基于微动特性的SAR干扰方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)及其地面动目标检测(GMTI)日益成为战略侦察和战场监视系统的重要手段,对重要军事目标构成了严重威胁。针对SAR/GMTI的干扰技术已经成为电子对抗领域中的一个重要新课题。本文基于ISAR观测中的微多普勒现象,将其发展运用到SAR及GMTI的对抗领域中,基本形成了一套基于微动特性的新型SAR/GMTI干扰技术。
     论文首先指出了课题的研究背景及意义;介绍了SAR系统研究现状,归纳了SAR干扰技术和干扰效果评估技术的研究现状,重点分析了SAR干扰技术的类型、发展历程、发展趋势和存在的问题;阐述了本文的主要研究工作。
     论文根据微运动目标的观测矢量模型,以匀速圆周运动和简谐振动两类典型运动规律目标为研究对象,建立了这两者较以往研究更为精确的多普勒时频模型,并利用不同微运动的微多普勒差异,为SAR/ISAR目标识别提供了新的微多普勒特征。同时也根据SAR观测目标可能的几何条件,分析了微多普勒模型的简化条件,给出了其简化模型。
     论文从静止目标上单个微动散射点的基本模型入手,依次分析了物体整体平动、多个微动散射点以及微动幅度跨越多个距离单元等情况的成像特点。分析了由于微动目标与方位向实体目标之间多普勒历程的差异,所导致微动目标图像在距离徙动校正条件下的散焦情况,给出了良好聚焦的约束条件。利用某机载SAR的实测数据,得到了实际微动目标的成像结果,指出了利用无源微动目标进行干扰的可行性。最后以子孔径相关法自聚焦为实例,定性分析了微运动类型干扰对SAR自聚焦影响的可能。
     论文以3种成熟的多天线SAR/GMTI技术为实际研究对象,分析了微动目标的幅度和相位特性,指出了利用微动特性对GMTI实施干扰的可行性。论文还定性地分析了微动目标对FrFT动目标检测技术的影响。
     论文在以上研究成果基础上,提出了微运动类型SAR干扰方法。首先从功率上分析干扰的功率需求,总结了干扰参数的选择问题。以保护地面面目标需求出发,提出了一种基于距离向固定噪声样本的“方位相干噪声”干扰样式;并以距离向噪声调频干扰为例,分析了干扰效果。针对军事固定阵地的保护,提出了一种简化的侦察方法,通过简化单机的性能要求和少数几部侦察机组网,即可实现干扰引导的目的。
     在总结现有的客观评估方法基础上,提出了利用人类视觉系统(HVS)特性和对比敏感度函数(CSF)的客观评估方法,使已有的客观评估指标能够反映出人眼的主观感受。由此还提出了针对人眼视觉优化的距离像预处理方法,并提出了通过FFT快速实现的距离像调制。
     最后总结了论文的研究工作和主要创新点,讨论了需要进一步研究的内容。
     本文研究的基于微动特性SAR干扰是一种有效的和易于工程实现的压制干扰技术,具有四大突出优点:一是可获得部分方位向增益,弥补干扰信号处理增益的劣势;二是可通过优化距离向转发信号的设计,提高目标的抗检测性能和视觉干扰效果;三是对侦察系统的依赖性较低,特别是固定阵地保护应用中可采取若干简易侦察机组网工作方式,实现干扰的引导功能;四是具有对SAR/GMTI的干扰能力,可同时保护地面静止目标和运动目标。在研究干扰技术的同时,本文获得了另外的两项成果:第一是修正了现有SAR观测下微多普勒特性,给出了模型简化必须符合的若干条件,并提出可以利用不同微运动的微多普勒差异作为特征提取的研究方向;第二是提出了基于人眼视觉特性的SAR干扰评估指标,丰富了SAR干扰评估方法。本文研究的基于微动特性SAR干扰,在丰富电子对抗理论的同时,有望提高地面重要军事动目标在SAR/GMTI探测下的生存能力,在国防建设中具有重要意义。
Synthetic Aperture Radar (SAR) with Ground Moving Target Indication (GMTI)capability has increasingly become an important means of strategic reconnaissance andbattlefield surveillance systems, poses a sever threat to important military targets.Therefore the jamming technology for countering SAR/GMTI has become an importantnew issue in Electronic Counter Measure (ECM) area. A method against SAR andGMTI is introduced which is based on the micro-Doppler phenomenon that takes placewhen ISAR observes a micro-motion target, and a jamming technology imitatingmicro-motion is basically formed.
     In the beginning, the background and significance of this research subject areillustrated, and the present status of SAR ECM techniques, including SAR system andjamming evaluation techniques are introduced. The types, development history,development trend and existing problems of SAR jamming techniques are especiallyanalyzed. The present status of SAR/GMTI jamming techniques is further summarized.The major research efforts of this dissertation are also explained.
