磷酸铝胶粘剂的制备及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸铝胶粘剂因具有固化温度低、介电性能优异、无毒、粘结强度高、高温结构稳定等优点,在建筑和航天领域有着广泛的应用。本文通过粘度、TG-DTA、FT-IR、XRD、SEM和弯曲强度的分析测试,研究了磷酸铝基体的自身固化反应、胶粘剂的固化反应、不同固化剂与磷酸铝基体的质量比对力学强度和固化温度的影响。
     不同磷与铝的摩尔比具有不同的力学性能,粘度和弯曲强度测试表明,磷酸二氢铝基体的力学性能最好。磷酸二氢铝基体在初步固化温度下发生缩合反应,生成三聚磷酸铝及多水合三聚磷酸铝,P-O-H与P-O-H脱去一分子H2O,变成线性P-O-P键。在完全固化温度下,反应生成六方晶系的偏磷酸铝,线性的P-O-P变为环状结构的P-O-P,此结构提供粘结力。在550℃左右,六方晶系的偏磷酸铝转变成立方晶系的偏磷酸铝。
     基体与固化剂的质量比为5:1的Al(H_2PO_4)_3-烧结Al(OH)_3胶粘剂在初步固化温度下固化反应生成Al(HP_2O_7)·2.5H_2O,在完全固化温度下,生成三方晶系的正磷酸铝,在一定温度下,三方晶系的正磷酸铝转变为三斜晶系的正磷酸铝,粘结力由固化反应后形成的以Al-O-P-O-Al为链接的无机大分子结构提供。
     基体与固化剂的质量比分别为6:1的Al(H_2PO_4)_3-Al(OH)_3胶粘剂、7:1的Al(H_2PO_4)_3-烧结Al(OH)_3胶粘剂和5:1的Al(H_2PO_4)_3-Al2O3胶粘剂固化反应后生成AlPO_4和Al(PO_3)_3,7:1的Al(H_2PO_4)_3-Fe_2O_3胶粘剂固化反应后生成Fe(PO_3)_3、AlPO_4和Al(PO_3)_3,6:1的Al(H_2PO_4)_3-CuO胶粘剂固化反应后生成Cu_2P_2O_7、AlPO_4和Al(PO_3)_3。
     固化剂Al2O3、烧结Al(OH)_3、Fe_2O_3、CuO都能降低胶粘剂的初步固化温度和完全固化温度,随固化剂的增多,初步固化温度和完全固化温度都降低,能作为降低胶粘剂固化温度的固化剂使用。其中以固化剂Fe_2O_3的降温最显著,能将低100℃左右。固化剂Al(OH)_3虽然能降低初步固化温度,但是完全固化温度升高较大,因而不能作为降低胶粘剂固化温度的固化剂使用。
Aluminum phosphate adhesive has the advantages of low curing temperature, excellent dielectric properties, non-toxicity, high binding strength and high temperature structural stability, and it has broad application in architecture and aerospace. In this article, analysis of viscosity, TG-DTA, FT-IR, XRD, SEM and bending strength were done, self-curing reaction of the aluminum phosphate matrix, curing reaction of the adhesive. Impacts on mechanical properties and curing temperature of different mass ratio of aluminum phosphate matrix and different curing agents were studied.
     Tests of bending strength and viscosity and mechanical properties revealed the best performance of strength properties of Al(H_2PO_4)_3 matrix with different molar ratios of P and Al. Al(H_2PO_4)_3 matrix reacted with itself at the temperature of initial curing temperature, which resulted in AlH2P3O10 and its form containing crystalized water. A molecular of H2O was abstracted between every two moleculars of P-O-H, in which a bond of P-O-P was formed in the shape of line. A hexagonal structure of Al(PO_3)_3 with P-O-P bond in its circle shape formed under complete curing temperature, which provides adhension. Hexagonal structure of Al(PO_3)_3 transformed into its cubic state at about 550℃.
     Al(H_2PO_4)_3-Sintering Al(OH)_3 adhesive with the aluminum phosphate matrix and curing agent mass ratio of 5:1 transformed into Al(HP_2O_7)·2.5H_2O, under the complete curing temperature. Trigonal AlPO_4 transformed into the rhombic system at a certain temperature. Adhension was provided by inorganic macromolecular linked by Al-O-P-O-Al.
