再生氨法脱除燃煤电厂烟气中二氧化碳的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为减缓由温室气体人为排放引起的全球变暖,在“后京都”时代,开展燃煤电厂CO_2捕获方法的研究十分必要。其中,以化学吸收法脱除燃烧后烟气中CO_2为有效的方法之一。初步研究表明,与一乙醇胺法相比,氨法具有一定优势,已引起研究者的广泛关注。考虑到电厂巨大的CO_2排放量,将脱碳吸收剂进行再生、循环利用更为可行,但目前相关研究报道较少。
     本文利用自行设计的常压下半连续吸收与解吸实验系统,对再生氨法脱碳过程开展详细而深入的研究。从物质传递与化学反应动力学的角度,对CO_2吸收与解吸过程进行分析,并围绕影响CO_2脱除效率与解吸比例的因素展开研究。实验和理论分析结果表明,氨水脱碳过程因吸收液CO_2担载程度的不同可分为三个区域,其中,低于0.2 molCO_2/molNH_3为扩散控制区,高于0.8 molCO_2/molNH_3为反应动力学控制区,其间为过渡区。
     在实验条件下,氨对CO_2的吸收能力为0.7~1 molCO_2/molNH_3,平均脱碳效率可高于90%。在加热不同氨浓度吸收液解吸CO_2的过程中,CO_2解吸比例随加热温度和溶液浓度的提高而增大,但增长趋势略有差异。在60~90℃间,碳酸氢铵溶液受热分解为二次反应,速率常数k=4.4×1013exp(-13541/T)。通常,低浓度氨吸收剂再生后的CO_2担载程度高于0.4 molCO_2/molNH_3;而加热高浓度氨吸收液,在保持氨浓度不变的循环中,再生吸收剂的CO_2担载程度可低于0.2 molCO_2/molNH_3。综合考虑吸收与解吸效率,选取常压下再生氨法循环参数。以7.25 mol/L氨水为初始吸收剂,将吸收液CO_2担载程度控制在0.45~0.55 molCO_2/molNH_3,实现高于90%的脱碳效率;再生温度87.5℃,效率约为80%;将解吸气中NH_3回收使再生吸收剂的CO_2担载程度低于0.2 molCO_2/molNH_3,循环利用。
     通过对300MW燃煤电厂再生氨法脱碳系统的模拟,估算其初投资约为电厂的32.1%、再生热耗为1.67 GJ/tCO_2。若以抽取电厂循环蒸汽和利用其输出电量来满足脱碳系统能耗,将引起电厂输出电量下降约16%。以上研究表明氨法优于MEA法,具有经济可行性,值得进一步研究。
The researches on CO_2 capture in coal-fired power plants are essential in dealing with the global warming incurred by anthropogenic greenhouse gases emissions. Chemical absorption has been proved to be one of the most effective ways in removing CO_2 from flue gas after combustion. The available studies indicate that, comparing with MEA method, aqua ammonia has demonstrated significant advantage as a CO_2 capture agent, and has attracted more and more attentions. Considering the vast amount of CO_2 emitted from power plants, the regeneration and recycle of CO_2 capture agent would be a more appropriate approach.
     In this research, an atmospheric semi-batch absorption/desorption apparatus has been developed, and the whole process of CO_2 capture by regenerated ammonia has been thoroughly investigated. The study has been conducted from both the mass transfer and the chemical reaction kinetics’points of view. The factors affecting the CO_2 removal efficiency and desorption ratio have been discussed. Both the experimental results and theoretical analysis revealed that, in CO_2 capture by aqua ammonia, the process was diffusion controlled if the CO_2 loading of absorption solution was lower than 0.2 molCO_2/molNH_3. Reaction kinetics would take control if the loading is higher than 0.8 molCO_2/molNH_3. A region of transition existed between 0.2 and 0.8 molCO_2/molNH_3.