     Based on observation vector model, two time-frequency models in Doppler domainare separately established by investigating two typical kinds of micro-motion targetswhich are uniform rotation and vibration. The models are more accurate than preciousstudies. It is proposed that the micro-Doppler differences among various micro-motionscan provide SAR/ISAR some new features for target recognition. The simplifiedDoppler models are summarized and the simplified conditions are analyzed accordingtypical SAR observation status.
     Starting with the simplest situation that a stationary bulk with only onemicro-motion scatter center, other3situations are all analyzed, that are bulk translation,multiple micro-motion scatter centers and micro-motion across range cells duringimaging time. Imaging features are obtained for each circumstance. Next, consideringthe Doppler history difference between micro-motion objects and real targets thatdistribute along azimuth direction, defocusing phenomenon is analyzed which results inrange migration correction, and constrains are given to avoid defocusing. The potentialof rotating reflectors deployed as a passive jammer is demonstrated by an airborne SARexperiment. Finally, the potential of a micro-motion type jammer to interference SARautofocus is qualitative analyzed, taking an instance of Mapdrift autofocus.
     Three well-known GMTI technologies based on multi-antennae are taken intoaccount, micro-motion targets’ amplitude and phase characters are analyzed in eachGMTI method. Results show that micro-motion modulation has an ability to interfereGMTI. It turns out that the micro-motion modulation interference will still work onFrFT technology.
     The micro-motion analogy jamming technology is proposed based on upperresearch. Power demand is analyzed in the first place. The parameters adjustmentpolicies are concluded considering different jamming effects and jamming objects. Also,in order to extend the jamming energy to cover range direction, the micro-motionanalogy jamming combined with fixed noise samples is proposed, which is named“azimuth coherent noise” style. The jamming effects are shown with a example whichmodulates noise samples by frequency modulation. For military protection of fixedpositions, the article also provides a simplified method of reconnaissance, by a networkcomposed with several reconnaissance equipments with low performance requirements.This method can achieve the task to pilot a jammer.
     On the basis of concluding existing objective evaluation methods, some improvedobjective evaluation methods are presented. By means of implementing human visualsystem (HVS) models and contrast sensitivity function (CSF), those current objectiveevaluation methods can somehow reflect subjective feelings of human eyes. Thisadvantage is improved by some simulations presented in this paper. This paperconcludes with how to use HVS characteristics to pretreat envelope fluctuation alongrange direction, and how to use FFT-based approach to modulate pretreated profile.Simulation results indicate that the performance of azimuth coherent noise interferenceis improved.
     In the end, this paper summarizes the research work and main innovations, anddiscusses the future work to be researched.
     After all, the novel suppressing jamming based on micro-Doppler is effective andfeasible in practice, which has four prominent advantages. Firstly the micro-motionmodulation jamming signal can be processed partially coherently in azimuth, which canmake up for the jamming inferiority in processing gains. Secondly its jamming effectcan be improved both in anti-detection and visual observation by optimizing rangerepeating signal. Thirdly it has weak dependency on reconnaissance systems, especiallywhen protecting a fixed position; it can guide jammers with a network assembling byseveral simple reconnaissances. Fourthly it allows for interfere GMTI, and can protectthe stationary and moving targets simultaneously. While studying the jammingtechnique, this thesis approaches another two achievements. One is to amendmentnowadays micro-Doppler models under SAR observation, and the simplificationconditions are given. Furthermore, it implies that thoes micro-Doppler differences maybe the features to be extracted to distinguish various micro-motions. The otherachievement is the presentation of SAR jamming assessment indexies based on humanvisual system. These enriche the SAR jamming effect evaluation methods. Themicro-motion modulation jamming technique constructed in this dissertation, not onlyenriches the electronic countermeasure theory, but most promisingly improves thesurvivability of important ground military targets against SAR/GMTI, which has an important meaning in national defense.
引文
[1] Entzminger J N, Fowler C A, Kenneally W J. Joint STARS and GMTI: past,present and future [J]. IEEE Transaction on AES.1999,35(2):748-761.
    [2] S.I.Tsunoda, F.Pace, J.Stence, et al. Lynx: a High-Resolution Synthetic ApertureRadar[C].SPIE Aerosense,1999,3704:1-8.
    [3] BaymaW.B, Trujillo E. HISARTMCOTS-based Synthetic Aperture Radar[C].15th AIAA/IEEE Digital Avionics Systems Conference,1996,319-325.
    [4] William L.Melvin, Gregory A.Showman, R.K.Hersey. Adaptive radar: beyondthe RMB rule[C].IEEE Radar Conference,2008,670-677.
    [5] Werninghaus R, Balzer W, Buckreuss S, et al. The TerraSAR-X-mission[C].EUSAR,2004,49-52.
    [6] Shen Chiu. An Analysis of RADARSAT2SAR-GMTI Performance for StandardBeam Mode[R]. Technical Report TR2000-088, Defence ResearchEstablishment, Ottawa,2000.
    [7] Walter W. GOJ. Synthetic Aperture Radar and Electronic Warfare [M]. ArtechHouse, Boston London.1993.
    [8]李兵,洪文.合成孔径雷达噪声干扰研究[J].电子学报,2004,32(12):2035-2037.