     Al(H_2PO_4)_3-Al(OH)_3, Al(H_2PO_4)_3-sintering Al(OH)_3 and Al(H_2PO_4)_3-Al2O3 adhesives with the matrix and curing agent mass ratios of 6:1, 7:1, 5:1 respectively transformed into AlPO_4 and Al(PO_3)_3. Al(H_2PO_4)_3-Fe_2O_3 adhesive with the matrix and curing agent mass ratios of 7:1 transformed into Fe(PO_3)_3, AlPO_4 and Al(PO_3)_3. Al(H_2PO_4)_3-CuO adhesive with the matrix and curing agent mass ratios of 6:1 transformed into Cu_2P_2O_7, AlPO_4 and Al(PO_3)_3.
     Al2O3, Al(OH)_3, Fe_2O_3 and CuO can all reduce the initial curing and complete curing temperature of adhesives, and they can all be used for adhesives to reduce the initial curing and complete curing temperature with the increase of the amount of curing agent. Fe_2O_3, as the curing agent, has the outstanding performance, which can reduce the curing temperature to 100℃. Although Al(OH)_3 can reduce the initial curing temperature, it can not be used as the curing agent for the reason that the complete curing temperature increases.
引文
[1]姜勇刚,张长瑞,曹峰,等.高超音速导弹天线罩透波材料研究进展[J].硅酸盐通报,2007,26(3):500-505.
    [2]孙银宝,张宇民,韩杰才.耐高温透波材料及其性能研究进展[J].宇航材料工艺,2008,38(3):11-14.
    [3]袁海根,周玉玺.透波复合材料研究进展[J].化学推进剂与高分子材料,2006,4(5):30-36.
    [4]韩爽,杜海生.无机天线罩材料研究进展[J].功能材料,2007(38):3084-3088.
    [5]陈正中,王晨.无机磷酸盐胶粘剂的研究进展[J].化学中间体,2009(04):12-14.
    [6]陈孜,张雷,周科朝.磷酸盐基耐高温无机胶黏剂的研究进展[J].粉末冶金材料科学与工程,2009,14(2):74-82.
    [7]刘继江,刘文彬,王超,等.磷酸盐基胶粘剂的研究与应用[J].化工科技,2007,15(1):55-58.
    [8]曾宪光,喻兰英,李新岳,等.新型高温磷酸盐胶粘剂的制备和研究[J].表面技术,2010,39(1):103-105.
    [9] Alaadien K, Vogt S, Weisser J, et al. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants[J]. Journal of Materials Science: Materials in Medicine, 2007, 18(5): 909-916.
    [10] Anita L, Jolly P, Effect of binder type and binder level on the properties of agglomerates containing lactose and dibasic calcium phosphate dihydrate[J]. Pharmaceutical Technology, 2008, 32(10): 54-64.
    [11] Thorsten P, Matthias M, Vincent B, et al. An in vitro crystallization setup to assess the efficiency of different phosphate binders in nephrology: Quantitative analytical considerations[J]. Analytical Methods, 2010, 2(7): 901-911.
    [12]张秉文,俞永林,刘昌胜,等.磷酸镁骨黏合剂的生物安全性研究[J].中华医院感染学杂志,2011,2(7):1297-1300.
    [13] Qiao F, Chau C K, Li Z. Property evaluation of magnesium phosphate cement mortar as patch repair material[J]. Construction and Building Materials, 2010, 24(5): 695-700.
    [14] Sturgeon J L, Allcock H R, Nair L, et al. Effects of fine aggregate on theproperties of calcium phosphate cements[J]. Advances in Cement Research, 2009, 21(4): 135-140.
    [15] Uwe K, Elke V, Tobias R, et al. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(11): 2947-2953.
    [16] Nora E H, Alberto N S, Esteban F A, et al. Magnesia-phosphate bond for cold-setting cordierite-based refractories[J]. Cement and Concrete Research, 2002, 32(5): 675-682.