     Under the experimental conditions, the CO_2 absorption capability of ammonia was 0.7~1 molCO_2/molNH_3, whilst the averaged CO_2 removal efficiency might be above 90%. In CO_2 desorption stage, the CO_2 desorption ratios from carbonated ammonia solutions increased with increasing desorption temperature and solute concentration, although the increasing trends were slightly different. Between 60~90°C, the decomposition of ammonium bicarbonate was a 2nd-order reaction with reaction constant k=4.4 ×1013exp(-13541/T). The CO_2 loading of regenerated low ammonia concentration solution was above 0.4 molCO_2/molNH_3, however, for high ammonia concentration solution, the CO_2 loading of regenerated solution was lower than 0.2 molCO_2/molNH_3 if the ammonia concentration remained constant. Taking into account both the absorption and desorption efficiency, it is recommended to set the initial ammonia concentration at 7.25 mol/L and CO_2 loading at 0.45~0.55 molCO_2/molNH_3 to achieve 90% CO_2 removal efficiency. The CO_2 desorption ratio was about 80% when the desorption stage set at 87.5°C. The recovered NH_3 from the desorption stream was capable of reducing the CO_2 loading of recycled regenerated solution to lower than 0.2 molCO_2/molNH_3.
     By simulating the application of CO_2 capture by regenerated aqua ammonia to a 300MW power plant, it has been estimated that the capital cost is 32.1% of the total capital investment of the power plant. The energy consumption of decarbonization agent regeneration is 1.67 GJ/tCO_2. If the energy were provided by extracting steam from the steam cycle of the utility, the overall electricity output would have decreased by 16%. This research revealed that ammonia method had the advantage over MEA method. It was economically feasible and should be further studied.
引文
白冰,李小春,刘延峰,等.中国CO2集中排放源调查及其分布特征[J].岩石力学与工程学报, 2006, 25: 2918-2923.
    CapyxaнянT A,БелополъскийAП.氨水溶液吸收二氧化碳的动力学(第二报) [G]. //南京化工学院无机物工教研组.碳酸氢铵译文集.北京:中国工业出版社, 1965: 11-24.
    陈向民,李慧颖,李智勇,等.利用氨吸收电厂烟道气中的CO2及对大气减排CO2的分析[J]. 河北工业科技, 2008, 25(1): 24-26, 31.
    丹阳化肥厂.碳化法合成氨流程制碳酸氢铵——碳化(第二版) [M].北京:化学工业出版社, 1982: 34.
    迪安J A.兰氏化学手册(第2版) [M].魏俊发译.北京:科学出版社, 2003.
    刁永发,郑显玉,陈昌和.氨水洗涤脱除CO2温室气体的机理研究[J].环境科学学报, 2003, 23(6): 753-757.
    刁永发.氨洗涤和喷射法分别吸附燃煤烟气中二氧化碳和二氧化硫的机理研究[R].北京: 清华大学, 2003.
    丁伯民.高压容器[M].北京:化学工业出版社, 2003a.
    丁伯民.化工容器[M].北京:化学工业出版社, 2003b.
    董建勋,张悦,张昀,等.用氨水作为吸收剂脱除燃煤烟气中CO2的实验研究[J].动力工程, 2007, 27(3): 438-440, 450.
    方利国.计算机在化学化工中的应用(第2版) [M].北京:化学工业出版社, 2006.
    高冈成桢.化工过程的评价法[M].王林译.北京:化学工业出版社, 1981.
    高广生.气候变化的本质与应对策略[J].今日国土, 2002, (5): 24-27.
    葛维寰.化工过程设计与经济[M].上海:上海科学技术出版社, 1989.
    韩德刚.化学动力学基础[M].北京:北京大学出版社, 1987: 84-89.
    胡志光,叶秋生,程立国.喷氨法吸收燃煤电厂CO2的可行性分析[J].环境科学与管理, 2008, 33(1): 80-82.
    化学工程手册[M].北京:化学工业出版社, 1989.
    黄诗坚.氨法洗涤脱硫的经济性分析[J].电力环境保护, 1999, 15(3): 36-39, 49.
    荚江霞,陈明功,张君,等.碟片超重床结构对烟道气中CO2脱除率的影响[J].安徽理工大学学报(自然科学版), 2006, 26(3): 70-72.
    康重庆,陈启鑫,夏清.低碳电力技术的研究展望[J].电网技术, 2009, 33(2):1-7.
    拉姆B M.气体吸收(第2版) [M].刘风志译.北京:化学工业出版社, 1985.