    [9]张煜,杨绍全.对线性调频雷达的卷积干扰技术[J].电子与信息学报,2007,29(6):1408-1411.
    [10]龙伟军,王暐,高文辉.星载SAR的箔条干扰分析[J].现代雷达,2004,26(10):10-14.
    [11] Christopher J Condley. Some System Considerations for ElectronicCountermeasures to Synthetic Aperture Radar [Z]. Her Majesty’s StationeryOffice, London,1990.
    [12] K Dumper, P S Cooper, AN F Wons, C J Condley, P Tully. Spaceborne SyntheticAperture Radar and Noise Jamming[C]. Proc IEE Radar,1997,411-414.
    [13] Sdg R.T Ekestorm, Christopher Karow. An all-digital image synthesizer forcountering high-resolution radars [D]. Naval Postgraduate School, Monterey, CA,2000.
    [14] Buckreuss.S, Horn.R. E-SAR P-band SAR subsystem design or RF interferencesuppression[C]. IGARSS,1998,466-468.
    [15] Potsis A, Reigber A, Papathanassiou.K.P. A phase preserving method for RFinterference suppression in P-band synthetic aperture radar interferometricdata[C].IGARSS,1999,2655-2657.
    [16] Lord.R.T, Inggs.M.R. Efficient RFI suppression in SAR using LMS adaptivefilter integrated with range/Doppler algorithm[J]. Electrononic Letters,1999,35(8):629-630.
    [17] Luo X, Ulander L.M.H, et al. RFI suppression in ultra-wideband SAR systemsusing LMS filters in frequency domain[J]. Electronic Letters,2001,37(4):241-243.
    [18] T.Lamont-Smith, R.D.Hill, S.D.Hayward, G.Yates, A.Blake. Filtering approachesfor interference suppression in low-frequency SAR[C]. IEE Proc-Radar SonarNavig,2006,153(4):338-344.
    [19] L Rosenberg and D.Gray.Anti-jamming techniques for multichannel SARimaging[C].IEE Proc-Radar Sonar Navig,2006,153(3):234-242.
    [20] Mehrdad Soumekh.SAR-ECCM using phase-perturbed LFM chirp signals andDRFM repeat jammer penalization[J]. IEEE Trans. on AES,2006,42(1):191-205.
    [21]吴玮琦,俞永福.对合成孔径雷达的压制功率分析[C].CSAR,合肥,2003:148-151.
    [22]俞永福.对合成孔径雷达的干扰方法[C].CSAR,合肥,2003:152-155.
    [23] P. Leducq, T. Landeau, P.Le Traon, etc. A method to insert objects in apolarimetric SAR signal[C]. EUSAR, Ulm,2004,883-886.
    [24] S. Kristoffersen, O.Thingsrud, FFI and etc. The EKKOⅡ Synthetic TargetGenerator for Imaging Radar[C].EUSAR, Ulm,2004,871-874.
    [25]王兵.合成孔径雷达的噪声干扰[J].电子对抗技术,2004,7(4):44-47.
    [26]邹猛.对合成孔径雷达的干扰样式及功率分析[J].电子对抗技术,2005,20:21-23.
    [27]张锡祥.干扰合成孔径雷达的统一方程[J].中国电子科学研究院学报.2006,1(2):107-113.
    [28]王兵.合成孔径雷达的特点及其干扰技术[J].中国电子科学研究院学报,2006,1(2):168-171.
    [29]陈宁,张杰儒.合成孔径雷达干扰技术研究[J].航天电子对抗,1997,(4):45-48.
    [30]黄洪旭,黄知涛,周一宇.对合成孔径雷达的移频干扰研究[J].宇航学报,2006,27(3):463-468.
    [31]黄洪旭,黄知涛,周一宇.对合成孔径雷达的随机移频干扰[J].信号处理,2007,23(1):41-45.
    [32] Li Wei,Liang Diannong,Dong Zhen.A New Jamming Method on ParasiticSpaceborne SAR System[C].IGARSS,2005,4611-4614.
    [33]李伟.分布式星载SAR干扰与抗干扰研究[D].[博士论文].长沙:国防科学技术大学,2006.
    [34]柏仲干.SAR对抗试验评估方法研究与应用[D].[博士论文].长沙:国防科学技术大学,2008.
    [35]吴晓芳,刘光军,代大海等.等离子体隐身在SAR对抗中的应用研究[J].现代雷达,2008,30(7):63-67.
    [36]吕波,冯起,张晓发.对SAR的随机脉冲卷积干扰研究[J].中国电子科学研究院学报,2008,3(3):276-279.
    [37]张光义.合成孔径雷达的电子对抗措施[J].现代雷达,2008,30(7):1-9.
    [38]林建银.对高分辨合成孔径雷达干扰的研究[D].[硕士论文].南京:南京电子技术研究所,2005.
    [39]倪燕.对合成孔径雷达干扰技术的研究[D].[硕士论文].成都:电子科技大学,2003.
    [40]马永华.合成孔径雷达对抗技术研究[D].[硕士论文].成都:电子科技大学,2004.
