复杂铝合金型材挤压过程数值建模与模具优化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金型材是应用最为广泛的铝合金产品,世界各国均将铝合金型材挤压技术及其产业作为重点发展方向之一。铝合金型材挤压技术是挤压筒内的铝锭材料在外力作用下发生塑性变形、流经挤压模具的导流室、分流孔、焊合室、工作带并最终形成所要求的截面形状的铝合金型材的过程。铝合金型材挤压过程是一个复杂的大变形、高温、高压、摩擦等条件下的非线性热力耦合成形过程。
     铝合金型材是实现高速列车、汽车、船舶、航空航天器等的轻量化和性能提升的关键结构材料,目前正在向高性能、大型化、复杂化、精密化、多品种、多规格、多用途方向发展,对铝合金型材的结构、力学性能、组织性能等的技术要求日益苛刻,这类型材具有中空薄壁、断面形状复杂、断面尺寸大、力学性能高的特点,材料在变形中的流动行为复杂,增加了模具结构设计、材料流动行为分析和工艺模具参数的优化设计的难度,若模具设计和工艺参数选择不合理,则极易造成型材扭拧、波浪、弯曲、开裂等缺陷,并影响模具使用寿命。因此,迫切需要研究铝合金型材挤压过程的数值建模方法,研究材料变形规律,揭示工艺与模具参数的影响规律,探讨复杂截面型材的模具结构优化设计方法等,以便为铝合金型材质量控制提供理论指导。
     本文首先针对带有大长悬臂的复杂铝合金型材挤压过程中存在的常规平模或导流模结构设计容易导致模具悬臂部位损坏的问题,提出并建立了一种伪分流模具结构设计方法及其长悬臂梁分解技术,建立了长悬臂梁铝合金型材在伪分流模具中的挤压变形数值模型,对比分析了常规模具设计与伪分流模具设计对铝合金型材挤压速度分布、温度分布、材料粒子运动轨迹等的影响规律,研究了不同模具结构对其强度的影响规律。研究表明,采用伪分流模具不仅能够大幅度降低模具应力,而且通过材料流动优化可获得良好的材料流动规律和型材质量。最后总结提出了伪分流模具结构的一般设计原则和方法。
     复杂铝合金型材往往需要二级焊合,本文研究了具有二级焊合室的铝合金型材挤压过程数值模拟建模方法和挤压模具二级焊合室结构优化设计方法,针对某一典型铝合金型材,建立了以模具工作带出口处型材截面流动速度均匀性为目标、以二级焊合室的形状和高度为设计变量和以满足模具强度校核为限制条件的二级焊合室优化模型。采用Box-Behnken试验设计方法,建立了基于HyperXtrude的铝合金型材挤压过程的数值模型,分别获得了不同试验设计时的型材出口处流速、温度等场量的分布规律,采用响应曲面方法,建立了目标函数的响应曲面公式,并采用遗传算法作为优化方法,实现了基于响应曲面法和遗传算法的挤压模具二级焊合室的优化设计,优化获得了型材出口速度分布相对均匀的二级焊合室的结构尺寸,保障了铝合金型材的挤压质量且满足模具结构强度要求。
     高速列车车体壁板型材多为宽体多腔、薄壁超长的大截面型材,型材材料多为AA6N01和AA7N01,针对这类大断面复杂铝合金型材,本文首先进行了AA6N01和AA7N01铸锭材料的热模拟实验,分别建立了材料的本构关系模型,检验和分析了铸锭材料的微观组织。研究了高速列车车体壁板铝合金型材挤压过程数值建模方法,设计了壁板型材挤压模具,以型材出口处流速为优化目标,研究揭示了模具结构形状对型材截面流速、筋部供料等的影响规律,分析了导致型材弯曲和扭拧变形的根本原因,对挡块、焊合室结构等进行了优化设计,详细分析了材料在优化模具中的挤压变形行为、流线分布、温度分布以及模具变形和应力分布等,总结给出了壁板型材挤压模具优化设计结果,进行了实际生产挤压实验,验证了模具设计和工艺参数选择的正确性,分别研究和对比了型材制品在挤压方向、横向和筋部的力学性能、显微组织和断口形貌,并揭示了型材在不同方向上的试样断裂机制,结果表明,采用优化设计的分流模具和选择的挤压工艺参数能够获得质量优异的车体壁板型材产品。
     针对目前复杂截面铝合金型材挤压模具设计仍然依赖设计者的经验和缺少计算机CAD设计系统的问题,本文研究了铝型材平面分流组合模的设计流程和关键技术,运用反推分析法,从模具结构向工艺参数反推,构建平面分流组合模CAD系统总体框架,分析了分流组合模具结构实体建模方法,实现了各个模块的具体设计,采用UF对象模型进行了逐步建模,开发了复杂截面铝合金型材分流组合模具CAD系统。基于该CAD设计系统,对一典型的复杂截面铝合金型材挤压分流组合模具进行了CAD设计,进行了挤压过程数值建模和分析,研究揭示了挤压材料的流动规律和型材截面变形扭拧状态,通过对引流槽、挡块、工作带的局部修正,优化获得了出口截面流动速度相对均匀的优化模具结构和形状。结果表明,采用本文开发的平面分流组合模CAD系统设计的模具形状完全可以作为初始模具设计方案,根据挤压过程数值模拟结果并对模具进行局部优化,能够获得使出口型材断面流速均匀的模具设计方案。该系统可对任意空心型材进行平面分流组合模设计建模,提高了模具设计效率。
As aluminum alloy profiles have been the most widely used aluminum products, aluminum alloy extrusion technology and industry have become one of the most important development direction all over the world. The technology of aluminum alloy extrusion is a process that aluminum material inside the container with plastic deformation caused by the action of external force flow through the diversion chamber, porthole, welding chamber and bearing of the extrusion die, and eventually form the aluminum alloy extrudate with required shape. The aluminum alloy extrusion process is a non-linear and heat-stress coupled one under complex large deformation, high temperature, high pressure and friction.
