血管生成素-1、血管生成素-2及Tie2受体在人体血管瘤裸小鼠移植模型中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人血管瘤裸小鼠移植模型的建立和鉴定
     背景和目的:婴幼儿血管瘤是小儿最常见的良性肿瘤。大多数血管瘤可以自行消退而不需要进行任何干预。但是大约有10%的血管瘤由于其生长过于迅速或者生长部位特殊而可能导致毁容、溃疡、畸形、功能障碍甚至危及生命,故需要积极的医疗干预。目前血管瘤的治疗方法很多,但是没有任何一种治疗方法对所有血管瘤有效,而且治疗本身也可能发生一些严重的并发症。多年来寻找到有效、安全治疗血管瘤的方法一直是科研工作者和临床医生们孜孜不倦奋斗的目标。而之所以有目前治疗的窘境就是因为对血管瘤增生和消退的机制还认识不清。缺乏理想的研究模型是阻碍对血管瘤病理机制深入探讨的主要原因之一。本科研小组利用人体血管瘤组织块裸小鼠皮下移植建立人体血管瘤裸小鼠移植模型,来初步探讨婴幼儿血管瘤发生发展的可能机制。
     方法:人体血管瘤取自1例2月龄男性患儿左小腿外侧皮肤和皮下血管瘤。将手术切除的人体血管瘤标本的皮下部分,切成5mm×4mm×3mm的小块,分别经裸小鼠的皮肤切口将血管瘤组织块置于项部、腰背部和双侧腋下的皮下,每只4处。于移植后第1、7、14、21、28、35、42、49、56、63、70、90、120、180天用游标卡尺测量肿瘤最大横径a和纵径b,定期观察移植瘤体的生长状况。分别于移植后56、120、180天各取2个移植成活瘤体作HE、CD31、Glut1染色。
     使用Nikon E600研究显微镜对切片进行观察,用SPOT Cool CCD摄像头进行图像采集。用Image pro plus 4.5版本的专业图像分析软件进行图像分析。测定在单位视野中免疫组织化学反应阳性颗粒的面积、平均光密度以及积分光密度。采用SPSS11.0统计软件进行统计学分析,结果用(?)±SD表示,对免疫反应阳性颗粒积分光密度进行t检验,检验水准为0.05。
     结果:血管瘤组织块移植后3~4周内,瘤体基本上无明显变化;42天后,大多数瘤体开始生长,体积较移植时增大,瘤体周围可见新生毛细血管;56天左右瘤体迅速增大,生长良好,透过皮肤见瘤体发蓝,较有弹性;63天左右达到最大;之后瘤体体积保持不变或轻微缩小,至90天时可见部分瘤体颜色变浅,体积缩小,质地较前变硬,180天时少数瘤体残留,呈淡黄色,质地变硬,剖面呈纤维脂肪组织。
     HE染色发现增生期移植血管瘤内大量血管瘤内皮细胞增殖堆积,聚集成团巢状,血管腔隙小而不规则;消退期移植血管瘤内血管瘤内皮细胞明显减少,血管腔扩大,内衬扁平的内皮细胞,大量纤维脂肪组织沉积。
     免疫组织化学检测显示:移植成活的血管瘤CD31呈阳性表达,CD31定位于血管内皮细胞的细胞膜上。移植成活的血管瘤Glut1呈强阳性表达,Glut1定位于血管瘤内皮细胞的细胞膜上。移植供体人血管瘤的血管内皮细胞Glut1染色也呈强阳性。
     结论:本研究将人体血管瘤组织块移植到裸小鼠皮下,成功建立了人体血管瘤裸小鼠移植模型,并且通过观察移植瘤的生长状况、HE染色和免疫组织化学检测从多方面证实了该模型能客观真实再现人体血管瘤增生和消退的过程,为后续试验奠定了良好的动物模型基础。
     第二部分
     血管生成素-1、血管生成素-2及Tie2受体在
     人体血管瘤裸小鼠移植模型中的表达
     背景和目的:婴幼儿血管瘤是以血管内皮细胞的异常增殖和血管异常生成为特点。Mulliken根据血管瘤组织学特点将其分为增生期、消退期和消退完成期。血管瘤如何从迅速增生扩大转变为自发缓慢消退,其潜在的分子与生物化学机制目前仍认识不清。血管瘤与一般良性肿瘤有着明显不同之处就是大多数的婴幼儿血管瘤可以自行消退,故血管瘤是否为真性肿瘤引起了人们的争议。近年来,有众多研究显示血管生成素及其Tie2受体家族在正常以及异常血管生成中扮演重要角色,故我们利用已建立的人体血管瘤裸小鼠移植模型来研究血管生成素-1、血管生成素-2以及Tie2受体在人体血管瘤增生与消退时期的动态表达情况。
     方法:动物模型建立见第一部分。分别于移植后56天、120天各切取12个移植存活瘤体。其中2个瘤体用4%多聚甲醛固定,作免疫组织化学检测(Ang1,Ang2,Tie2和VEGF);5个瘤体用Trizol液固定后低温转运作RT-PCR荧光定量检测(Angl,Ang2和Tie2);5个瘤体低温转运作Western blot检测(Ang1,Ang2和Tie2)。另取正常皮肤组织(包茎患儿包皮环切术切除的包皮组织)5块用于荧光定量RT-PCR,Western blot和免疫组织化学检测。
     使用REST软件将荧光定量RT-PCR所得Ct值转换为2~(-△△Ct)值后进行统计学分析。免疫组织化学检测结果的图像采集和统计学分析同第一部分。
     结果:荧光定量RT-PCR和Western blot的结果显示在增生期和消退期移植瘤中,Ang1mRNA和蛋白的表达量明显低于正常包皮组织;Ang2和Tie2mRNA和蛋白的的表达量明显高于正常包皮组织。三者的表达在增生期和消退期移植瘤之间没有统计学差异。免疫组织化学检测结果显示Ang2和Tie2在增生期和消退期移植瘤中表达呈强阳性,分别定位于血管内皮细胞的细胞浆和细胞膜上,在正常包皮组织中Ang2和Tie2的表达呈弱阳性。在增生期和消退期移植瘤中,Ang1表达呈弱阳性,定位于血管内皮细胞的细胞膜和血管周围细胞的细胞浆内,在正常包皮组织中Ang1的表达呈阳性。在VEGF免疫组化染色的切片上,发现在血管瘤组织内存在血管发生(vasculogenesis)这种原始的血管生成方式,这种血管生成方式只有在胚胎时期和病理状况下可以出现。
