小麦化感作用及其根际生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物化感作用是指一个活体植物(供体植物)通过茎叶挥发、淋溶、根系分泌等途径向环境中释放其产生的某些化学物质,从而影响周围植物(受体植物)的生长和发育的化学生态学现象。利用小麦化感作用防除麦田杂草具有剂量小、选择性强、无3R问题,有望成为21世纪环境友好的除草关键技术之一。
     当前,小麦化感作用研究主要集中在化感种质资源的筛选,化感物质的鉴定,遗传多样性、QTL定位、生理响应和遗传调控等生物学特性上,对小麦化感作用的根际生态学的研究尚少。本文为了阐明小麦化感作用及其根际生态学特征,采用6种方法评价了90份小麦的化感潜力,分析了不同化感潜力小麦的农艺性状、遗传多样性等。同时探讨了小麦抑草作用的化感作用与资源竞争效应、小麦化感抑草的生理特征、化感小麦根际土壤微生物学特性、小麦化感物质多样性与化感活性、土壤微生物和土壤酶对化感物质的响应等,主要结果如下:
     (1)采用土壤-琼脂三明治法、浸提液生物测试法、琼脂迟播共培法及结合田间调查等6种测试方法,评价了90份来自各地小麦品种的化感潜力,筛选出了3个强化感小麦品种:晋2148、115/青海麦、92L89;3个弱化感作用小麦品种:9813、8401、抗10103,丰富了化感小麦种质资源。试验证明了土壤-琼脂三明治法是评价小麦化感种质资源可行、方便的方法。
     (2)多元相关分析显示,小麦化感潜力(莴苣根长抑制率IR)与株高、穗长、叶长、叶宽、芒长、茎粗等性状呈负相关,与穗数、实粒数、穗粒数、结实率、千粒重、茎粗等性状呈正相关,但均未达显著水平,表明小麦的化感作用特性与产量与株型等农艺性状的连锁性不大,通过杂交育种获得高产兼具强化感作用的小麦新品种是可能的。
     (3)为合理评价小麦的化感潜力,采用一种包含4个不同N素营养水平处理的化感-竞争分离法测定了小麦抑草作用的化感作用效应与资源竞争效应,结果表明,供试小麦对伴生杂草看麦娘的化感作用均随氮素浓度的降低而增强。在低氮条件下,强化感小麦抑制伴生杂草生长以化感作用为主,115/青海麦化感效应48.5%,资源竞争效应25.4%;92L89化感效应41.9%,资源竞争27.5%。弱化感小麦抗10103以资源竞争为主,抑制率在化感效应17.8%,资源竞争效应27.7%。强弱化感小麦在干扰伴生杂草上存在生态策略差异。
     (4)在化感小麦浸提液处理下,对看麦娘的生理生化测定表明,化感小麦能够显著抑制看麦娘植株的生长,化感胁迫下看麦娘发根力、根系活力显著下降,激发了看麦娘体内的保护酶系统,提高了酶活,化感小麦对看麦娘根系的伤害比叶片更为显著,以强化感小麦115/青海麦最为明显,不同浸提液浓度处理的根系中MDA含量是对照的10.88-25.53倍。化感小麦浸提液处理提高了看麦娘叶片和根系中类黄酮、总酚含量。进一步采用沙培法测定化感小麦根系残留物抑制看麦娘生长的生理生化特性表明,不同化感潜力小麦根系分泌残留物处理的看麦娘叶片中MDA含量升高,膜质过氧化作用加强,ABA含量升高,ZR、GA、IAA等生长激素含量降低,抑制了看麦娘根系和植株地上部的生长,显示出小麦化感作用效应。
     (5)不同化感小麦根际的土壤化感潜力测定表明,土壤灭菌后其化感潜力有所下降,化感小麦根际土壤微生物与其化感潜力间存在一定关联性。不同化感潜力小麦根际土壤微生物区系存在显著差异,种群数量均以细菌为主,80.4-83.9%,真菌数量最少,占0.4-0.6%,放线菌占15.6-19.1%。种植强化感小麦能够促进根际自生固氮菌、反硝化细菌、好气性纤维素分解菌、硫化细菌等主要生理类群的形成。
     BIOLOG分析结果显示,不同化感潜力小麦根际土壤的AWCD也存在显著差异。利用培养72 h时的AWCD值,进行主成分分析,提取出与土壤微生物碳源利用功能多样性相关的主成分1、主成分2、主成分3,依次解释变量方差的55.8%、31.9%和12.3%;对各主成分起分异作用的主要碳源分别是糖类和氨基酸。不同化感潜力小麦根际土壤脱氢酶、多酚氧化酶等的活性存在一定的差异。
     进一步提取土壤DNA,采用T-RFLP技术分析强、弱化感小麦根际土壤微生物特征显示,强化感小麦115/青海麦、92L89共有的微生物主要有5个菌属,分别是芽孢杆菌属、固氮螺菌属、赤单胞菌属、李斯特氏菌属、类芽孢杆菌属,主要参与土壤根际微生态系统中的固氮作用、养分循环、农药降解与修复污染土壤等功能,化感小麦对绝大多数细菌、放线菌、固氮菌生长有促进作用,增强了适应性。
     (6)通过GC/MS分析,从不同化感潜力小麦叶片、根系和根际土壤中鉴定到酚酸类、酸类、醇类、酰胺类、萜类、醚类、酯类、嘌呤类、烃类、酚类、生物碱、酮类和异羟肟酸类等等13大类物质。在小麦叶片、根系和根际土壤中均均检测到了对羟基苯甲酸、对羟基肉桂酸等酚酸类化感物质。室内模拟试验表明,不同浓度的对羟基苯甲酸在土壤中的吸附与解吸作用均可用二次方程Y(μg)=b_0+b_1V+b_2V~2得到较好的拟合。
