涡流探测成像仪的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在无损检测的几种检测技术中,相对于其它几种检测技术的发展情况,涡流检测技术仍未得到充分的发展。这里面有一个很重要的原因就是要实现涡流的实时成像比较难。目前涡流成像技术主要有阻抗C扫描成像技术、层析成像技术、磁—光涡流成像技术。本文正是基于阻抗C扫描技术,研制并开发了一套涡流探测成像仪,用于探测被掩盖的金属焊件,由于采用了高速信号处理器ADSP21060来进行数字信号处理,大大提高了扫描速度及缩短了信号处理时间,减少了延迟,本系统可以实现实时成像,能够达到可视化和定位的目的。
    该涡流探测成像系统主要有以下三大部分组成:涡流信号采集系统、DSP信号处理系统及其接口电路、图像处理系统。系统结构原理图如图1所示
    
    图1 系统结构原理图
    其工作过程如下:来自涡流信号采集系统的信号,一路信号送到高速数字信号处理器ADSP21060,另一路直接送到控制器,通过反馈对采集系统进行控制。同时,控制器对送来的信号进行控制处理和反馈给采集系统和DSP进
    
    
    行控制,另外,通过异步传输送到计算机进行成像处理。数字信号处理器主要完成信号的预处理以及对采集系统和控制系统进行控制。在预处理过程中,主要完成对信号进行A/D转换、滤波、快速傅立叶变换,以及建立信号幅值、相位和扫描座标(x, y)的映射关系,建立信号点和扫描点的关系,为成像做准备。
    在这个系统中,涡流信号采集系统的原理图如图2所示。
    
    图2涡流信号采集系统原理图
    其工作过程如下:来自线阵涡流传感器的多路信号,首先经过前置放大器进行信号放大,然后通过X-R正交分解器进行正交分解,正交分解器对信号进行相敏检波和低通滤波处理后,再经过多路模拟转换开关,多路模拟转换开关在数字信号处理器DSP的控制下对多路信号进行逻辑切换,这里选用的是多路模拟转换开关AD7502,它同时选通两路,因此前置放大器必须能满足同时两路输入。再经过A/D转换后送入数字信号处理器进行预处理,完成信号的实部和虚部的幅值和相角的预处理,以及它们与扫描坐标的对应关系。本论文从探测实体的角度出发,涡流传感器的结构形式与传统的探伤探头有所不同,所以这里进行了探头的改型设计,采用多检测线圈的线阵排列结构。
    为了能够进行实时的信号处理与实时成像,本文用一片ADSP21060设计了一种实时信号采集与处理电路。它是一种比较理想的、外具灵活方便的数字接口高速数字信号采集与处理应用电路。ADSP21060本身自带串行口,但在与计算机的通信中有其特殊的困难。本文在通信方面增加一个串行通信控制器PC16550D用于串行口的通信。PC16550D是NS公司生产的异步通信芯片,
    
    
    在通信系统的实时性要求较高时,可通过通用异步通信芯片PC16550D来实现系统的高速串行通信,从而增强系统的通信接口控制能力。ADSP21060与PC机串口通信的硬件电路框图如图3所示。
    图3 ADSP21060与PC机通信的硬件电路
    传感器输出信号经测量电路和选择开关后输入到DSP中,首先进行A/D转换,然后进行滤波和校正,量化为8位的数字信号。被测对象经过电涡流传感器获得的原始测量数据往往带有高频噪声,在DSP中进行处理时要将所有数据进行全局阈值化处理,所以在边缘检测的数据处理中,我们采用Marr边缘检测算子对图象数据进行处理。
    在图像处理的时候,采用了Visual C++ 和 MATLAB联合编程的思想,实现方法为:以 VC++作为界面接收系统参数值,在VC++内部驱动 MATLAB的强大的数据处理和图像处理函数,完成核心数据处理和图像处理。将Visual C++的许多优点同MATLAB的数据运算和图像处理等强大功能结合起来,有效地进行涡流图像的处理。
    涡流成像技术是涡流检测技术发展的重要方向之一,本文所设计的涡流探测成像系统,有效的开发了涡流成像技术,为涡流检测技术的发展做出了一定的贡献。
In the normal nondestructive testing technology, eddy current testing is still not fully exploited in contrast with the other methods. There are some reasons to this situation. First and foremost, eddy real-time imaging is very difficult. At present time the main eddy imaging technologies are Impedance C scan imaging technology, Layer-divided imaging technology and Magic-light converting imaging technology. An eddy current detecting and imaging apparatus has been developed in this paper. It will be used to detect the imbedded metal test piece. Imaging technology of this paper is based on Impedance C scan technology, and some improvements have been made, the DSP (digital signal processor) has been used, the scanning speed has been improved greatly and the time of signal processing and delay have been shortened enormously. The aim of real-time imaging and orientation has been obtained.
    This system of eddy current detecting and imaging is made up of the three
    