    [17] Bakunov V S, Shayakhmetov, U S. Deformation of unfired refractories based on phosphate binders. 7. Deformation of composites based on silicon nitride[J]. Refractories and Industrial Ceramics, 2007, 48(4): 294-297.
    [18] Bakunov V S, Shayakhmetov, U S. Deformation of nonfired refractories on phosphate binders. 4. Deformation due to heating and creep of cement composition[J]. Refractories and Industrial Ceramics, 2007, 48(2): 98-102.
    [19]张雷,陈孜,李志友,等. NiFe2O4/Cu金属陶瓷与金属的磷酸盐黏接特性[J].中南大学学报,2010,41(6):2049-2155.
    [20] Salikhov T P, Kan V V, Savatyugina T V, et al. Corundum filtering ceramic with phosphate binders[J]. Glass and Ceramics, 2008, 65(7-8): 278-281.
    [21] Bel'Maz N S. Development of high-alumina ceramic concrete based on a composite binder[J]. Refractories and Industrial Ceramics, 2010, 51(1): 39-41.
    [22]周武艺,唐绍裘,刘文超,等.磷酸铝胶粘剂的合成反应动力学研究[J].中国胶粘剂,2003,12(1):1-3.
    [23]唐红艳,王继辉,高国强,等.低温固化磷酸铝基体的制备及过早硬化研究[J].固体火箭技术,2007,30(5):433-436.
    [24]雷阎盈,余历君,朱玲菊,等. CuO-磷酸盐胶粘剂粘接机理[J]. 1999,29(3):229-232.
    [25] Chiou J M, Chung D D L. Improvement of the temperature resistance of aluminum-matrix composites using an acid phosphate binder[J]. Journal of Materials Science, 1993, 28(6): 1435-1436.
    [26] Toy C, Whittemore O J. Phosphate bonding with several calcined aluminas[J]. Ceramics International, 1989, 15(3): 167-171.
    [27] Zou C, Zhang D H, Li y, et al. Phase evolution of aluminum-chromium-phosphate binders during heat-treatment[J]. Key Engineering Materials, 2007, 336-338 II: 1280-1283.
    [28] Soudée E, Péra J. Mechanism of setting reaction in magnesia-phosphate cements[J]. Cement and Concrete Research, 2000, 30(2): 315-321.
    [29] Angolenko L A, Semchenko G D, Tishchenko S V, et al Composition optimization for Al_2O_3-SiC-C packed materials with alumochromium phosphate binder[J]. Refractories and Industrial Ceramics, 2009, 50(4): 291-294.
    [30] Lan Y H, Hye J H, Hunseung H, et al. Deveopment of Cr-free aluminum phosphate binders and their composite applications[J]. Composites Science and Technology, 2007, 67(6): 1195-1201.
    [31] Pitak Y N, Churilova Y V. The effect of aluminum phosphate binder on the crystallization of mullite-silica fibers[J]. Refractories and Industrial Ceramics, 2004, 45(4): 275-276.
    [32] Vippola M, Ahmaniemi S, Keranen J, et al. Aluninum phosphate sealed alumina coating: characterization of microstructure[J]. Material Science and Engineering, 2002, 323(1-2): 1-8.
    [33] Formanek B, Szymanski K, Szczucka-Lasota B, et al. New generation of protective coatings intented for power industry[J]. Journal of Materials Processing Technology, 2005, 164-165: 850-855.
    [34] Yang Q B, Wu X L. Factors influencing properties of phosphate cemen-based binder for rapid repair of concrete[J]. Cement and Concrete Research, 1999, 29(3): 389-396.
    [35] Fernando J A,Chung D D L. Improving an alumina fiber membrane for hot gas filtration using an acid hosphate binder[J]. Journal of Materials Science, 2001,36(21): 5079-5085.
    [36] Kim D P, Myung H S, Rho J S, et al. Fabrication and properties of thermal insulating glass fiber reinforced composites from low temperature curable polyphosphate inorganic polymers[J]. Composites Science and Technology, 2003, 63(3-4): 493-499.
    [37] Hall D A , Stevens R, EI-Jazairi B. The effect of retarders on the microstructure and mechanical properties of magnesia-phosphate cement mortar[J]. Cement and Concrete Research, 2001, 31(3): 455-465.