    [41]甘荣兵.合成孔径雷达对抗及目标检测技术研究[D].[博士论文].成都:电子科技大学,2005.
    [42]李江源.高分辨SAR干扰机理与高效干扰方法研究[D].[博士论文].成都:电子科技大学,2007.
    [43]叶映宇.合成孔径雷达干扰方法的研究[D].[硕士论文].成都:电子科技大学,2005.
    [44]徐美林.对合成孔径雷达干扰与抗干扰及效能评估的研究[D].[硕士论文].成都:电子科技大学,2005.
    [45]吴锡. SAR类杂波干扰技术研究及软硬件设计[D].[硕士论文].成都:电子科技大学,2006.
    [46]张瑛,王建国.双基地合成孔径雷达弹射式干扰研究[J].电子与信息学报,2007,29(5):1061-1064.
    [47]师亚辉,李春升.SAR遮蔽性干扰分析[J].电子测量技术,2004,(5):5-6.
    [48]梁百川.对合成孔径雷达的干扰[J].上海航天,1995,(1):37-42.
    [49]王盛利,于立,倪晋鳞等.合成孔径雷达的有源欺骗干扰方法研究[J].电子学报,2003,31(12):1900-1902.
    [50]石俊.对合成孔径雷达干扰方法的研究[D].[硕士论文].西安:西安电子科技大学,2003.
    [51]高建卫.对合成孔径雷达干扰技术研究[D].[硕士论文].西安:西安电子科技大学,2004.
    [52]朱燕.相参雷达的信号处理与相干性干扰的研究[D].[硕士论文].西安:西安电子科技大学,2005.
    [53]杨秀丽.合成孔径雷达干扰技术研究[D].[硕士论文].西安:西安电子科技大学,2006.
    [54]李晨.合成孔径雷达有源欺骗干扰研究[D].[硕士论文].南京:南京航空航天大学,2005.
    [55] Zheng Shenghua, Xu Dazhuan, Jin Xueming and etc.A Study on Active Jammingto Synthetic Aperture Radar[C].Proc. of3nd IEEE International Conference onComputational Electromagnetics and Its Application,2004,403-406.
    [56]胡东辉,吴一戎.合成孔径雷达散射波干扰研究[J].电子学报,2002,30(12):1882-1884.
    [57]唐波.合成孔径雷达的电子战研究[D].[博士论文].北京:中国科学院电子学研究所,2005.
    [58]胡东辉,吴一戎,王宏琦等.基于移相调制的合成孔径雷达虚假图像干扰[J].雷达与对抗,2002,2:1-4.
    [59]吴一戎,胡东辉.一种新的合成孔径雷达压制干扰方法[J].电子与信息学报,2002,24(11):1664-1667.
    [60]焦逊,陈永光,李修和.有源干扰星载SAR的技术研究[J].现代雷达,2007,29(1):12-15.
    [61]高晓平,雷武虎,吴阳春.合成孔径雷达复合干扰机研究[J].舰船电子对抗,2006,28(6):11-14.
    [62]高晓平,雷武虎. SAR散射波干扰实现方法的研究[J].现代雷达,2006,28(8):22-25.
    [63]孙云辉,陈永光,焦逊.星载SAR应答式欺骗干扰研究[J].电子对抗技术,2004,19(2):23-26.
    [64]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [65]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [66]丛力田等.世界天基雷达技术发展概况[M].北京:国防工业出版社,2007.
    [67]代大海.极化雷达成像及目标特征提取研究[D].[博士论文].长沙:国防科学技术大学,2008.
    [68] Yutaka Kobayashi, Kamal Sarabandi, Leland Pierce, M.Craig Dobson. AnEvaluation of the JPL TOPSAR for Extracting Tree Heights [J].IEEE Trans.onGRS,2000,38(6):2446-2454.
    [69] J.C.Henry.The Lincoln Laboratory35GHz Airborne SAR Imaging RadarSystem[C].National Telesystems Conference Proceedings,1991,1:353-358.
    [70] Paul A.Rosen,Scott Hensley,Kevin Wheeler and etc.UAVSAR:A New NASAAirborne SAR System for Science and Technology Research[C].IEEEConference on Radar,2006:22-29.
    [71] Y. Lou, D. A. Imel, A. Chu,et al. Progress report on the NASA/JPL airbornesynthetic aperture radar system[C].IGARSS,2001,5:2046-2048.
    [72] Dalton S.Rosario.Simultaneous multitarget detection and false alarm mitigationalgorithm for the Predator UAV TESAR ATR system[C].InternationalConference on Image Analysis and Processing,1999:577-581.
    [73] Thompson,D.G, Arnold.D.V, Long.D.G. YINSAR: a compact, Low-costInterferometric Synthetic Aperture Radar[C]. IGARSS,1999,1:598-600.
    [74] Gary F. Adams, Dale A. Ausherman, Susan L.Crippen and etc. The ERIMInterferometric SAR: IFSARE [J]. IEEE Aerospace and Electronic SystemsMagazine,1996:31-35.