    Figure 1 The principle frame of the system
    
    parts: signal sampling of eddy current, the pretreatment system and interface circuit and imaging processing system based on computer. The principle frame of this system is figure 1.
    The working process as follows, sampling signal which comes from eddy current signal sampling system, in one hand, is sent to high signal processor ADSP21060, in the other hand, it is sent to the controller, and it will control the sampling system by feedback and send the signal to the DSP after been processed, simultaneously, the controller will transfer the signal to the computer for imaging processing by asynchronous communication. The DSP mainly do the job of pretreatment and the control of the controller, during the pretreatment, it will realize A/D conversion, wave filtering, FFT and construct the mapping relation of amplitude and phase and the coordinate (x, y) of scanning sensors. It prepares for later imaging
    The signal sampling system is very important .The principle figure of signal sampling system of eddy current is figure 2
    
    Figure 2 The principle figure of signal sampling system of eddy current
    The working progress as follows, the signal from line-array sensors is first amplified by the preamplifier groups, the X-R separator separates them into two vertical channels and get the real part and the virtual part of impedance signal so that they can be processed separately, then selected two channels and transferred by the AD7502, then they will be transferred to the DSP for pretreatment. The DSP will pretreat the corresponding relationship between amplitude and phase of the real part and virtual part, and the relationship between them and the coordinate of scanning system. The AD7502 make logic switch under the control of DSP, it can select two channels at the same time, so the preamplifier also has two channels
    
    
    input and output. This paper is based on detecting the reality. So the structure form of the eddy current sensor id very different from the traditional inspection sensor. The sensor has been modificated and designed in a new way. The array structure of multi-processors has been adapted.
    The ADSP21060 chip has been adapted in order to realize the real time signal processing and imaging. There is a high speed data signal acquisition and processing circuit with ideal and flexible data interface in this paper. Although ADSP21060 has serial port itself, it has especial difficulty in the communication with the computer. In this paper a serial communication controller (PC16550D) is used to connect the serial port. PC16550D is the universal asynchronous communication chip made by National Semiconductor Company. To meet the requirement of the communication in real-time processing, PC16550D is used to implement high speed serial interface communication of system. To content the requirement of the communication system in real time processing, we can implement high speed serial interface communication of the system, meanwhile the control ability of system communication interface can be intensified.
引文
[1] 杨枝灵,王开. VisualC++数字图像获取、处理及实践应用. 人民邮电出版社,2003
    [2] R.L.斯托尔. 涡流分析. 黑龙江科学技术出版社, 1983
    [3] 谭祖根,汪乐宇. 电涡流检测技术. 原子能出版社,1986
    [4] 谢德馨,姚缨英,白保东,李锦彪. 三维涡流场的有限元分析. 机械工业出版社,2001
    [5] 任吉林. 电磁无损检测. 航空工业出版社, 1989
    [6] 苏涛,吴顺君,廖晓群. 高性能数字信号处理器与高速实时信号处理器. 西安电子科技大学出版社,2000
    [7] 曾涛,李眈,龙腾. 高速实时数字信号处理器SHARC的原理及其应用,北京理工大学出版社. 2000
    [8] 任吉林,林俊明,高春法. 电磁检测. 机械工业出版社, 2000
    [9] 李喜孟. 无损检测. 机械工业出版社,2001
    [10] 张福学. 传感器应用及其电路精选(上、下).电子工业出版社,1998
    [11](英)雅各布. 成像过程的机理应用. 北京化学工业出版社,1983
    [12] 徐之海,李奇. 现代成像系统. 国防工业出版社,2001
    [13](美)Kenneth R.Castleman. 数字图像处理. 电子工业出版社,2002
    [14] 张俊哲. 无损检测技术及其应用. 科学出版社,1993
    [15] 王晓丹,吴崇明. 基于Matlab的系统分析与设计. 西安电子科技大学出版社,2000
    [16] 严建华,鞠鲁粤.基于VC++与MATLAB的高阶伺服系统参数分析.上海大学学报,2002(2)
    [17] 肖沙里,钟先信,陈愚,徐道连.线阵CCD再异形回转体轮廓尺寸测量的应用.重庆大学学报,1997(6)
    [18] 杨志坤,郑勤红,解福瑶,赵海龙,王才璋.发展中的涡流无损检测技术.云南师范大学学报,1997(12)
    [19] 徐先锋,储浚,任兰亭.涡流无损检测中探头的设计与匹配. 黑龙江大学
    