     Aluminum alloy profile is one of the key structure materials to realize the lightweight and properties improving of the high-speed train, automobile, vessel, aerospace vehicle, etc. Now it develop in the direction of high properties, large-scale, complicate, accuracy, versatile, multi format and multipurpose. So it puts forward rigorous demands on aluminum alloy profiles structures, mechanical properties and microstructure property. With the features of hollow, thin-wall, complex cross section shape, high mechanical properties, materials have complex flowing during deformation which make it difficult to design extrusion die, analyze materials flowing and optimize the extrusion parameters. Unreasonable die design and process parameters may cause the defect of twisting, waving, bending and crack of the profile, which will reduce the die life. Above all, it is an urgent need to study the method of numerical model building of aluminum profile extrusion process, find the rules of material deformation, reveal the influence of the die structure and extrusion parameters on the extrusion process and analyze the methods of optimization die design. So that to gain the theoretical direction about the extrudate quality.
     For large and long cantilever aluminum alloy profiles, the conventional flat die and diversion die design usually causes the damage or failure of die in the cantilever area. Fake porthole die design method and cantilever decomposition technique are proposed to solve the question above. The material flow velocity, temperature, particle track and the die strength of the two different die design methods are studied and compared with numerical simulation. Especially, the die strength and stress distribution are researched. The results indicate that the fake porthole die design method is a useful die design method for large and long cantilever aluminum alloy profiles. It can decrease the die stress significantly and ensure the die strength. The sound material flow and profile quality are also obtained by optimizing the fake porthole die structure. The design rules for fake porthole die structure and the material flow based die shape optimization method are given.
     Second step chamber is usually used for complex aluminum profile extrusion process. The method of numerical simulation modeling and optimization second step die design is studied in this article. Using a typical aluminum alloy extrusion profile as the example, the shape and the height of second-step welding chamber of the extrusion die are selected as the design variables. Standard Deviation of the Velocity field in bearing exit (SDV) is used as the objective function. By combining Box-Behnken experimental Design (BBD) with Response Surface Method (RSM), a prediction model for SDV is established. The model is optimized by means of genetic algorithm, and the optimal extrusion die for the aluminum profile is obtained. In comparison with the initial die design, a more uniform velocity distribution in the cross section of the profile in the bearing exit is achieved by using the optimal die design. And die strength can also satisfy industry need.