     结论:婴幼儿血管瘤中存在血管生成素-1、血管生成素-2和Tie2受体的异常表达,提示婴幼儿血管瘤可能并非一种真性血管肿瘤,而是一种血管生成异常的疾病。
PartⅠA New Human Hemangioma Xenograft Model on Nude Mice
     Background and Objective: Infantile hemangioma(often abbreviated as hemangioma) is the most common benign tumor involving infants characterized by appearance during the first weeks of life, rapid growth for 6~10 months followed by spontaneous and slow regression in the subsequent 1~5 years. Though most of infantile hemangiomas can regress spontaneously, about 10%hemangiomas can bring disasters to infants because of rapid growth or special location, such as ulceration, hemorrhage, disfiguration and even life threatening. Up to date, there are all kinds of therapeutic strategies including corticosteroid, interferon-α, surgery, laser, and so on. But none of them is perfect because of limited effectiveness and side effects. The reason of clinical dilemmas lies in lack of adequate knowledge of pathogenesis of hemangioma. To investigate the underlying mechanisms of hemangioma requires a hemangioma model that can present the natural development and characteristics of human hemangioma without deviation from ethics. Unfortunately, currently available experimental models cannot meet the requirements satisfactorily and hinder researchers' footsteps toward. In this research we attempted to transplant human hemangioma into nude mice subcutaneously to establish a xenograft animal model of human hemangioma for the future investigation.
     Methods: An infantile hemangioma was obtained from a male baby aged 2 months according to a protocol approved by Westchina Hospital Ethics Committee. The pathological diagnosis was confirmed with Mulliken's classification.
     8 BALB/c nu/nu nude mice were used in this experiment. The hemangioma specimen was cut into small blocks of 5mm×4mm×3mm in size. The blocks were transplanted into 8 nude mice subcutaneously, 4 blocks each mouse. The volume of the grafted hemangiomas was measured with a vernier on day 1, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 90, 120 and 180 after transplantation. The growth of the grafts was observed on regular basis. 2 grafted hemangiomas were harvested on day 56, 120 and 180 after transplantation respectively. Formaldehyde-fixed and paraffin-embedded specimens were sliced into 5μm sections for HE staining and immunohistochemistry for CD31(monoclonal mouse anti-human antibody, Neomarkers, USA) and Glut1(polyclonal rabbit anti-human antibody, Neomarkers, USA).