    [75] PK Hawkins, CE Brown, KP Murnaghan and etc. The SAR-580Facility-SytemUpdate[C]. IGARSS,2002,3:1705-1707.
    [76] W.J.Miceli. Test Results from the AN/APY-6SAR GMTI Surveillance, Trackingand Targeting Radar[C]. Proc. of the2001IEEE Radar Conference,2001:13-17.
    [77] Andreas R. Brenner, Joachim H. G. Ender. Very Wideband Radar Imaging withthe Airborne SAR Sensor PAMIR[C]. IGARSS,2003,1:533-535.
    [78] Martie M. Goulding, David R. Stevens, Paul R. Lim. The SIVAM Airborne SARSystem[C]. IGARSS,2001,6:2763-2765.
    [79] P. Snoeij, P. Hoogeboom, P. Koomen, H. Pouwels. PHARS: a C-Band AirborneSAR[C].20th European Microwave Conference,1990,861-866.
    [80] Pascale Dubois-Fernandez, O. Ruault du Plessis, D. le Coz, J and etc. TheONERA RAMSES SAR system[C]. IGARSS,2002,3:1723-1725.
    [81] Erik Lintz Christensen, Niels Skou, J rgen Dall and etc. EMISAR: an absolutelycalibrated polarimetric L-and C-band SAR [J]. IEEE Trans. on GRS,1998,1852-1865.
    [82] K. Hoffmann, P. Fischer. DOSAR: a multifrequency polarimetric andinterferometric airborne SAR-system[C]. IGARSS,2002,3:1708-1710.
    [83] L.M.H. Ulander, M. Blom, B. Flood and etc. Development of the Ultra-widebandLORA SAR Operating in the VHF/UHF-band[C].IGARSS,2003,7:4268-4270.
    [84] A V Dzekevich, E A Vostrov, L Ja Melnikov and etc. IMARC-MultifrequencyMultipolarization Airborne SAR System[C]. Radar Conference,1997:491-495.
    [85] Hidefumi Nagata, Hiroshi Shinohara, Minoru Murata and etc. The NECInterferometric SAR System”NEC-SAR”[C]. IGARSS,1996,3:1639-1641.
    [86] Yang Ru Liang. Study of the Airborne and Space-borne Microwave ImagingRadar System[C]. International Conference on Microwave and Millimeter WaveTechnology,2000:16-19.
    [87] Takeo Tadono, Muhtar Qong, Hiruyuki Wakabayashi and etc. Application ofAlgorithms for Estimating Surface Soil Moisture and Roughness ParametersUsing CRL/NASDA Airborne SAR (PI-SAR) DATA[C].IGARSS,2000,3:1262-1264.
    [88] C.E.Livingstone, A.L.Gary, P.W.Vachon, M.Lalonde and etc.The CanadianAirborne R&D SAR facility: The CCRS C/X SAR[C].IGARSS,'Remote Sensingfor a Sustainable Future.’1996,3:1621-1623.
    [89] N.J.S. Stacy, D.P. Badger, A.S. Goh and etc. The DSTO Ingara airbone X-BandSAR polarimetric upgrade: first results[C]. IGARSS,2003,7:4474-4476.
    [90] Michael R. Inggs. Satus of the SASAR System[C].IGARSS,'Remote Sensing fora Sustainable Future.’1996,3:1889-1891.
    [91] Jordan RL, Huneycutt BL, Werner M. The SIR-C/X-SAR synthetic apertureradar system [J]. IEEE Trans. on GRS,1995,33(4):829-839.
    [92] Y.L.Desnos, C.Buck, J.Guijarro, et al. The Envisat Advanced Synthetic ApertureRadar System[C].IGRSS,2000,5:1171-1173.
    [93] Thompson, AA, Luscombe AP, et al. New Modes and Techniques of theRADARSAT-2SAR[C]. IGARSS,2001:485-487.
    [94] Igarashi T, Shimada M, Rosenqvist A, et al. Preliminary study on data sets ofADEOS-II and ALOS dedicated to terrestrial carbon observation [J]. Adv. SpaceRes.,2003,32(11):2147-2152.
    [95] Y-L. Desnos, J-L.Valero, M.Loiselet. J-ERS-1and ERS-1SAR Calibrationexperiments over Flevoland[C]. IGARSS,1993,3:955-957.
    [96] P.Lombardo. A multichannel Spaceborne Radar for the COSMO-SkymedSatellite Constellation[C].IEEE Aerospace Conference Proceedings,2004,111-119.
    [97] Sharay Y, Naftaly U. TECSAR: design considerations and programme status[C].IEE Proc. Radar Sonar Navig,2006,153(2):117-121.
    [98] Wenqin Wang, Jingye CAI. A Technique for Jamming Bi-and Multistatic SARSystems [J]. IEEE Geoscience and remote sensing letters,2007,4(1):80-82.
    [99]唐波,郭琨毅,王建萍.合成孔径雷达三维有源欺骗干扰[J].电子学报,2007,35(6):1203-1206.
