. Appl.Opt.,1996.35(19):3640~3646.
    [52] J. Porter, et al., Adaptive Optics for Vision Science: Principles, Practices, Desing,and Applications[M].2006: Wiley&Sons, Inc., Publication.
    [53] R.J. Zawadzki, et al., Adaptive-optics optical coherence tomography forhigh-resolution and high-speed3D retinal in vivo imaging[J]. Opt. Express,2005.13(21):8532~8546.
    [54] G. Vdovin, M. Loktev, and A. Naumov, On the possibility of intraocularadaptive optics[J]. Opt. Express,2003.11(7):810~817.
    [55] P.M. Prieto, et al., Adaptive optics with a programmable phase modulator:applications in the human eye[J]. Opt. Express,2004.12(17):4059~4071.
    [56] M.J. Booth, Adaptive optics in microscopy[J]. Phil. Trans. R. Soc. A.,2007.365:2829~2843.
    [57] M.A.A. Neil, et al., Active aberration correction for the writing ofthree-dimensional optical memory devices[J]. Appl. Opt.,2002.41(7):1374~1379.
    [58] A. Jesacher, et al., Full phase and amplitude control of holographic opticaltweezers with high effciency[J]. Opt. Express,2008.16(7):4479~4486.
    [59] D. Gil-leyva, et al., Aberration correction in an adaptive free-space opticalinterconnect with an error diffusion algorithm[J]. Appl. Opt.,2006.45(16):3782~3792
    [60]周仁忠,阎吉祥.自适应光学理论[M].北京理工大学出版社.北京,1996
    [61]周仁忠.自适应光学[M].北京:国防工业出版社,1996年:5-254
    [62] Robert K.Tyson. Principles of Adaptive Optics[M]. CRC press. New York.2011
    [63] Johnson B, Primmerman C A. Experimental Observation of Thermal-BloomingPhase Compensation Instability [J]. Optics Letters,1989,14(12):639~941.
    [64] Vladimir P L, Bons V F. The Influence of Wave Front Dislocations on PhaseConjugation Instability with Thermal Blooming Compensation [J], SPIE,2989:258~269.
    [65] Morris J R. Scalar Green's-function derivation of the thermal bloomingcompensation instability equations [J]. J. Opt. Soc. Am. A,1989,6(12):1859~1862.
    [66]张德良,姜文汉,吴旭斌,严海星,李树山.自适应光学对大气扰动波前的补偿效果研究I.理论推导[J].光学学报,1998,18(10):1366~1371.
    [67]张德良,姜文汉,吴旭斌,严海星,李树山.自适应光学对大气扰动波前的补偿效果研究II.水平大气传输时的结果分析[J],光学学报,1998,18(10):1375.
    [68]王英俭,吴毅,汪超.激光实际大气传输湍流效应相位校正一些实验结果[J].量子电子学报,1998,15(2):164~169.
    [69] Wang S H, Xu X J. Jiang Z F. Studying of Thermal Blooming of HEL in theNon-flowing Tube[C].Proc of SPIE,2002,4926:181~186.
    [70] Livinston P M. Thermally Induced Modifications of a High Power CW LaserBeam [J]. Applied Optics,1971,10(2):426~435.
    [71]赵国民.激光的热与力学效应讲义[Z].长沙:国防科学技术大学,2006
    [72]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [73] John H. Lienhard IV, John H. Lienhard V. A. Heat Transfer Textbook [M].Cambridge: Phlogiston Press,2005.
    [74]李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2008.