     The slices were observed under Nikon E600 microscope. The pictures were taken with a SPOT Cool CCD camera and analyzed with Image pro plus 4.5 software. IOD(integrated optical density) was chosen to represent staining intensity and presented as (?)+SD. SPSS11.0 software was used to perform t text.
     Results: The volume changes of the grafts were not obvious in the first 3-4 weeks. Later on some of the grafts became bigger and bigger and reached the apex at the end of 2nd month after transplantation with new vessel sprouts on the periphery. After 90 days the grafts began to shrink and became pale and yellow with the texture hardening. On day 180 only a few grafts remained and fibrofatty tissue was found at dissection.
     HE staining showed the proliferating graft hemangiomas were crowded with a large number of plump vascular endothelial cells(VEC) with small and irregular vessel lumens. In the involuting graft hemanigoms, the VECs were sharply decreased with enlarged vessel lumens lined with flat VECs. A great deal of fibrofatty tissue was deposited in the grafts.
     Immunohistochemisty showed the graft hemangiomas were positive with CD31 and Glut1 staining. Both CD31 and Glut1 were located on cell membrane.
     Conclusion: A human hemangioma xenograft aninal model on nude mice is successfully established by transplanting human hemangioma tissue blocks into nude mice subcutaneously. And we testifies the validity of the animal model by morphologic observation, HE staining and immunohistochemistry. This model provides an excellent basis for future research.
     PartⅡThe Expression of Angiopoietin-1, Angiopoietin-2 and Tie2 in Human Hemangioma Xenograft Animal Model
     Background and Objective: Infantile hemangioma is characterized by abnormal vascular endothelial cell proliferation and disturbed angiogenesis. Mulliken categorized infantile hemangioma into three subgroups: proliferating, involuting and involuted hemangioma. The underlying molecular and biochemical mechanisms by which proliferating hemangiomas begin to regress spontaneously and slowly is unclear up to date. A distinctive characteristic of infantile hemangioma from other tumors is that 80%of hemangiomas can regress spontaneously which has caused a widespread dispute that is whether infantile hemangioma is a real tumor. In the past decade, many literatures have shown that the angiopoietin/Tie2 pathway plays an important role in normal and abnormal angiogenesis. In this research, we attempted to detect the dynamic expression of angiopoietin-1, angiopoietin-2 and Tie2 in different phases of hemangioma by means of the previously established animal model.
     Mothods: The animal models were established according to PartⅠ. Twelve specimens were harvested on day 56 and 120 after grafting respectively. 2 of 12 were fixed with 4%formaldehyde for immunohistochemistry for Ang1(goat anti-human antibody, RnD, USA), Ang2(goat anti-human antibody, RnD, USA), Tie2(goat anti-human antibody, RnD, USA) and VEGF(rabbit anti-human antibody, Boster, China). 5 of 12 were fixed with Trizol for fluorescence RT-PCR for Angl, Ang2 and Tie2. The remains were for Western blot analysis for Angl, Ang2 and Tie2. 5 normal foreskins were acquired from 5 boys(undergoing circumcision) for immunohistochemistry, RT-PCR and Western blot.
     Statistical analysis was performed with REST software for the RT-PCR results and SPSS11.0 software for immunohistochemistry results.
     Results: Fluorescence RT-PCR and Western blot showed the amount of Ang1mRNA and protein in the proliferating and involuting graft hemangiomas was much less than that of the normal foreskins. On the contrary, the amount of mRNA and protein of Ang2 and Tie2 in the proliferating and involuting graft hemangiomas was much more than that of the normal foreskins. There was no statistical difference between proliferating and involuting phases in Ang1, Ang2 and Tie2. Immunohistochemistry showed a similar result with RT-PCR and Western blot. Vasculogenesis was found in the graft hemangiomas which was a primary process of vessel formation only occurring during embryogenesis and under a pathologic condition.
     Conclusion: Abnormal expression of Ang1, Ang2 and Tie2 is found in infantile hemangiomas. A hypothesis is forwarded that it is possible that infantile hemangioma is not a real tumor, but rather a disorder of vasculogenesis and angiogenesis.