    
    自然科学学报,2002(9)
    [20] 高印寒,吴定超,李春光,马羽宽.涡流实时成像技术的研究. 仪表技术与传感器. 2003(4)
    [21] 张小枆,原义光,葛仁伟,刘维亮. MATLAB,MATOCM与VC++接口的实现. 计算机应用,2001(8)
    [22] 鄢丹,欧阳祥波. VC下利用MATLAB实现科学计算的可视化. 计算机与现代化. 2003(8)
    [23] 秦志远,张占睦,莫华. 计算机图像处理可视化软件与实现. 测绘学院学报,2001(3)
    [24] 牛仁朝. ADSP21060浮点DSP芯片及其应用. 国外电子元器件,1998(10)
    [25] 林军明,李同滨,林发炳,林春景. 阵列涡流探头再钢管探伤中的试验研究. 检测技术 2001(3)
    [26] 王玉田 史锦珊,赵新民. 一种电涡流传感器的研制. 电子测量与仪器学报,1994(12)
    [27] 蔡琳洁,陶然,王卫江. DSP与PC机串口的高速数据通信的实现.电讯技术,2001(4)
    [28] 游凤荷. 涡流检测技术的某些新进展. 无损检测,2001(2)
    [29] 任吉林. 我国涡流检测技术的发展. 无损检测,1994(10)
    [30] 高印寒,吴定超,李春光,马羽宽. 一种高速多通道涡流信号采集系统的设计与实现. 无损检测,2003(1):21-24
    [31] 彭涛,罗飞路,许军. X-R正交分解技术在涡流检测中的应用. 计量技术,1997(4)
    [32] 沈跃,刘金世,储浚,任兰亭. 多探头涡流检测系统的设计与实现. 石油大学学报(自然科学版),1998(22)
    [33] 李雨润,王军,田力男. 涡流无损检测技术进展. 无损探伤(双月刊),1999(1)
    [34] 顾国华,陈钱,张宝民. 一种基于电涡流传感器的数据采集系统. 光电子技术,1997(3)
    [35] 张萍. 数字信号处理器的结构特点及其应用. 陕西师范大学学报(自然科学版),2001(2)
    
    [36] 禹卫东,吴淑梅. ADSP2106X中DMA的应用. 电子技术应用, 2000(2)
    [37] 严钟豪,谭祖根. 非电量电测技术. 机械工业出版社,1983,132
    [38] 唐磊,陈德智,盛剑霓. 涡流无损检测信号的一种分析方法.无损检测,1998,20(10):271-273.
    [39] 陈健,方松利,吴宇坤,王琪. DSP技术在涡流信号处理中的应用. 无损探伤,2002(5)
    [40] 张雪松,倪国强,周立伟,金伟其,钟堰利. 带有DSP芯片的新型实时数字图像处理系统. 光学技术,1997(7)
    [41] 孙靖国,牛文生,邹会荣. 基于ADSP21160的并行信号处理技术. 计算机工程,2002(9)
    [42] 王宇,李洪弟,徐顺江,王昆,王砚方. 一种基于DSP的高速数据获取及处理系统. 核电子学与探测技术,1998(7)
    [43] 游凤荷,何福有,魏莉,孙砚飞. 涡流检测的信号处理技术. 无损检测,2003(8)
    [44] 王旭柱,王汝吝,吴东,陈启尧,贺明霞. 基于DSP的信号实时采集与处理系统. 数据采集与处理,1999(12)
    [45] Gao Yinhan, Min Likai, Chen Runa, Shi Yingjun. Study of Honeycomb Probes Data Acquisition and Multi-processors System for Imaging. ISTM/2003 5TH International Symposium on Test and Measurement (Volume 1), pp.555-558
    [46] Gao Yinhan, Shi Yingjun, Chi Junfeng, Min Likai. Study of Eddy Detecting and Imaging Processing Technology. ISTM/2003 5TH International Symposium on Test and Measurement (Volume 3), pp.2089-2092
    [47] MerckleJ. Intelligent sensing for non-destructive testing using eddy currents NDT International,1990,22(6):335-344.
    [48] StollR.L. The Analysis of Eddy Currents. Oxford University Press,1974,15
    [49] J.S. Weska A. Rosenfeld, Threshold evaluation techniques. IEEE Transactions on Systems, Man, and Cybernetics 8 (1978), pp. 622–629.
    [50] P.A. Gaydecki, F.M. Burdekin, An inductive scanning system for two-dimensional imaging of reinforcing components in concrete structures. Meas Sci Technol 5 (1994), pp. 1272–1280.
    
    [51] P.A. Gaydecki, K. Glossop, F.M. Burdekin. In: A novel inductive system for two-dimensional imaging of reinforcing components in concrete structures, from hardware to image enhancement22nd Annual Review of Progress in Quantitative Nondestructive Evaluation, Washington, USA 15 Plenum Press, New York (1996), pp. 1791–1798.
    [52] Yu ZZ, Gaydecki PA, Arif MI, Fernandes BT, Silva I, Burdekin FM. Imaging of steel reinforcing bars in concrete using a portable inductive-scan sensing system. Seventh International Expertcentrum Conference on Nondestructive Testing and Experimental Stress Analysis of Concrete Structures, 1998, p. 322–8 (RILEM)..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700