    [75]竹内洋一郎,郭廷玮,李安定译.热应力[M],北京:科学出版社,1977
    [76]顾泽同,葛永乐,翁中杰等.工程热应力[M].北京:国防工业出版社,1987
    [77]程昌钧.弹性力学[M].甘肃:兰州大学出版社,1995
    [78]程昌钧,朱媛媛.弹性力学(修订版)[M].上海:上海大学出版社,2005
    [79]王洪刚.热弹性力学概论[M].清华大学出版社.1989
    [80]陈发良,李有宽.环形分布激光束引起光学窗口镜热变形理论分析[J].强激光与粒子束.2008,15(8):736~740
    [81] Claude A.Klein.Thermally induced optical distortion in high energy lasersystems[J].Optical Engineering,1979,18(6):591~60
    [82] Yufeng Peng, Zuhai Cheng, Yaoning Zhang, and Junli Qiu. Temperaturedistributions and thermal deformations of mirror substrates in laser resonators[J].A APPLIED OPTICS.2001,40(27):4824~4830
    [83]黄涛,林明辉,程祖海.强激光全反腔镜热变形模型及计算[J].强激光与粒子束,1995,7(3):366~371
    [84]赵光兴等.铜反射镜热畸变的有限差分方法分析及讨论[J].量子电子学报,1998,15(1):79-82
    [85]于德利,桑凤亭,金玉奇等.高能量密度激光器腔镜有限元分析.强激光与粒子束,2001,13(2):129~132
    [86]孔祥谦.热应力有限单元法分析[M].上海交通大学出版社.1999
    [87] Marvin J. Weber. Handbook of optical materials[M]. Berkeley: CRC Press,2003
    [88] David R. Lide, et al. Handbook of Chemistry and Physics[M]. Berkeley: CRCPress,2010
    [89]赵凯华,钟锡华.光学[M].北京:北京大学出版社,1984.
    [90]马科斯玻恩,埃米尔沃耳夫.光学原理(第七版)[M].北京:电子工业出版社,2009
    [91] Daniel Malacara. Optical Shop Testing[M]. New Jersey: John Wiley&Sons,Inc.,2007
    [92]周仁忠,阎吉祥.自适应光学理论[M].北京:北京理工大学出版社,1996
    [93] J.W. Goodman, Introduction to Fourier Optics[M]., Beijing: Publishing House ofElectronics Industry,2006
    [94] T.Sean Ross, William P.Latham. Appropriate measures and consistent standardfor high-energy laser beam quality[J]. Journal of Directed Energy.2006,2:22~58
    [95] John W.Hardy. Adaptive Optics for Astronomical Telescopes[M]. Oxford:oxford University Press,1998
    [96]姜宗福,刘文广,侯静.物理光学导论[M].北京:科学出版社,2011.
    [97]季家荣编著.高等光学教程-光学的基本电磁理论[M].北京:科学出版社,2007
    [98]苏毅,万敏,高能激光系统[M].北京:国防工业出版社,2004.
    [99] Siegman A.E. How to (Maybe) Measure Laser Beam Quality[J]. OSA. TOPS.1998,17:184~199
    [100] Piquero G, Mejias PM, Martinez-HerreroR, On the propagation of the kurtosisparameter of general beams[J].Opt. Commun.1994,107:335~341
    [101]马科斯玻恩,埃米尔沃耳夫.光学原理(第七版)[M].北京:电子工业出版社,2009
    [102]杨富,黄伟,张彬,楚晓亮,刘志国,蔡邦维.CO2激光辐照下光学薄膜的温度场与热畸变[J].激光技术.2004,28(3):255~258
    [103] Paul Klocek. Handbook of Infrared Optical Materials[M]. Optical engineering,1990,30
    [104] Robert K.Tyson. Principles of Adaptive Optics[M]. San Diego: ACADEMICPRESS,1997.
    [105]竹内洋一著,郭延玮,李安定译.热应力[M].北京:科学出版社,1977
    [106] Gong H, Li C F, Li Z Y. CW laser induced thermal and mechanical damage inoptical materials[C]. Proc of SPIE.1998,3578:576~579.
    [107] http://www.crystaltechno.com/ZnS_en.htm
    [108]赵国民.激光的热与力学效应讲义[Z].长沙:国防科学技术大学,2006
    [109]刘文广,饶鹏,华卫红.非均匀激光辐照下硅镜热变形对光束传输特性的影响[J].强激光与粒子束.2008,20(10):1615~1619.
    [110]孙运强.激光内通道传输的气体热效应研究[D].长沙:国防科技大学博士学位论文,2011
    [111]张也影.流体力学[M].北京:高等教育出版社,1986
    [112]江厚满.爆炸成型弹丸优化设计及相关问题研究[D].湖南:国防科学技术大学博士论文,1999
    [113]贺敏波.强激光辐照下镀膜镜面的热变形[M].湖南:国防科技大学,2011
    [114]刘泽金,周朴,许晓军.高能激光光束质量通用评价标准的探讨[J].中国激光,2009,36(4):773-778
    [115] Primmerman C A, Fouche D G. Thermal Blooming Compensation ExperimentalObservations Using a Deformable Mirror System [J]. Applied Optics,1976,15(4):990~995.