     Most of the High-speed train extrudate have the characteristics of multi-cavity, thin wall and large cross-sections. Profiles usually use the materials of AA6N01and AA7N01. For this kind of complicated large cross-section aluminum alloy, thermal compression experiment of ingot casting material of the AA6N01and AA7N01were carried out. Two material constitutive relation models were established respectively. Then test and analyze the microstructure of ingot materials. Study the extrusion process numerical modeling method of aluminum alloy profiles used in High-speed train body plate and design profiles extrusion die. The research reveals the influence of die structure on the velocity at the die exit and muscle materials feeding. Analyze the reasons of profile bending and twisting deformation. Then optimize the baffle and chamber. Analyze deformation, streamline distribution, temperature, stress and die deformation of the extrusion process and so on. Experiments of the optimization die design were carried out to check out the die structure and extrusion parameters. Then the mechanical properties and micro-structures and fracture appearance were analyzed, and the fracture mechanism of the specimens was gained. The results show that extrudates with excellent quality can realized with the optimization designed die and the extrusion parameters in this example.
     At present, die design of complex section aluminum profile still rely on the designer's experiences and the lack of computer CAD design system. In order to solve the problems mentioned, the CAD aluminum porthole die design process and key technology WRE studied with the back-stepping method which working backward from the die structure to process parameters in this paper. Porthole die system with CAD framework was build. Then analyze the die structure modeling method. Each part of the die structure modeling was realized. The UF object model is used for porthole CAD system modeling. A typical complex aluminum alloy profile extrusion die was designed based on the CAD design system built in this article. Then analyzed and numerical simulated the extrusion process. The research reveals the material flowing rules of extrusion process and extrudate deformation. Through local modification of the drainage channel, baffle plate, bearing, optimization die structure with uniform exit velocity was gained. Results show that the porthole die built with CAD system can be used as the initial designed die. Optimization designed die will gained by locally adjust. The system can be used for any hollow profile porthole die design, which will improve the efficiency of die design.
引文
[1]吴向红,赵国群,马新武,赵新海.模具锥角对铝型材挤压过程影响规律的研究[J].锻压装备与制造技术,2005,5:75-78.
    [2]陈泽中,娄臻亮,阮雪榆,包忠诩.复杂铝型材挤压成形有限体积仿真[J].上海交通大学学报,2005,39(1):27-40.
    [3]刘静安.铝型材挤压模具设计,制造,使用及维修[M].北京:冶金工业出版社,2002.
    [4]赵云路,唐志玉.铝塑型材挤压成形技术[M].北京:机械工业出版社,2000.
    [5]罗苏,吴锡坤.铝型材加工实用技术手册[M].长沙:中南大学出版社,2006.6.
    [6]HyunWooShin, DongWooKim, NaksooKim. A simplified three dimensional finite element analysis of the techanology.1993,38:567-587
    [7]于沪平,彭颖红,阮雪榆,平面分流焊合模成形过程的数值模拟[J].锻压技术,1999,24(5).
    [8]Yahya Mahmoodkhani, Mary A. Wells, Nick Parson, W.J. Poole. Numerical modelling of the material flow during extrusion of aluminium alloys and transverse weld formation [J]. Journal of Materials Processing Technology,2014,214 (3):688-700.
    [9]刘汉武,顾迎新,丁桦,崔建中.基于有限元模拟的型材挤压专家系统[J].模具工业,2000,1:16-18.
    [10]X. Ma, M.B. De Rooij, D.J. Schipper. Modelling of contact and friction in aluminium extrusion [J]. Tribology International,2010,43(5-6):1138-1144.
    [11]X. Ma, M.B. de Rooij, D.J. Schipper. Friction conditions in the bearing area of an aluminium extrusion process [J]. Wear,2012,278-279:1-8.
    [12]周飞,苏丹,彭颖红,阮雪榆,有限体积法模拟铝型材挤压成形过程[J].中国有色金属学报,2003,13(1):65-70.
    [13]闫洪,夏巨谌,李志刚,董湘怀,杨国泰,何成宏.工艺参数对铝型材挤压变形规律的影响[J].中国有色金属学报,2002,12(6):1154-1161.
    [14]L. Li, J. Zhou, J. Duszczyk. Prediction of Temperature Evolution during The Extrusion of 7075 Aluminium Alloy at Various Ram Speeds by Means of 3D FEM Simulation[J]. Journal of Materials Processing Technology,2004,145:360-370.