    雷俊勇. Fe-Ca基吸收剂脱硫脱硝实验研究[博士学位论文].北京:清华大学热能工程系, 2005.
    李达志.氨厂尾气中氢的回收及利用[J].氮肥设计, 1994, 32(5): 53-56.
    李勇,肖军. Aspen plus软件及其在燃煤发电工程中的应用[J].能源研究与利用, 2005, (3): 11-13.
    李祉川.侯德榜(第2版) [M].天津:南开大学出版社, 1990: 107-109.
    林伯强.中国能源发展报告2008 [M].北京:中国财政经济出版社, 2008.
    刘光启.化学化工物性数据手册(无机卷) [M].北京:化学工业出版社工业装备与信息工程出版中心, 2002.
    路秀林.塔设备[M].北京:化学工业出版社, 2004.
    邱景荣.随机误差和系统误差新定义诠释[J].中国计量, 2001, (1): 50-51.
    宋小平.溶液电导率的绝对测量方法[J].化学分析计量. 2004, 13(6): 88-89.
    涂晋林.化学工业中的吸收操作——气体吸收工艺与工程[M].上海:华东理工大学出版社, 1994.
    王阳,贾莹光,李振中,等.燃煤烟气氨法CO2减排技术的研究[J].电力设备, 2008, 9(5): 17-20.
    魏一鸣.中国能源报告(2008):碳排放研究[M].北京:科学出版社, 2008.
    肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社, 2001: 133-134.
    徐长香.氨法烟气脱硫技术综述[J].电力环境保护, 2005, 21(2): 17-20.
    许家豪.以化学吸收法处理烟道气二氧化碳之研究[博士学位论文].台湾:成功大学环境工程学系, 2003.
    晏水平,方梦祥,张卫风,等.烟气中CO2化学吸收法脱除技术分析与进展[J].化工进展, 2006, 25(9): 1018-1024.
    杨继光. pH(酸度)计使用中应注意的问题[J].中国计量, 2007, (11): 80-81.
    杨林军,张霞,孙露娟,等.以长效碳铵为载体固定电厂烟气中二氧化碳的技术进展[J].现代化工, 2006, 29(9): 12-15.
    玉置明善.化工装置工程手册[M].大庆石油化工设计院科学技术协会译.北京:兵器工业出版社, 1991.
    张成芳.气液反应和反应器[M].北京:化学工业出版社, 1985.
    张洪流,陈明功.错流碟片式旋转超重力场强化氨水吸收燃煤烟气中CO2的研究[J].煤炭学报, 2007, 32(7): 748-752.
    张君,公茂利,荚江霞,等.超重场强化氨水吸收烟道气中CO2的研究[J].安徽理工大学学报(自然科学版), 2006, 26(1): 48-51.
    张君.超重场强化氨水脱除CO2生成碳酸氢铵晶体的研究[硕士学位论文].淮南:安徽理工大学化学工程系, 2006.
    张茂,赛俊聪,吴少华,等.氨法脱除燃煤烟气中CO2的实验研究[J].热能动力工程, 2008, 23(2): 191-194, 219.
    张谋,陈汉平,赫俏,等.液氨法吸收烟气中CO2的实验研究[J].能源与环境, 2007, (4): 81-83.
    张昀,李振中,李成之,等.电站烟气中CO2减排新技术双重效益的研究[J].现代电力, 2002, 19(3):1-7.
    张贞观.安徽省典型火电项目工程造价分析[J].电力建设, 2003, 24(3): 56-60.
    张志明.新型氮肥——长效碳酸氢铵[M].北京:化学工业出版社, 2000: 84-101.
    郑金美,吴永昌.电导率测量中温度的影响及补偿方法[J].分析仪器, 1990, (3): 62-62, 78.
    郑显玉.氨法脱除电厂烟气中二氧化硫二氧化碳的试验研究[硕士学位论文].北京:清华大学热能工程系, 2002.
    郑州工学院化工系.合成氨工学(碳化) [M]. [出版者不详], 1974.
    周和平.我国碳酸氢铵市场变化及前景[J].小氮肥, 2004, (11): 1-5.