    [116] Bradley L C, Herrmann J. Numerical Calculation of Light Propagation in aNonlinear Medium [J]. J. Opt. Soc. Am.1971,61:668.
    [117] Walsh J L, Ulrich P B. Laser Beam Propagation in the Atmosphere [M]. NewYork,1978:223~318.
    [118] Albertine J R, Sadegn Siahatgar, Bennett H E. High-power Beam Control:Results to Date and Relevance to Power Beaming[C]//Proc of SPIE,1997,2988:257~263.
    [119] Shen P I, Andrepont M. Thermal Blooming of HEL in the Non-Flowing BeamTube with Various Wall Temperatures[C]//Proc of SPIE2000,4034:100~107.
    [120] Penano J R, Phillip Sprangle. Propagation of High Energy Laser Beams throughAtmospheric Stagnation Zones[R]. Native Reporting,2006,NRL/MR/6790-06-8925.
    [121] Yunqiang Sun, Fengjie Xi, Xiaojun Xu et al. Analysis for angle anisoplanaticeffect of the steady thermal blooming, SPIE.2009, Vol.7511
    [122]孙运强,许晓军,陆启生等.稳态热晕非等晕效应的数值分析.强激光与粒子束[J],2010,22(2):253~256.(EI:20103413166292)
    [123]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.
    [124] Ferziger J H, Peric M. Computational Methods for Fluid Dynamics [M]. Berlin-Springer,1996
    [125]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1999
    [126]陶文铨.数值传热学[M],西安:西安交通大学出版社,2001
    [127]朱自强等.应用计算流体力学[M].北京:北京航空航天大学出版社,1998
    [128]程心一.计算流体力学[M].北京:科学出版社,1984
    [129]罗奇P J,刘学宗译.计算流体力学[M].北京:科学出版社,1983
    [130]汪志诚.热力学统计物理[M].北京:人民教育出版社,1980.
    [131]李俊昌,熊秉衡等.信息光学理论与计算[M],北京:科学出版社,2009
    [132]王承尧,王正华,杨晓辉.计算流体力学及其并行算法[J].湖南:国防科技大学出版社,2000
    [133] Guillard H, Viozat C. On the Behavior of Upeind Schemes in the Low MachNumber Limit [J]. Computers and Fluids,1999,28:63~86.
    [134]李树民.低速粘流计算方法和应用研究[D].中国空气动力研究与发展中心博士学位论文,2004
    [135]柳建.近封闭环境下激光传输特性仿真分析平台研究[D].中国科学院光电技术研究所博士学位论文,2005
    [136] John W H. Adaptive Optics for Astronomical Telescopes [M]. New York,Oxford University Prees,1988
    [137] Daniel E N. Zernike-ordered Adaptive-optics Correction of Thermal Blooming[J], J. Opt. Soc. Am. A,1988,5(11):1937~1942.
    [138] Vladimir P L. Anisoplanatic Degradation of Correction with RealBeacon[C]//Proc of SPIE,1999,3866:88~98
    [139] Bernard Bendow and Peter D. Gianino. Optics of Thermal Lensing in Solids[J].APPLIED OPTICS.1973,12(4):710~718
    [140]杜少军,陆启生,舒柏宏.激光窗口热效应和应力双折射的分析[J].强激光与粒子束.2004,16(5):575~581
    [141] Billman KW, Tran D C, Johnson L F. Development of low-OPD windows forairborn laser[J]. Proc SPIE.2001,4376:24~34.
    [142] Klein C A. Materials for high-power laser optics: figures of merit for thermallyinduced beam distortions[J]. Opt Eng,1997,36(6),1586-1595
    [143] T. J. Karr. Thermal Blooming Compensation Instabilities[J]. J. Opt. Soc. Am. A.1989,6(7):1038~1047
    [144] Lee C. Bradley and Jan Herrmann. Phase Compensation for ThermalBlooming[J]. Applied Optics.1974,13(2):331~334
    [145] ohnson B, Primmerman C A. Experimental Observation of Thermal-BloomingPhase Compensation Instability [J]. Optics Letters,1989,14(12):639~941.
    [146] Vladimir P L, Bons V F. The Influence of Wave Front Dislocations on PhaseConjugation Instability with Thermal Blooming Compensation [J], SPIE,2989:258~269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700