    [15]G. Liu, J. Zhou, J. Duszczyk. FE analysis of metal flow and weld seam formation in a porthole die during the extrusion of a magnesium alloy into a square tube and the effect of ram speed on weld strength [J]. Journal of Materials Processing Technology,2008,200: 185-198.
    [16]F.K. Chen, W.C. Chuang, S. Torng. Finite element analysis of multi-hole extrusion of aluminum-alloy tubes [J]. Journal of Materials Processing Technology,2008,201:150-155.
    [17]H.H. Jo, S.K. Lee, C.S. Jung, B.M. Kim. A non-steady state FE analysis of Al tubes hot extrusion by a porthole die [J]. Journal of Material Processing Technology,2006,173: 223-231.
    [18]A.F. Bastani, T. Aukrust, I. Skauvik. Study of flow balance and temperature evolution over multiple aluminum extrusion press cycles with HyperXtrude 9.0 [J]. Key Engineering Materials,2010,424:257-264.
    [19]傅建,彭必友,李军.铝型材挤出速度对模具工作带的影响[J].塑性工程学报,2005,12(3):27-30.
    [20]和优锋,谢水生,徐骏,程磊,黄国杰.大型复杂截面铝型材挤压过程数值模拟及模具结构的优化[J].材料研究与应用,2011,5(3):203-208.
    [21]黄东男,于洋,宁宇,马玉.分流模挤压非对称断面铝型材有限元数值模拟分析[J].材料工程,2013(3):32-37.
    [22]秦升学,邢国良,娄淑梅,任莉新,苗双双.基于DEFORM-3D的空心铝型材挤压过程有限元分析[J].热加工工艺,2013,42(5):81-83.
    [23]倪正顺,刘石柏,何畅.基于HyperXtrude的铝型材挤压成形的数值模拟研究[J].热加工工艺,2012(21):115-118.
    [24]B.V. Mehtaa, I. Al-Zkeri, J.S. Gunasekera, A. Buijk.3D Flow Analysis inside Shear and Streamlined Extrusion Dies for Feeder Plate Design [J]. Journal of Materials Processing Technology,2001,113:93-97.
    [25]X.H.Wu, G.Q. Zhao, Y.G. Luan, X.W. Ma Numerical Simulation and Die Structure Optimization of aluminum Rectangular Hollow Pipe Extrusion Process [J]. Materials Science and Engineering A,2006,435-436:266-274.
    [26]X. Duan, X. Velay, Application of finite element method in the hot extrusion of aluminium alloys., Materials Science and Engineering A,2004,369 (1-2):66-75.
    [27]L. Donati, L. Tomesani. The Effect of Die Design on the Production and Seam Weld Quality of Extruded Aluminum Profiles [J]. Journal of Material Processing Technology, 2005,164-165:1025-1031.
    [28]J.M. Lee, B.M. Kim, C.C. Kang. Effects of Chamber Shapers of Porthole Die on Elastic Deformation and Extrusion Process in Condenser Tube Extrusion [J]. Materials and Design, 2005,26:327-336.
    [29]Z. Peng, T. Sheppard. Simulation of Multi-Hole Die Extrusion [J]. Materials Science and Engineering A,2004,367:329-342.
    [30]K. Padmanathan, N. Thomas. Optimization of pocket design to produce a thin shape complex profile [J]. Production Engineering-Research and Development,2003,142: 23-241.
    [31]程磊,谢水生,黄国杰,和优锋.焊合室高度对分流组合模挤压成形过程的影响[J].稀有金属,2008,32(4):442-446.
    [32]黄克坚,包忠诩,陈泽中,朱永光.宽展挤压模具正交试验研究[J].锻压技术,2004,6:49-52.
    [33]R. Mayavaram, U. Sajja, C. Secli, S. Niranjan. Optimization of Bearing Lengths in Aluminum Extrusion Dies [J]. Procedia CIRP,2013,12:276-281.
    [34]Z.Z. Chen, Z.L. Lou, X.Y. Ruan. Finite volume simulation and mould optimization of aluminum profile extrusion [J]. Journal of Materials Processing Technology,2007,190: 382-386.