引文
1. Kazue T, John BM, Harry PW, et al. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest, 1994, 93: 2357-2364.
    2. Drolet BA, Esterly NB, Frieden IJ, et al. Hemangioma in children. N Engl J Med, 1999, 341: 173-181.
    3. Mulliken JB, Fishman SJ, Burrows PE, et al. Vascular anomalies. Curr Probl Surg, 2000, 37: 519-584.
    4. Bowers RE, Graham EA, Tomlinson KM. The natural history of the strauberry nevus. Arch Dermatol, 1960, 82: 667-680.
    5. Eileen B, Ying Y, Gretchen P, et al. Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest, 2001, 107: 745-752.
    6. Manju E, Vidya S, Jill J, et al. Adverse effects of systemic glucocorticosteroid therapy in infants with hemangiomas. Arch Dermatol, 2004, 140: 963-969.
    7. Tara M, Ilona JF. Hemangiomas: new insights and classification. Pediatric Annals, 2005, 34: 179-187.
    8. Ritter EJ. The chicken comb and wattle as an experimental model for the therapy of hemangiomas: preliminary laser studies. Life Sci, 1996, 5: 1903-1910.
    9. Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg, 1982, 69: 412-422.
    10. Bautch VL, Toda S, Hassell JA, et al. Endothelial cell tumors develop in transgenic mice carrying polyoma virus middle T oncogene. Cell, 1987, 51:529-537.
    11. Williams RL, Risau W, Zerwes HG, et al. Endothelioma cells expressing the polyoma middle T oncogene induce hemangioma by host cell recruitment. Cell, 1989, 57: 1053-1063.
    12. Liekens S, Verbeken E, vandeputte M, et al. A novel animal model of hemangiomas: inhibition of hemangioma development by the angiognensis inhibitor TNP-470. Cancer Res, 1999, 59: 2376-2383.
    13. Dubois-Stringfellow N, Kolpach-Martindale L, Bautch VL, et al. Mice with hemangiomas induced by transgenic endothelial cells. A model for the Kasabach-Merritt syndrome. Am J Pathol, 1994, 144: 796-806.
    14. Enjolras O, Wassef M, Mazoyer E, et al. Infants with Kasabach-Merritt syndrome do not have "true" hemangioma. J Pediatr, 1997, 130: 631-640.
    15. Sarkar M, Mulliken JB, Kozakewich HP, et al. Thrombocytopenic coagulopathy (Kasabach-Merritt phenomenon) is associated with Kaposiform hemangioendothelioma and not with common infantile hemangioma. Plast Reconstr Surg, 1997, 100: 1377-1386.
    16. Tan ST, Hasan Q, Velickovic M, et al. A novel in vitro human model of hemangioma. Mod Pathol, 2000, 13: 92-99.
    17. Peng Q, Liu W, Tang Y, et al. The establishment of the hemangioma model in nude mice. J Pediatr Surg, 2005, 40: 1167-1172.
    18. Tang Y, Liu W, Yu S, et al. A novel in vivo model of human hemangioma: xenograft of human hemangioma tissue on nude mice. Plast Reconstr Surg. 2007(已接收待出版)
    19.俞松,刘文英,唐耘熳,等.血管瘤裸鼠移植模型生物学特性的 动态观察.中华小儿外科杂志,2005,26:407-409.
    20.俞松,刘文英,唐耘熳,等.糖皮质激素治疗血管瘤的实验研究.中华医学杂志,2005,85:1121-1123.
    21. North PE, Waner M, Mizerachi A, et al. Glutl: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol, 2000, 31: 11-22.
    22. Berenguer B, Mulliken JB, Enjolras O, et al. Rapidly involuting congenital hemangioma: clinical and histopathologic features. Pediatr Dev Path, 2003, 6: 495-510.
    23. Hamlat A, And M, Pasqualini E, et al. Pathophysiology of capillary hemagioma growth after birth. Medical Hypotheses, 2005, 64: 1093-1096.
    24. North PE, Waner M, Mizeracki A, et al. A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch Dermatol, 2001, 137: 559-570.
    1. Risau W, Sariola H, Zerwes HG, et al. Vasculogenesis and angiogenensis in embryonic stem cell-derived embryoid bodies. Development, 1988, 102: 471-478.