     (7)室内模拟试验表明,对羟基苯甲酸对看麦娘的生长起到明显的抑制作用;对羟基苯甲酸、肉桂酸能够显著地影响土壤微生物群落组成和土壤酶活性,促进土壤细菌种群数量增长,抑制真菌生长,低浓度的对羟基苯甲酸、肉桂酸能够显著地促进放线菌生长,在中、高浓度时表现出一定的抑制作用。对羟基苯甲酸、肉桂酸能够提高土壤脲酶、蛋白酶、蔗糖酶、磷酸酶活性。T-RFLP分析表明,对羟基苯甲酸、肉桂酸能够促进芽孢杆菌纲嗜热短杆菌、硫化杆菌属、嗜热脂肪芽孢杆菌、优杆菌属,β-变形菌纲伯克氏菌属,δ-变形菌纲除硫单胞菌属、放线菌纲微球菌属,ε-变形菌纲弯曲菌属微生物的生长,有利于土壤物质循环。
Allelopathy was one of the most important chemoecological phenomenon, which refers to one plant(donor) impact the growth and development on its neighboring plants (accepter) through the release of secondary metabolism chemical compounds into the environment via volatilization, leaching, excretion, and decomposition. Using wheat allelopathy to control weeds in agroecological system, a low dosage, high selective and without "3R" problems(resistance, rampancy and residue) in weed control, will be a key technology for controling weed friendly in 21st century.
     Recently, the reaserch for wheat allelopathy was mainly focus on the screning of allelopathic germplasm, identification of allelochemicals, and biological characteristics of allelopathy, such as genetics diversity, QTLs location, physiological response, and its genetic control. Little work was done on the ecology of wheat allelopathy in rhizosphere. In this paper, we aimed to elucidate the ecological characteristics of wheat allelopathy in rhizosphere, 6 screening methods were employed to evalute the allelopathic potential of 90 wheat acessions, their agronomic characters and genetics diversity were tested as well. For the more, allelopathy and resoure competetion between wheat and weeds, the physiological characteristics of weed control, microbal population in rhizospheric soils, allelochemicals in the plant and rhizospheric soils, and allelochemicals effect on the growth of accepter plants, soil microbe and enzyme activities were documented. The result was mainly concluded as below.
     (1) Six different methods, such as soil-agar-sandwich method(SASM), aqueous extract screening bioassays(AES), relay seeding in agar(RSA) and field investigation, were employed to evaluate the allelopathic potentials of 90 wheat acessions introduced from both home and abroad. The result offered three strong allelopathic wheat acessions: Jin 2148, 115/Qinghaimai and 92L89, and 3 weak ones: 9813, 8401 and 10103 for wheat allelopathy reseach. It was also confirmed by experiments that SASM was a simply feasible method for screening allelopathic wheat acessions.