    [100]马俊霞,蔡英武,张海.一种SAR压制干扰效果评估方法[J].现代雷达,2004,26(10):4-7.
    [101]苗艳红,赵国庆.SAR雷达干扰效果的度量[J].电子对抗技术,2004,19(6):19-22.
    [102]张孝乐,李立萍,杨晓波.基于图像质量指标的SAR干扰效果评估研究[J].电子对抗,2005,6:2225.
    [103]焦逊,陈永光,李修和.基于模糊推理的SAR干扰效果评估[J].雷达科学与技术,2006,4(4):197-201.
    [104] WU Xiao-fang, DAI Da-hai, WANG Xue-song and etc. Evaluation of SARJamming Performance[C].MAPE2007, Hangzhou,2007,2:1476-1479.
    [105]王伟,王国玉,陈永光.基于最小熵的SAR干扰图像配准与评估研究[J].电光与控制,2008,15(6):58-61.
    [106]周彦平,赵雪,舒锐,龙伟军. SAR星的可对抗性研究[J].装备指挥技术学院学报,2003年10月,14(5):33-37.
    [107]吴晓芳,李金梁,邢世其,王雪松,卢焕章. SAR的箔条干扰技术研究[J].现代雷达.2010,32(07):58-62.
    [108]孙光才,周峰,邢孟道.一种SAR-GMTI的无源压制性干扰方法[J].系统工程与电子技术.2010,32(1):39-44.
    [109] R. Keith Raney, R. Bamler. Comments on SAR signal and noiseequations[A].Geoscience and Remote Sensing Symposium, IGARSS’94[C],8-12Aug.1994,1:298-300.
    [110]袁翔宇,王国玉,汪连栋.有源噪声干扰对SAR干扰效果的仿真研究[J].系统工程与电子技术,2004年11月,26(11):1564-1566.
    [111]徐少坤. SAR欺骗式干扰技术研究[D].[硕士论文].长沙:国防科学技术大学,2007
    [112]杨伟宏,陈永光,王雪松,李永祯.距离弯曲差对SAR欺骗干扰成像的影响[J].系统工程与电子技术.2009,31(10):2343-2345.
    [113]郑坤,高梅国,刘国满.一种基于扩展孔径的SAR欺骗干扰算法[J].北京理工大学学报,2009,29(5):455-459.
    [114]杨光,李绍滨,姜义成.辐射定标对SAR欺骗干扰的影响及改进方法[J].现代雷达.2010,32(1):26-29.
    [115]邓云凯,郑远,胡英辉,合成孔径雷达转发式干扰分析[J].电子与信息学报,2010.32(01):69-74.
    [116]孙炳章,李景文.干扰机空间位置对SAR散射式干扰的影响[J].信号处理.2011,27(2):293-297.
    [117]魏青.合成孔径雷达成像方法与对合成孔径雷达干扰方法的研究[D].[博士论文].西安:西安电子科技大学,2007.
    [118]刘阳,王涛,代大海,张文明,王雪松.基于余弦调相和相干噪声的SAR压制干扰[C].第十届全国雷达学术年会.北京:国防工业出版社,2008.
    [119]陈思伟,代大海,李永祯,王雪松. SAR二维余弦调相转发散射波干扰原理[J].电子学报.2009,37(12):2620-2624.
    [120]吴晓芳,王雪松,卢焕章.对SAR的间歇采样转发干扰研究[J].宇航学报.2009,30(5):2043-2048.
    [121]吴晓芳,柏仲干,代大海,王雪松.对SAR的方位向间歇采样转发干扰[J].信号处理.2010,26(01):1-6.
    [122]魏青,杨绍全,陈俊丽,董春曦.对合成孔径雷达的干扰效果度量方法研究[J].西安电子科技大学学报.2004,31(3):383-387.
    [123]韩中生,宋小全. SAR成像及干扰效果评估方法研究[J].飞行器测控学报.2004,23(2):81-84.
    [124]付文宪,李少洪,洪文.基于高分辨率SAR图像的打击效果评估[J].电子学报.2003,31(9):1290-1294.
    [125]谢虹,汪连栋,袁翔宇.对SAR的噪声干扰效果评估研究[J].航天电子对抗.2003(03):15-17.
    [126]苏娟,鲜勇,刘代志.基于图像变化检测的打击效果自动评估算法[J].火力与指挥控制.2008,33(4):134-137.
    [127]李江源,王建国,杨建宇.基于图像域检测的SAR杂波干扰评估[J].电波科学学报.2007,22(3):430-435.
    [128]孙云辉,李芳倩,冯建伟.基于SAR图像的欺骗式干扰效果评估研究[J].航天电子对抗.2006,22(2):31-34.
    [129]刘志伟,许克峰.基于图像信息损失率的合成孔径雷达干扰效果评估指标[J].电子学报,2007,35(6):1042-1045.
    [130]周广涛,石长安,杨英科,李宏.基于熵的SAR干扰效果评估方法[J].航天电子对抗.2006,22(4):33-35.