    [38] Péra J, Ambroise J. Fiber-reinforced magnesia-phosphate cement composites for rapid repair[J]. Cement and Concrete Composites, 1998, 20(1): 31-39.
    [39] Fernando J A, Chung D D L. Thermomechanical properties of alumina fiber membrane[J]. Ceramics Internationa1, 2005, 31(3): 453-460.
    [40] Karpukhin I A, Vladimirov V S, Moizis S E. A mechanism for phosphate hardening and prospects for the use of metal phosphate materials(a review). Part I. The nature of hydrogen bonding and its function in the mechanism of phosphate hardening[J]. Refractories and Industrial Ceramics, 2005, 46(3):180-186.
    [41] Wagh A S, Jeong S Y. Chemically bonded phosphate ceramics:III, reduction mechanism and its application to iron phosphate ceramics[J]. Journal of American Ceramic Society, 2003, 86(11): 1850-1855.
    [42] Krotikov V A, Buslaev G S, Zhukovskaya A E, et al. Effect of organosilicon phosphate binders on physicomechanical properties of corundum-carbon refractories[J]. Refractories and Industrial Ceramics, 2006, 47(1): 53-57.
    [43] Xia Lu, Zhang Y S, Huang J. A new compound phosphate heat-cured foundry binderAdvanced[J]. Materials Research, 2010, 97-101: 979-982.
    [44] Shang H F. Preparation of Suspended Liquid Hardener for No-Bake Phosphate Binder Sand[J]. Advanced Materials Research, 2011, 148-149: 338-341.
    [45] Zemlyanoi K G, Kamenskikh V A. Dependence of properties of clay-phosphate binder on production technology[J]. Refractories and Industrial Ceramics, 2010, 51(3): 206-209.
    [46] Angolenko, L A , Semchenko G D, Tishchenko S V, et al. Oxidation resistance before and after heat treatment for compacted Al2O3-SiC-C mixtures with aluminum-chromium-phosphate binder[J]. Refractories and Industrial Ceramics, 2009, 50(1): 52-56.
    [47] Amritphale S S, Bhasin S, Chandra N. Energy efficient process for making pyrophyllite-based ceramic tiles using phosphoric acid and mineralizers[J]. Ceramics Internationa1, 2006, 32(2): 181-187.
    [48]魏元,徐岱,冯卫.无机型磷酸盐胶粘剂粘贴工艺对于有效粘贴的影响研究[J].航天器环境工程,2011,28(2):167-169.
    [49]陈全莉,袁心强,陈敬中,等.磷酸铝结合剂改性绿松石的结构特征[J].地球科学-中国地质大学学报,2010,35(6):1023-1028.
    [50]叶险峰,白洪刚,李冰,等.纳米氧化镁对磷酸盐胶粘剂性能的影响[J].黑龙江大学自然科学学报,2010,27(2):223-225.
    [51]邓诗峰,周燕,黄发荣,等.石英纤维增强磷酸铬铝/有机硅杂化树脂基复合材料性能[J].功能材料,2009,4(40):650-652.
    [52]陈兵,吴震,吴雪萍.磷酸镁水泥改性试验研究[J].武汉理工大学学报,2011,30(3):29-34.
    [53]林玮,孙伟,李宗津.磷酸镁水泥砂浆的干燥收缩性能[J].工业建筑,2011,40(4):75-78.
    [54]王新鹏,田莳.α-A1203填料添加量对单向碳化硅纤维增强磷酸铝基复合材料性能的影响[J].稀有金属材料与工程,2006,35(2):113-116.
    [55]吕震宇,耿浩然,张明习,等.硼酸铝晶须增强磷酸铝基透波材料的制备[J].科学通报,2008,53(13):1608-1610.
    [56] Han H J, Kim D P. Studies on curing chemistry of aluminum-chromium-phosphates as low temperature curable binders[J]. Journal of Sol-Gel Science and Technology, 2003, 26: 223-228.
    [57] Zhou W J, He W, Zhang X D, et al. Simple and rapid synthesis of Fe(PO_3)_3 by microwave sintering[J]. Journal of Chemical and Engineering Data, 2009, 54(7): 2073-2076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700