     (2) Multiple correlation ananlysis was calculated among wheat agronomic characters, yield characters and the IRs of lettuce root length growth showed that IRs were negative correlation with plant height, spike length, leaf length, leaf breadth, arista length. In reverse, IRs were positive correlation with spike number, plump grains, number of grains, setting rate, thousand grains weight and cauline thickness. But all the correlation were not significantly at p<0.05. It suggested that the charater of allelopathy in wheat was not notable linkage to its agronomic and yield characters, and new wheat varieties possess both high yield and strong allelopathic characters can be achieved by hybridize breeding.
     (3)In order to estimate allelopathy potential resonably, allelopathy-competition separation method (ACS), a methodology containing four gradient nitrogen application was introduced to evaluate allelopathy and resource competition effects included in the biointerference. The result showed that the allelopathic effect on the growth of Alopecurus aequalis increased with the decline of nitrogen application levels for all the tested wheat acessions. Strong allelopathic wheat acessions suppressing the weed mainly by allelopathic effect, for 115/Qinghaimai, allelopathic effect occupied 48.5% and resoure competition effect was 25.4%. For 92L89 allelopathic effect occupied 41.9%, resoure competition effect was 27.5%. While weak allelopathic wheat acessions Kangl0103 was in reverse, allelopathic effect occupied 17.8% and resoure competition effect was 27.7%. Different ecological strategy in weed suppression was found between strong and weak allelopathic wheat acessions.
     (4) The physiological response for Alopecurus aequalis was determined by treating the plant with water extracts from allelopathic wheats. The result showed that allelopathic wheat siginificantly suppressed the growth of Alopecurus aequalis, performing low root number, root length, fresh weight of root and low root vigor. Simultaneously, It initiated the protection enzyme system in Alopecurus aequalis, higher enzyme activities of SOD, POD and CAT were detected in the tissue of root and leaf the weed. The higher MDA content in the weed implied that wheat water extracts doharmful to root and leaf of the weed, and root was more sensitve than leaf especially for 115/Qinghanmai. The MDA content in the root tissuse treated with 115/Qinghanmai was 10.88 to 25.53 times as higher as that in control, acompanying with higher flavonoids c and total phenols contents in the tissues of Alopecurus aequalis leaf and root. Further experiments by sand culture showed the same trend in the physiological response for Alopecurus aequalis. higher MDA content was found in the leaf, suggested that obvious lipid peroxidation occurred in the leaf, and reduced the content of ZR, GA and IAA, which pulled down the growth of weed both in root and shoot of the plant, demonstrating the allelopathic effect of wheat.
     (5) The allelopathic potential declined after the soils were sterilized, it indicated that allelopathy of rhizospheric soils was related to the microbial flora in the soils. The total number and population components of rhizospheric microbial flora showed significant difference among the three wheat cultivars. Among the three major microbial species, bacterium was the predominant one, accounting for 80.4%~83.9% of the total microbial population. The following -up was actinomycete with 15.6-19.1%, and the last one of fungus with only 0.4%~0.6% of the total microbial number. In addition, the cultivation of allelopathy wheat was likely to enhance the abundance of microbal components of azotobacteria, denitrifying bacteria, aerobic cellulose decomposing bacteria, thiobacillus.
     BIOLOG analysis showed that the value of Average Well Color Development (AWCD) differed significantly among wheat cultivars. According to the AWCD incubated for 72 h, Principal Component Analysis (PCA) identified 3 principal component factors (PCF) in relation to carbon sources, accounting for 55.8%, 31.9% and 12.3% of the variation respectively. Amino acids and carbohydrates were the two main carbon sources separating the 3 principal component factors. Furthermore, soil enzyme activities were found among the rhizospheric siols cultivated with different allelopathic potential wheats.