    2. Riazu w, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol, 1995, 11:73-76.
    3. Folkman J, Shing Y. Angiogenesis. J Biol Chem, 1992, 267: 10931-10934.
    4. Folkman J. Clinical application of research in angiogenesis. N Engl J Med, 1995, 333: 1757-1764.
    5. Werner R, Hannu S, Hans-Gunter Z, et al. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development, 1988, 102: 471-478.
    6. Cohen MM. Vasculogenesis, angiogenesis, hemangiomas, and vascular malformations. Am J Med Genet, 2002, 108: 265-274.
    7. Semenza G. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med, 2003, 54: 17-28.
    8. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res, 1999, 85: 221-228.
    9. Murasawa S, Asahara T. Endothelial progenitor cells for vasculogenesis. Physiology, 2005, 20: 36-42.
    10. Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol, 2004, 287:572-579.
    11. Hiratsuka S, Nakao K, Nakamura K, et al. Membrane fixation of vascular endothelial growth factor receptor 1 ligand-binding domain is important for vasculogenesis and angiogenesis in Mice. Mol Cell Biol, 2005, 25: 346-354.
    12. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 1997,277:55-60.
    13. Stoeltzing O, Ahmad SA, Liu W, et al. Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumor. Cancer Res, 2003, 63: 3370-3377.
    14. Vikkula M, Boon LM, Carraway KL, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase Tie2. Cell, 1996, 87: 1181-1190.
    15. Wang H, Zhang Y, Toratani S, et al. Transformation of vascular endothelial cells by a point mutation in the Tie2 gene from human intramuscular haemangioma. Oncogene, 2004, 23: 8700-8704.
    16. Yamakawa M, Liu LX, Date T, et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res, 2003, 93: 664-673.
    17. Papapetropoulos A, Fulton D, Mahboubi K, et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem, 2000, 275: 9102-9105.
    18. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1: a ligand for the tie2 receptor during embryonic angiogenesis. Cell, 1996, 87: 1171-1180.
    19. Scharpfenecker M, Fiedler U, Reiss Y, et al. The Tie-2 ligand Angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci, 2005, 118: 771-780.
    20. Zhang L, Yang N, Park JW, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res, 2003, 63: 3403-3412.
    21. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 1999, 284: 1994-1998.
    22. Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF dependent modulation of capillary structure and endothelial cellsurvival in vivo. Proc Natl Acad Sci U S A, 2002, 99: 11205-11210.
    23. Bureau W, Van Slyke P, Jones J, et al. Chronic systemic delivery of angiopoietin-2 reveals a possible independent angiogenic effect. Am J Physiol Heart Circ Physiol, 2006, 291: 948-956.
    24. Kim I, Kim JH, Moon SO, et al. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Oncogene, 2000, 19: 4549-4552.
    25. Zhu Y, Lee C, Shen F, et al. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke, 2005, 36: 1533-1537.
    26. Yoshiji H, Kuriyama S, Noguchi R, et al. Angiopoietin-2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut, 2005, 54: 1768-1775.
    27. Hu B, Jarzynka MJ, Guo P, et al. Angiopoietin-2 induces glioma cell invasion by stimulating matrix metalloprotease-2 expression through the _(αv)β_1 integrin and focal adhesion kinase signaling pathway. Cancer Res, 2006, 66: 775-783.
    28. Yu Y, Varughese J, Brown LF, et al. Increased tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells._Am J Pathol, 2001, 159: 2271-2280.
    29.徐泉,孟保英,党双锁,等.原位RT—PCR检测血管瘤组织Ang2mRNA及其受体Tie2mRNA的表达.第四军医大学 学报,2004,25:979-981.
    30. Ozawa CR, Banff A, Glazer NL et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest, 2004, 113: 516-528.
    31. Storkebaum E, Carmeliet P. VEGF: a critical player in neurodegeneration. J Clin Invest, 2004, 113: 14-19.
    1. Huang YQ, Li JJ, Karpatkin S. Identification of a family of alternatively spliced mRNA species of angiopoietin-1. Blood, 2000, 95: 1993-1999.
    2. Davis S, Aldrich TH, Jones PH, et al. Isolation of angiopoietin-1, a ligand for the tie2 receptor by secretion-trap expression cloning. Cell, 1996, 87: 1161-1169.