    [35]L. Zou, J.C. Xia, X.Y. Wang, G.A. Hu. Optimization of die profile for improving die life in the hot extrusion process [J]. Journal of Materials Processing Technology,2003,142:659-664.
    [36]胡龙飞,刘全坤,王成勇,胡成亮.基于响应面模型的铝合金壁板挤压成形优化设计[J].中国机械工程,2008,19(13):1630-1633.
    [37]Cheng-Hang HU, Li-fen MENG, Zhen ZHAO, Bing GU, Bing CAI. Optimization for extrusion process of aluminum controller housing [J].Transactions of Nonferrous Metals Society of China,2012,22:48-53.;
    [38]Peng Liu, Shuisheng Xie, Lei Cheng. Die structure optimization for a large, multi-cavity aluminum profile using numerical simulation and experiments [J]. Materials & Design, 2012,36:152-160.;
    [39]林高用,陈兴科,蒋杰,王芳,杨力斌.铝型材挤压模具工作带优化[J].中国有色金属学报,2006,1 6(4):561-566.
    [40]亢战,张洪武.挤压成形过程灵敏度分析及模具型腔参数优化设计[J].工程力学,2008,25(2):235-240.
    [41]黄泽涛,袁鸽成,林灵江,梁松林.基于HyperXtrude的铝型材挤压模结构优化[J].模具工业,2012(1):10-14.
    [42]董桂伟,温道胜,赵国群.铝合金型材挤压模工作带长度优化方法研究[J].锻压装备与制造技术,2012(6):75-78.
    [43]Xuemei Sun, Guoqun Zhao, Cunsheng Zhang, Yanjin Guan, Anjiang Gao. Optimal Design of Second-Step Welding Chamber for a Condenser Tube Extrusion Die Based on the Response Surface Method and the Genetic Algorithm. Materials and Manufacturing Processes,2013,28(7):823-834.
    [44]孙雪梅,赵国群.悬臂铝合金型材伪分流挤压模具结构设计及其强度分析[J].机械工程学报,2013,49(24):39-44.
    [45]张金标,王泾文.热挤压工艺多元非线性回归与多目标优化技术研究[J].中国机械工程,2010,21(11):1338-1341.
    [46]舒洁,刘全坤,胡龙飞.铝合金挤压模具型腔曲线优化设计[J].合肥工业大学学报,2008,31(1):85-88.
    [47]孙宪萍,王雷刚,黄瑶.挤压模具型腔的等磨损优化设计[J].润滑与密封,2007,32(1): 56-59.
    [48]D.Y. Yang, K. Park, Y.S. Kang. Integrated finite element simulation for the hot extrusion of complicated Al alloy profiles [J]. Journal of Materials Processing Technology,2001,111: 25-30.
    [49]P. Liu, S.S. Xie, L. Cheng. Die structure optimization for a large, multi-cavity alumimum profile using numerical simulation and experiments [J]. Materials and Design,2012,36: 152-160.
    [50]梁奕清,吴锡坤,黄珍媛.城市轨道交通铝合金车体型材挤压仿真技术研究[J].材料研究与应用,2010,4(2):132-136.
    [51]汪明朴,王志伟,王正安,李周,尹志民,彭志辉等.地铁列车用7075铝合金力学性能及微光结构分析[J].中国有色金属学报,2001,11(6):1069-1073.
    [52]李学忠.地铁型材模具的探讨[J].金属成形工艺,2001,19(4):41-45.
    [53]C. Purnell, D. Metal. Extrusion dies design by computer [J]. Light Metal Age,1980(4).
    [54]N. R. Chitkara, K. F. Celick. A generalized CAD/CAM solution to the three-dimensional off-centric extrusion of shaped sections:analysis [J]. International Journal of Mechanical Sciences,2000(42):273-294.
    [55]A.P. Roger. Fielding Computer-Aided Design and Manufacture of Extrusion Dies [J]. Light Metal Age,1979(2).
    [56]甘春雷,王孟君,彭大暑.挤压分流模CAD关键技术的研究[J].铝加工,2003(3):19-22.
    [57]罗超.铝型材挤压模具智能设计及关键技术研究[D].中南大学博士学位论文,2004.
    [58]刘汉武,顾迎新,崔建忠.型材挤压模具的智能CAD系统[J].轻合金加工技术,1999(27):6-7.