     We extracted DNA from the soils, combing the technology of T-RFLP, five common bacteria were found in the rhizospheric soils of 115/Qinghaimai and 92L89, they were putative to be Bacillus, Azoarcus, Blastomons, Listeria, Desulfobacter latus. This bacteria involved in nitrogen fixation, nutrient cycle, pestcise degradation and the rehabilitation of soil contaminated. Allelopathic wheats mostly promoted the population of bacteria, Actinomycete and azotobacteria, which enhance the adaption ability for wheat.
     (6)Thirteen species of allelochemicals were identified by GC/MS from leaf, root and rhizospheric soils of wheat, they were phenolic acid, carboxylic acid, amine, terpene, aether, ester, purine, hydrocarbon, phenol, alkaloid, ketone and hydroxamic acid. It was found phenolic acids, such as p-hydroxycinnamic acid, p-hydroxybenzoic acid, in all the wheat leaf, root and rhizosperic soils. The simulant experiment in laboratory showed that the absorption and desorption process of p-hydroxycinnamic acid in the soils can be perfectly fitted by the equation of Y(μg) = b_0 + b_1V + b_2V~2.
     The bioassay in laboratory showed that p-hydroxycinnamic acid has the suppressing effect on the growth of Alopecurus aequalis. Furthermore, p-hydroxycinnamic acid and cinnamic acid obviously changed the components of microbal flora and enzyme activities in the soils, which enhanced bacteria population, inhibited fungi population, and for actinomycete, it was inhibited at high concentration and enhanced at low concentrtion. At the same time, both p-hydroxycinnamic acid and cinnamic acid promoted the activities of urease, protease, sucrase and Phosphatase. Microbiology ananlysis by the technology of T-RFLP found employed to were found the soils treat with the two phenolic acids was benefitial to the establishment of Brevibacillus, Sulfobacillus, Bacillus stearothermophilu, Eubacterium, Burkholderia, Desulfuromonas, Micrococcus, Campylobacter and the cycling of substances in the soil.
引文
[1] 柴强,黄高宝。植物化感作用的机理、影响因素及应用潜力。西北植物学报,2003,23(3):509-515
    [2] 陈冬梅,林文雄.水稻化感作用研究现状与展望[J].福建农业大学学报,2000,29(3):281-285.
    [3] 陈冬梅,陈祥旭,孙红艳,林瑞余,林文雄。麦类作物化感作用种质资源筛选与评价。福建农林大学学报(自然科学版),2008,37(1):13-17.
    [4] 程强,张新叶,黄敏仁.实时定量RT-PCR技术及在植物基因表达分析中的应用[J].中国生物工程杂志,2005:82-86.
    [5] 董立尧,王鸣华,武淑文,沈晋良.小麦对直播稻田千金子的化感作用及化感物质分离鉴定[J].中国水稻学,2005,19(6):51-55.
    [6] 段昌群.生态科学进展(第3卷)[M].北京:高等教育出版社,2007.
    [7] 关松荫.1986.土壤酶及其研究法.北京:农业出版社,1-353.
    [8] 郭春芳,唐玉海,孙云,张木清。11个茶树品种遗传多样性的ISSR和TRAP比较分析。中国农学通报,2008,24(1):340-346。
    [9] 何华勤,林文雄.水稻化感作用生理生化特性研究.中国生态农业学报,2001,9(3):56-57.
    [10] 何华勤,林文雄,梁义元,等.应用差异蛋白质组学方法分析作物化感作用的分子机理[J].生态学报,2005,25(12):3141-3145
    [11] 韩雪梅,郭卫华,周娟,等.土壤微生物生态学研究中的非培养方法[J].生态科学,2006,25(1):87-90
    [12] 和丽忠,陈锦玉,董宝生,李世萍.国内植物化感作用研究概况[J].云南农业科技,2001(1):37-41.
    [13] 洪坚平,来航线.应用微生物学[M].北京:中国林业出版社,2005,pp 189-190
    [14] 胡开辉,罗庆国,林文雄.化感水稻根际微生物类群及酶活性变化[J].应用生态学报,2005,17(6):1060-1064
    [15] 华东师范大学生物系植物生理教研组,植物生理学实验指导:1980.人民教育出版社,143-144
    [16] 黄高宝,柴强,黄鹏.植物化感作用影响因素的再认识[J].草业科学,2005,14(2):16-22.