    3. Nishimura M, Mike T, Yashima R, et al. Angiopoietin-3, a novel member of the angiopoietin family. FEBS Lett, 1999, 448: 254-256.
    4. Valenzuela DM, Griffiths JA, Rojas J, et al . Angiopoietin-3 and 4: diverging gene counterparts in mice and human. Proc Natl Acad Sci USA, 1999, 96: 1904-1909.
    5. Stoeltzing O, Ahmad SA, Liu W, et al. Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumor. Cancer Res, 2003, 63: 3370-3377.
    6.郑阳春,唐昱英,周总光.血管形成素-1与微血管通透性.中国微循环杂志,2002,6:371-373.
    7. Yamakawa M, Liu LX, Date T, et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res, 2003, 93: 664-673.
    8. Papapetropoulos A, Fulton D, Mahboubi K, et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem, 2000, 275: 9102-9105.
    9. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1: a ligand for the tie2 receptor during embryonic angiogenesis. Cell, 1996, 87: 1171-1180.
    10. Kanda S, Miyata Y, Mochizuki Y, et al. Angiopoietin 1 is mitogenic for cultured endothelial cells. Cancer Res, 2005, 65: 6820-6827.
    11. Sundberg C, Kowanetz M, Browm LF, et al. Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest, 2002,82:387-401.
    12. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res, 2003, 22: 15-23.
    13.Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res, 2005, 97: 512-523.
    14. Iivanainen E, Nelimarkka L, Elenius V, et al. Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J, 2003, 17: 1609-1621.
    15. Carlson TR, Feng Y, Maisonpierre PC, et al. Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem, 2001, 276: 26516-26525.
    16. Dallabrida SM, Ismail N, Oberle JR, et al. Angiopoietin-1 Promotes Cardiac and Skeletal Myocyte Survival Through Integrins. Circ Res, 2005, 96: 8-24.
    17. Chen JX, Zeng H, Lawrence ML, et al. Angiopoietin-l-induced angiogenesis is modulated by endothelial NADPH oxidase. Am J Physiol Heart Circ Physiol, 2006, 291: H1563-H1572.
    18. Dumont DJ, Gradwohl G, Fong GH, et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev, 1994, 8: 1897-1909.
    19. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature, 1995, 376: 70-74.
    20. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 1995, 376: 62-66.
    21. Suri C, McClain J, Thurston G, et al. Increased vascularization in mice overexpressing angiopoietin-1. Science, 1998, 282: 468-471.
    22. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science, 1999, 286: 2511-2514.
    23. Vikkula M, Boon LM, Carraway KL, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase Tie2. Cell, 1996, 87: 1181-1190.
    24. Wang H, Zhang Y, Toratani S, et al. Transformation of vascular endothelial cells by a point mutation in the Tie2 gene from human intramuscular haemangioma. Oncogene, 2004, 23: 8700-8704.
    25. Hashimoto T, Lain T, Boudreau NJ, et al. Abnormal balance in the angiopoietin-tie2 system in human brain arteriovenous malformations. Circ Res, 2001, 89: 111-113.
    26. Hammes HP, Lin J, Wagner P, et al. Angiopoietin-2 causes pericyte dropout in the normal retina. Diabetes, 2004, 53: 1104-1110.
    27. Yu Q, Stamenkovic I. Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol, 2001, 158: 563-370.
    28. Gamble JR, Drew J, Trezise L. et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res, 2000, 87: 603-607.
    29. Jho D, Mehta D, Ahmmed G, et al. Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca~(2+) influx. Circ Res, 2005, 96: 1282-1290.
    30. Audero E, Cascone I, Zanon I, et al. Expression of angiopoietin-1 in human glioblastomas regulates tumor-induced angiogenesis: in vivo and in vitro studies. Arterioscler Thromb Vasc Biol, 2001, 21: 536-541.
    31. Tournaire R, Simon MP, le Noble F, et al. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep, 2004, 5: 262-267.
    32. Popkov M, Jendreyko N, McGavern DB, et al. Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody. Cancer Res, 2005, 65: 972-981.