    [59]刘汉武,张志萍,陈淑利等.铝型材挤压模具智能CAD系统软件开发[J].哈尔滨工业大学学报,2000(32):20-23.
    [60]何德林,李志刚.铝型材挤压模CAD/CAM系统及其关键技术的研究[J].模具技术,1997(3):13-19.
    [61]T. Jiang, G.X. Chen, S. Wu. The development of a computer simulation system for hollow aluminum profile extrusion dies [J]. Journal of Plasticity Engineering,2005(12):73-77.
    [62]廖培根,方刚,曾攀等.基于UG的铝型材挤压模具CAD设计系统[J].锻压技术,2008(33):164-167.
    [63]王彦菊,方刚,吴锡坤等.基于UG的铝型材挤压分流模设计KBE系统[J].模具工业, 2010(36):62-66.
    [64]叶南海,贺晓华,韦林等.基于CAD/CAE的铝型材挤压模具智能设计[J].湖南大学学报,2009(6):28-31.
    [65]马建哲,王红志,李积彬.铝型材挤压分流模三维CAD技术应用研究[J].工程图学学报,2011(4):1-7.
    [66]傅立军,包忠诩,陈则中等.基于UG平台构建三维铝型材挤压模具CAD系统[J].金属成形工艺,2003(21):52-55.
    [67]李灼华,陈则中,王美艳等.空心铝型材分流组合挤压模CAD系统开发[J].模具工业,2009(35):17-21.
    [68]Hong-Seok Park, Xuan-Phuong Dang.Structural optimization based on CAD/CAE integration and meta modeling techniques [J]. Computer-Aided Design,2010,42,(10):889-902
    [69]赵国群.金属体积塑性成形过程数值模拟技术与仿真系统[J].金属成形工艺,2003,21(5):5-8.
    [70]王丽巍.带悬臂梁的挤压模设计[J].模具工业,2000(8):48-49.
    [71]王峰,王前进,高晓军.镁合金散热器型材挤压模具的设计[J].有色金属加工,2007,36(4):17-21.
    [72]陈浩,赵国群,张存生等.薄壁空心铝型材挤压过程数值模拟及模具优化[J].机械工程学报,2010,46(24):34-39.
    [73]于明涛,李付国.基于有限体积法的异形空心型材挤压模具设计[J].模具技术,2008(4):40-43.
    [74]黄珍媛,李文芳,吴锡坤,梁奕清.铝型材挤压成型仿真技术研究.铝加工,2008,184:4-8.
    [75]Cunsheng Zhang, Guoqun Zhao, Xuemei Sun, Hao Chen, Baojie Gao. Optimization design of baffle plates in porthole die for aluminum profile extrusion. Journal of Materials Design and Application,2011,225(4):255-265.
    [76]徐磊,赵国群,张存生,等.多腔壁板铝型材挤压过程数值模拟及模具优化[J].机械工程学报,2011,47(22):61-68.
    [77]A. Farjad Bastani, T. Aukrust, Study of flow balance and temperature evolution over multiple aluminum extrusion press cycles with HyperXtrude 9.0. Key Engineering Materials,2010,424:257-264.
    [78]Amin Farjad Bastani, Trond Aukrust, Sverre Brandal, Optimisation of flow balance and isothermal extrusion of aluminium using finite-element simulations, Journal of Materials Processing Technology 211 (2011) 650-667.
    [79]Gang Fang, Jie Zhou, Jurek Duszczyk, FEM simulation of aluminium extrusion through two-hole multi-step pocket dies, Journal of Materials Processing Technology 209(2009) 1891-1900.
    [80]孙国栋,刘长华.薄壁塑件注射工艺参数的Taguchi方法优化[J].模具工业,2010,36(8):51-58.
    [81]S. Verma, C. Balaji. Multi-parameter estimation in combined conduction-radiation from a plane parallel participating medium using genetic algorithms [J]. International Journal of Heat and Mass Transfer,2007,50:1706-1714.
    [82]W. Liu, Y.Y. Yang. Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm [J]. Journal of Materials Processing Technology,2008,208: 499-506.
    [83]贺连芳,赵国群,李辉平,相楠.基于响应曲面方法的热冲压硼钢B1500HS淬火工艺参数优化[J].机械工程学报,2011,47(8):77-82.