    [131]李江源,王建国.基于统计区分度的SAR图像干扰评估方法[J].电子与信息学报.2008,30(12):2854-2857.
    [132]李江源,王建国,杨建宇.一种新的基于ICA的SAR图像干扰分离方法[J].电波科学学报.2008,23(3):491-495.
    [133]柏仲干,王伟,王国玉,汪连栋.基于区域纹理匹配的SAR欺骗性干扰评估方法研究[J].系统工程与电子技术.2006,28(10).
    [134]刘鹏军,马孝尊,武忠国,王岩,刘志浩.基于BP神经网络的SAR干扰效果评估[J].舰船电子工程.2009,29(02).
    [135]张弓,张昆辉,朱兆达,朱宁仪.一种基于逼近信噪比的SAR图像质量评估方法[J].南京航空航天大学学报.2004,36(2):240-244.
    [136]刘阳,代大海,王雪松.一种结合人眼视觉特性的SAR干扰效果评估新方法[C].长沙:2010.
    [137]刘阳,代大海,王雪松.基于小波域加权结构相似度的SAR干扰效果评估[J].信号处理.2010,26(10):1577-1582.
    [138]刘阳,代大海,王雪松.符合HVS特性的相关系数SAR干扰效果评估方法[J].电子与信息学报.2011,33(06):1505-1509.
    [139]韩国强,李永祯,邢世其,刘庆富,杨伟宏.对新型SAR欺骗干扰效果的评估方法[J].宇航学报.2011,32(09):1994-2001.
    [140] Chen V C, Li F, Ho S, Wechsler H. Micro-Doppler effect in radar: phenomenon,model and simulation study [J]. IEEE Transactions on Aerospace and ElectronicSystems,2006,42(1):2-21
    [141]陈行勇.微动目标雷达特征提取技术研究[D].[博士论文].长沙:国防科学技术大学,2006.
    [142] Chen V C. Analysis of radar micro-Doppler signature with time-frequencytransform [C]. Proceedings of the10th IEEE Workshop on Statistical Signal andArray Processing, Pocono Manor, PA, USA, Aug14-16,2000:463-466.
    [143] Setlur P, Amin M. and Thayaparan T. Micro-Doppler signal estimation forvibrating and rotating targets [C]. Proceedings of the Eighth InternationalSymposium on Signal Processing and its Applications, Sydney, Australia, August28-31,2005:639-642.
    [144]吴晓芳. SAR-GMTI运动调制干扰技术研究[D].[博士论文].长沙:国防科学技术大学,2009.
    [145] Rüegg M. Ground Moving Target Indication with Millimeter Wave SAR [D].Zurich: University of Zurich,2007.
    [146] Thayaparan T, Abrol S, Riseborough E. Micro-Doppler Radar Signatures forIntelligent Target Recognition [R]. OTTAWA: DEFENCE RESEARCH ANDDEVELOPMENT CANADA OTTAWA,2004.
    [147] Thayaparan T, Abrol S, Qian S. Micro-Doppler Analysis of Rotating Target inSAR [R]. OTTAWA: DEFENCE RESEARCH AND DEVELOPMENTCANADA OTTAWA,2005.
    [148] Rüegg M, Meier E, Nüesch D. Vibration and Rotation in Millimeter-Wave SAR[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.2007,45(2):293-304.
    [149] Sparr T, Krane B. Time-frequency analysis of vibrating targets in airborne SARsystems [J]. IEE Proceedings: Radar, sonar and navigation.2003,150(3):173-176.
    [150] Sparr T, Krane B. Micro-Doppler analysis of vibrating targets in SAR [J]. IEEProceedings: Radar, sonar and navigation.2003,150(4):277-283.
    [151]李金梁,王雪松,刘阳,刘进,孟刚,王涛.雷达目标旋转部件的微Doppler效应[J].电子与信息学报.2009,31(03):583-587.
    [152]吴晓芳,刘阳,王雪松,卢焕章.旋转微动目标的SAR成像特性分析[J].宇航学报.2010,31(04):1181-1189.
    [153] Silverstein S D, Hawkins C E. Synthetic aperture radar image signatures ofrotating objects [C]. Pacific Grove, California, USA:2004.
    [154] Cumming I G, Wong F H.合成孔径雷达成像——算法与实现[Z].北京:电子工业出版社,2007.
    [155]曹志刚,钱亚生.现代通信原理[M].北京:清华大学出版社,2002.
    [156]刘忠.基于DRFM的线性调频脉冲压缩雷达干扰新技术[D].[博士论文].长沙:国防科学技术大学,2006.
    [157]吴晓芳,邢世其,王雪松,卢焕章.对合成孔径雷达的脉间分段移频干扰[J].航天电子对抗.2010,26(01):53-57.
    [158]田贤峰,陈晓明,姚嘉陵,潘鼎奇.合成孔径雷达随行干扰信号产生方法[J].中国电子科学研究院学报.2009,4(06):646-650.
    [159]朱燕,赵国庆,崔艳鹏.移频干扰在动目标检测中的效果分析[J].航天电子对抗.2009,25(02):55-57.