    周连江.无机盐工业手册(第2版) [M].天津化工研究院.北京:化学工业出版社, 1996.
    朱文涛.物理化学[M].北京:清华大学出版社, 1995.
    Alie Colin F. CO2 capture with MEA: integrating the absorption process and steam cycle of an existing coal-fired power plant [D]. Waterloo: University of Waterloo, 2004. http://etd.uwaterloo.ca/etd/calie2004.pdf.
    Astarita G, Savage D W. Theory of chemical desorption [J]. Chemical Engineering Science, 1980, 35: 649-656.
    Bai Hsunling, Yeh An Chin. Removal of CO2 greenhouse gas by ammonia scrubbing [J]. Industrial & Engineering Chemistry Research, 1997, 36: 2490-2493.
    Bruant R G, Guswa A J, Celia M A, et al. Safe storage of CO2 in deep saline aquifers [J]. Environmental Science and Technology, 2002, 36(11): 240A-245A.
    Chen Hanping, Zhang Mou, Wang Xianhua, et al. The study on the removal of CO2 using ammonia scrubbing [C] // 6th Korea-China Workshop on Clean Energy Technology. Busan, 2006: 802-808.
    Chen Hanping, Zhang Mou, Yang Haiping, et al. The study on the removal of CO2 using ammonia scrubbing [C] // Xu Xuchang. Proceedings of the 6th International Symposium on Coal Combustion. Wuhan: Huazhong University of Science and Technology Press, 2007: 767-771.
    Ciferno Jared P, Plasynski Sean I. System analyses of CO2 capture technology installed on pulverized coal plants [R]. [S.l.]: DOE NETL, 2005a.
    Ciferno Jared P, DiPietro Philip, Tarka Thomas. An economic scoping study for CO2 capture using aqueous ammonia [R]. Washington D.C.: U.S. Department of Energy, 2005b.
    Corti Andrea, Lombardi Lidia. Reduction of carbon dioxide emissions from a SCGT/CC by ammonia solution absorption– preliminary results [J]. International Journal of Thermodynamics, 2004, 7: 173-181.
    Darde Victor, Kaj Thomsen, Willy J M, et al. Chilled ammonia process for CO2 capture [C] // 9th International Conference on Greenhouse Gas Technologies. Washington D.C.: Elsevier B.V., 2008.
    Diao Yongfa, Zheng Xianyu, He Boshu, et al. Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing [J]. Energy Conversion and Management, 2004, 45: 2283-2296.
    EIA (Energy Information Administration). World carbon dioxide emissions from the consumption and flaring of fossil fuels, 1980-2006 [DB/OL]. Washington D.C.: Energy Information Administration, 2008(2008-12-08). www.eia.doe.gov.
    Freund P. Abatement and mitigation of carbon dioxide emissions from power generation [C] // Proceedings of Power-Gen. Milan: Elservier Science Ltd., 1998: 54-57.
    Freund P, Thambimuthu K V. Options for decarbonising fossil energy supplies [C] // Combustion Canada. Canada: Elservier Science Ltd., 1999: 112-116.
    Hsu Chia Hao, Chu Hsin, Cho Chorng Ming. Absorption and reaction kinetics of amine and ammonia solutions with carbon dioxide in flue gas [J]. Journal of the Air & Waste Management Association, 2003, 53: 246-252.
    IEA GHG R&D Programme. Capture of carbon dioxide from power station [M]. UK: Michael Dewey Press, 1994: 28-31.
    IEA GHG R&D Programme. Utilization of carbon dioxide [M]. UK: Michael Dewey Press, 1995: 65-68.
    IPCC (Intergovernmental Panel on Climate Change). Climate change 2007: synthesis report [R]. Genevese: IPCC, 2007.
    Jameskatzer D R. The future of coal [R]. Massachusetts: Massachusetts Institute of Technology, 2007.
    Jelen F C, Black J H. Cost optimization engineering [M]. New York: McGraw-hill, 1983.
    Johnston P, Santillo D. Carbon capture and sequestration: potential environmental impacts [R]. IPCC workshop on carbon dioxide capture and storage, 2003.