    [84]X.P. Li, G.Q. Zhao, Y.J. Guan, M.X. Ma. Multi-objective optimization of heating channels for rapid heating cycle injection mold using Pareto-based genetic algorithm [J]. Polymers advanced technologies,2010,21:669-678.
    [85]L. Donati, L. Tomesani, The prediction of seam welds quality in aluminum extrusion [J]. Journal of Material Processing Technology 153-154 (2004) 366-373.
    [86]Razvan Cazacu, Lucian Grama. Steel Truss Optimization Using Genetic Algorithms and FEA [J]. Procedia Technology,2014,12:339-346.
    [87]Shing Chih Tsai, Sheng Yang Fu. Genetic-algorithm-based simulation optimization considering a single stochastic constraint [J]. European Journal of Operational Research, 2014,236(1):113-125.
    [88]A.J. Kulkarni, K. Krishnamurthy, S.P. Deshmukh, R.S. Mishra. Microstructural optimization of alloys using a genetic algorithm [J]. Materials Science and Engineering:A, 2004,372, (1-2):213-220.
    [89]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,29(4):1201-1206.
    [90]Y.A. Khan1, H.Valberg, I.Irgens, Joining of metal streams in extrusion welding [J]. Mater Form,2009,2:109-112.
    [91]Sellars, C.M., Tegart. Hot workability [J]. International Metallurgical Review,1972, 17:1-24.
    [92]郭洁,洪子雯,方晓玲.Box-Behnken实验设计法优化表阿霉素脂质体的处理工艺[J].复旦学报医学版,2007,34(6):816-820.
    [93]J. Adamczyk, N. Horny, A. Tricoteaux, P.-Y. Jouan, M. Zadam. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AIN thin films [J]. Applied Surface Science,2008,254(6):1744-1750.
    [94]V.I. Vitanov, N. Javaid, D.J. Stephenson. Application of response surface methodology for the optimization of microfriction surfacing process [J]. Surface and Coatings Technology, 2010,204(21-22):3501-3508.
    [95]梁艳迁,赵震,吴彦骏,高崇辉,胡成亮.基于响应面的多工位锻造工艺优化[J].上海交通大学学报,2009,43(5):713-721.
    [96]Razvan Cazacu, Lucian Grama. Steel Truss Optimization Using Genetic Algorithms and FEA [J]. Procedia Technology,2014,12:339-346.
    [97]Shing Chih Tsai, Sheng Yang Fu. Genetic-algorithm-based simulation optimization considering a single stochastic constraint [J]. European Journal of Operational Research, 2014,236(1):113-125.
    [98]A.J. Kulkarni, K. Krishnamurthy, S.P. Deshmukh, R.S. Mishra. Microstructural optimization of alloys using a genetic algorithm [J].Materials Science and Engineering:A, 2004,372, (1-2):213-220.
    [99]钱立新.世界高速铁路技术[M].北京,中国铁道出版社,2003.
    [100]李沛,安琪.国内外高速动车组的发展[J].电力机车与城轨车辆,2007,30(5):1-5.
    [101]刘杰.7N01铝合金高温变形行为研究[D].湖南大学硕士学位论文,2008.
    [102]刘丘林.喷射成形6061铝合金的显微组织与力学性能[D].华南理工大学硕士学位论文,2011.
    [103]钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究[J].机械强度,2005,27(3):358-370.
    [104]朱浩,吕丹,朱亮,陈剑虹,陈德利.6061铝合金断裂机理的原位拉伸研究[J].机械工程学报,2009,45(2):94-98.
    [105]蒋焘,陈国学,吴森.空心铝型材挤压过程计算机仿真系统[J].塑性工程学报,2005,12(2):73-77.
    [106]黄翔,陈文亮,谢洪典.铝型材挤压模工作带和模孔配置的优化设计[J].南京航空航天大学学报,1996(28):247-252
    [107]平宗保,孙文磊,郭书君等.注塑模具参数化可重用三维零件库开发[J].机床与液压,2011(39):101-103.
    [108]郦洪源,李世国,张伟国.基于UG/KF的标准件库的开发与应用[J].计算机工程与设 计,2007(28):4299-4302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700