    [160]徐少坤,李亚楠,付耀文.欺骗式动目标SAR干扰技术研究[J].现代雷达.2008,30(07):94-98.
    [161]王雪松,刘建成,张文明,傅其祥,刘忠,谢晓霞.间歇采样转发干扰的数学原理[J].中国科学E辑,信息科学,2006,36(8):891-901.
    [162]郑波浪,机载高分辨率合成孔径雷达运动补偿研究,[D].[硕士论文].北京:中国科学院研究生院,2006
    [163]吕孝雷.机载多通道SAR-GMTI处理方法的研究[D].[博士论文].西安:西安电子科技大学,2008.
    [164]郑明洁.合成孔径雷达动目标检测和成像研究[D].[博士论文].北京:中国科学院研究生院(电子学研究所),2003.
    [165] Charles Edward Muehe, Melvin Labitt, Displaced-Phase-Center AntennaTechnique [J], Lincoln Laboratory Journal2002,12(2):281-296.
    [166] Chiu S. A Constant False Alarm Rate (CFAR) Detector for RADARSAT-2Along-Track Interferometry [R]. Defence R&D Canada-Ottawa, Ottawa ONT(CAN),2005.
    [167] Chiu S, Livingstone C. A Comparison of Displaced Phase Centre Antenna andAlong-Track Interferometry Techniques for RADARSAT-2Ground MovingTarget Indication [R]. Defence R&D Canada-Ottawa, Ottawa ONT (CAN),2005.
    [168] Zhang Y. Along Track Interferometry Synthetic Aperture Radar (ATI-SAR)Techniques for Ground Moving Target Detection [R]. Stiefvater Consultants,2006.
    [169]叶钒.时频分析在雷达信号处理中的应用[D].[硕士论文].长沙:国防科学技术大学,2005.
    [170] Chiu S. Two-Channel SAR-GMTI via Fractional Fourier Transform [R]. DefenceR&D Canada-Ottawa,2004.
    [171]陈兴华. FrFT与SAR动目标检测和成像[D].[硕士论文].杭州:浙江大学,2006.
    [172]史洪印,周荫清.一种改进的三通道SAR地面运动目标指示方法[J].遥测遥控.2009,30(03):35-40.
    [173]邓彬,秦玉亮,王宏强,黎湘.一种改进的基于FrFT的SAR运动目标检测与成像方法[J].电子与信息学报.2008,30(02):326-330.
    [174]孙泓波,顾红,苏卫民,刘国岁.利用分数阶Fourier域滤波的机载SAR多运动目标检测[J].航空学报.2002,23(01):33-37.
    [175]刘阳. ISAR成像中JEM干扰的抑制[D].[硕士论文].哈尔滨:哈尔滨工业大学,2008.
    [176]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,1999.
    [177]张孝乐,合成孔径雷达干扰及干扰效能评估研究[D].[硕士论文].成都:电子科技大学,2006.
    [178]梁恒, SAR图像干扰效果评估[D].[硕士论文].成都:电子科技大学,2006.
    [179]何川, SAR有源噪声干扰效能评估方法研究[J].电子对抗技术,2005,20(3):29-32.
    [180]马俊霞,蔡英武,陈惠连, SAR压制式干扰仿真及效果评估[J].信息与电子工程,2004,2(2):109-113.
    [181]路文.基于视觉感知的影像质量评价方法研究[D].[博士论文]西安:西安电子科技大学,2009.
    [182]孙运强,激光干扰图像质量评价方法研究[D].[硕士论文].长沙:国防科学技术大学,2006.
    [183]马文波,赵保军,任宏亮,毛二可.基于小波频带划分及CSF特性的图像质量评价方法[J].激光与红外,2007,37(7):687-690.
    [184] Zhou Wang, Conrad Bovik. Image quality assessment: from error visibility tostructural similarity [J]. IEEE Transactions on Image Processing,2004,13(4):600-612.
    [185] Zhou Wang, Qiang Li. Information Content Weighting for Perceptual ImageQuality Assessment [J]. IEEE Transactions on Image Processing,2011,20(5):1185-1197
    [186] Zhou Wang, Eero P. Simoncelli, Alan C. Bovik. Multi-scale structural similarityfor image quality assessment[C]. Pacific Grove, CA: IEEE,2003.
    [187]魏政刚,袁杰辉,蔡元龙.一种基于视觉感知的图像质量评价方法[J].电子学报.1999,27(4):79-82.
    [188]叶盛楠,苏开娜,肖创柏,段娟.基于结构信息提取的图像质量评价[J].电子学报.2008,36(5):856-861.
    [189]杨春玲,何流,魏毅,麦智毅.基于图像块分类的加权结构相似度[J].华南理工大学学报(自然科学版).2009,37(1):42-47.
    [190] Xinbo Gao, Wen Lu, Dacheng Tao, Xuelong Li. Image quality assessment basedon multiscale geometric analysis[J]. IEEE transactions on image processing.2009,18(7):1409-1423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700