    33. Kopp HG, Avecilla ST, Hooper AT, et al. Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood, 2005, 106, 505-513.
    34. Cho CH, Sung HK, Kim KT, et al. COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. PNAS, 2006, 103: 4946-4951.
    35. Kobayashi K, Kondo T, Inoue N, et al. Combination of in vivo angiopoietin-1 gene transfer and autologous bone marrow cell implantation for functional therapeutic angiogenesis. Arterioscler Thromb Vasc Biol, 2006, 26: 1465-1472.
    36. Mccarter SD, Lai PF, Suen RS, et al. Regulation of endothelin-1 by angiopoietin-1: implications for inflammation. Exp Biol Med, 2006, 231: 985-991.
    37. Scharpfenecker M, Fiedler U, Reiss Y, et al. The Tie-2 ligand Angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci, 2005, 118: 771-780.
    38. Zhang L, Yang N, Park JW, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res, 2003, 63: 3403-3412.
    39. Bureau W, Van Slyke P, Jones J, et al. Chronic systemic delivery of angiopoietin-2 reveals a possible independent angiogenic effect. Am J Physiol Heart Circ Physiol, 2006, 291: 948-956.
    40. Kim I, Kim JH, Moon SO, et al. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Oncogene, 2000, 19: 4549-4552.
    41. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for tie2 that disrupt in vivo angiogenesis. Science, 1997, 277: 55-60.
    42. Zhu Y, Lee C, Shen F, et al. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke, 2005, 36: 1533-1537.
    43. Yoshiji H, Kuriyama S, Noguchi R, et al. Angiopoietin-2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut, 2005, 54: 1768-1775.
    44. Hu B, Jarzynka MJ, Guo P, et al. Angiopoietin-2 induces glioma cell invasion by stimulating matrix metalloprotease-2 expression through the α_vβ_1 integrin and focal adhesion kinase signaling pathway. Cancer Res, 2006, 66: 775-783.
    45. White RR, Shan S, Rusconi CP, et al. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. PNAS, 2003, 100: 5028-5033.
    46. Geva E, Ginzinger DG, Moore DH, et al. In utero angiopoietin-2 gene delivery remodels placental blood vessel phenotype: a murine model for studying placental angiogenesis. Molecular Human Reproduction, 2005, 11(4): 253-260.
    47. Kuroda K, Sapadin A, Shoji T, et al. Altered expression of angiopoietins and tie2 endothelium receptor in psoriasis. J Invest Dermatol, 2001, 116: 713-720.
    48. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption regression and growth in tumors mediated by angiopoietin and VEGF. Science, 1999, 284, 1994-1998.
    49. Koga K, Todaka T, Morioka M, et al. Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res, 2001, 61: 6248-6254.
    50. Sugimachi K, Tanaka S, Taguchi K, et al. Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma. J Clin Pathol, 2003, 56: 854-860.
    51. Etoh T, Inoue H, Tanaka S, et al. Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res, 2001, 61: 2145-2153.
    52. Sfiligoi C, de Luca A, Cascone I, et al. Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival. Int J Can, 2003, 103: 466-474.
    53. Stratmann A, Risau W, Plate KH. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol, 1998, 153: 1459-1466.
    54. Machein MR, Knedla A, Knoth R, et al. Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol, 2004, 165: 1557-1570.
    55. Yu Q and Stamenkovic I. Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol, 2001, 158: 563-570.
    56. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol, 2000, 88: 1474-1480.
    57. Hu GF. Neomycin inhibits angiogenin-inducecl angiogensis. Proc Natl Acad Sci USA, 1998, 95: 9791-9795.
    58. Lee HJ, Cho CH, Hwang SJ, et al. Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J, 2004, 18: 1200-1208.
    59. Xu Y, Liu YJ, Yu Q. Angiopoietin-3 inhibits pulmonary metastasis by inhibiting tumor angiogenesis. Cancer Res, 2004, 66: 6119-6126.
    60.徐泉,孟保英,党双锁,等.原位RT—PCR检测血管瘤组织Ang2mRNA及其受体Tie2mRNA的表达.第四军医大学学报,2004,25:979-981.
    61. Yu Y, Vamghese J, Brown LF, et al. Increased tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. Am J Pathol, 2001, 159: 2271-2280.
    62. Perry BN, Gobindarajan B, Bhandarkar SS, et al. Pharmacologicblockade of angiopoietin-2 is efficacious against model hemangioma in mice. J Invest Dermatol, 2006, 126: 2316-2322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700