    Kim You Jeong, You Jong Kyun, Hong Won Hi, et al. Characteristics of CO2 absorption into aqueous ammonia [J]. Separation Science and Technology, 2008, 43: 766-777.
    Koutinas A A, Yianoulis P, Lycourghiotis A. Industrial scale modeling of the thermochemical energy storage system based on CO2 + NH3 NH2COONH4 equilibrium [J]. Energy Conversion and Management, 1983, 23(1): 55-63.
    Lang H J. Engineering approach to preliminary cost estimates [J]. Chemical Engineering, 1947a, 54(9): 130-133.
    Lang H J. Cost relationships in preliminary cost estimation [J]. Chemical Engineering, 1947b, 54(10): 117-121.
    Lang H J. Simplified approach to preliminary cost estimates [J]. Chemical Engineering, 1948, 55(6): 112-113.
    Lee James Weifu, Li Rongfu. Integration of fossil energy systems with CO2 sequestration through NH4HCO3 production [J]. Energy Conversion and Management, 2003, 44: 1535-1546.
    Mariz Carl, Ward Larry, Ganong Garfiled, et al. Cost of CO2 recovery and transmission for EOR from boiler stack gas [C] //Rieme Pierce. Greenhouse Gas Control Technologies: Proceedings of the 4th International conference on Greenhouse gas Control Technologies. Elsevier Science Ltd., 1999.
    Metz Bert, Davidson Ogunlade, Coninck Heleen de, et al. Carbon dioxide capture and storage [R]. Cambridge: Cambrige University Press, 2005.
    Mimura Tomio, Simayoshi Hidenobu, Suda Taiichiro, et al. Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system [J]. Energy Conversion and Management, 1997, 38(Sup1): S57-S62.
    Morimoto Shinichirou, Taki Kotarou, Maruyam Tadashi. Current review of CO2 separation and recovery technologies [C] // 4th Workshop of International Test Network for CO2 capture. Kyoto, 2002.
    Nowak P, Skrzypek J. The kinetics of chemical decomposition of ammonium bicarbonate and carbonate in aqueous solutions [J]. Chemical Engineering Science, 1989, 44(10): 2375-2377.
    Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6735): 429-436.
    Resnik Kevin P, Yeh James T, Pennline Henry W. Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx [J]. International Journal of Environmental Technology and Management, 2004, 4: 89-104.
    Resnik Kevin P, Garber William, Hreha Deborah C, et al. A parametric scan for regenerative ammonia-based scrubbing for the capture of CO2 [C] // Proceedings of 23rd Annual International Pittsburgh Coal Conference. Pittsburgh, 2006.
    Romeo Luis M, Bolea Irene, Escosa Jesus M. Integration of power plant and amine scrubbing to reduce CO2 capture costs [J]. Applied Thermal Engineering, 2008, 28: 1039–1046.
    WDCGG (World Data Centre for Greenhouse Gases). CO2 concentration in the atmosphere [DB/OL]. Tokyo: Japan Meteorological Agency, 2009(2009-03-18). http://gaw.kishou.go.jp/wdcgg/.
    Yeh An Chin, Bai Hsunling. Comparison of ammonia and monoethanomine solvents to reduce CO2 greenhouse gas emissions [J]. The Science of the Total Environment, 1999, 228: 121-133.
    Yeh James T, Pennline Henry W, Resnik Kevin P. Study of CO2 absorption and desorption in a packed column [J]. Energy & Fuels. 2001, 15: 274-278.
    Yeh James T, Resnik Kevin P, Rygle Kathy, et al. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia [J]. Fuel Processing Technology, 2005, 86: 1533-1546.
    You Jong Kyun, Park HoSeok, Yang Seong Ho, et al. Influence of additives including amine and hydroxyl groups on aqueous ammonia absorbent for CO2 capture [J]. Journal of Physical Chemistry B, 2008, 112: 4323-4328.
    Zhang Yun, Li Zhengzhong, Dong Jiangxun, et al. Preliminary study to capture CO2 in flue gas by spraying aqueous ammonia to produce NH4HCO3 [C] // Helminski E L. Proceedings of the Second Annual Conference on Carbon Sequestration. Virignia: NETL Proceedings, 2003: 1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700