    [17] 孔垂华.1998.植物化感作用研究中应注意的问题.应用生态学报,9(3):332-336
    [18] 孔垂华,胡飞.植物化感(相生相克)作用及其应用[M].北京:中国农业出版社,2001
    [19] 孔垂华,徐效华,梁文举,等.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性[J].生态学报,2004,24(7):1317-1322.
    [20] 李合生. 2000.植物生理生化实验原理和技术.北京:高等教育出版社,182-184.
    [21] 李善林,由振国,李孙荣,张丽.小麦提取物对反枝苋、繁缕生长的化感效应研究[J].中国生物防治,1996,12(4): 168-170.
    [22] 李扬瑞。植物的生化互作现象。土壤,1993,5:248-251,259.
    [23] 梁景霞,祁建民,方平平等。烟草种质资源遗传多样性与亲缘关系的ISSR聚类分析。中国农业科学2008,41(1):286-294。
    [24] 梁文举,张晓珂,姜 勇,等.根分泌的化感物质及其对土壤生物产生的影响[J].地球科学进展,2005,20(3):330-337.
    [25] 廖周瑜,侯玉平, 赵则海,倪广艳,赵娜,庞俊晓,彭少麟。五爪金龙化感效应研究Ⅱ.凋落物的化感潜力。中山大学学报(自然科学版),2008,47(4):63-67。
    [26] 刘保川,陈巨莲,倪汉祥,孙京瑞,武予清.小麦中黄酮类化合物对麦长管蚜生长发育的影响[J].植物保护学报,2003,30(1):8-12.
    [27] 林文雄,董章杭,何华勤,等.不同环境下水稻化感作用的动态杂种优势分析[J].中国农业科学,2003,36(9):985-990.
    [28] 林文雄,何海斌,熊君等.水稻化感作用及其分子生态学研究进展.生态学报,2006(08):2687-2695.
    [29] 林文雄.水稻化感作用[M].厦门:厦门大学出版社,2005:1-2.
    [30] 林瑞余,戎红,周军健,等.化感水稻苗期根际土壤微生物群落特征及功能多样性分析[J].生态学报,2007,27.3644-3654.
    [31] 林文雄,何华勤,郭玉春,等.水稻化感作用及其生理生化特性的研究[J].应用生态学报,2001,12(6):871-875.
    [32] 林文雄,何海斌,熊君,等.水稻化感作用及其分子生态学研究进展[J].生态学报,2006,28(8):2687-2694
    [33] 林文雄,熊君,周军健,等.化感植物根际生物学特性研究现状与展望[J].中国生态农业学报,2007,15(4):1-8.
    [34] 刘涤,胡之璧.植物类异戊二烯生物合成途径的调节[J].植物生理学通讯,1998,34(1):1-9.
    [35] 鲁如坤.1999.土壤农业化学分析方法.北京:中国农业科技出版社,1-638.
    [36] 孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报,2007,31(1):150-165
    [37] 缪恒彬,陈发棣,赵宏波。85个大菊品种遗传关系的ISSR分析。园艺学报,2007,34(5):1243-1248。
    [38] 缪元颖,杨顺楷,刘成君.苯丙氨酸解氨酶的分子生物学研究进展[J].应用与环境生物学报,2002,8(6):672-675.
    [39] 彭帅,伍贤进,罗1月佶,唐冬英,刘选明。17份鱼腥草种质亲缘关系的ISSR分析。安徽农业科学,2007,35(12):3484-3486。
    [40] 阮维斌,张福锁,王敬国.高效液相色谱法检测与化感现象相关的5种酚酸.应用与环境生物学报,2006,7(6):609-612.
    [41] 沈菊培,张丽梅,郑袁明,等.土壤宏基因组学技术及其应用[J].应用生态学报,2007,18(1):212-218
    [42] 史刚荣.2004.植物根系分泌物的生态效应.生态学杂志,23(1):97-101.
    [43] 史瑞和.1998.土壤农化分析.北京:农业出版社,1-359.
    [44] 孙磊,陈兵林,周治国.麦棉套作系统中小麦根区化感物质对棉苗生长的影响[J].棉花学报,2006,18(4):213-21.
    [45] 孙淑斌,李宝珍,胡江,等.水稻低丰度表达基因OsAMT1;3实时荧光定量PCR方法的建立及其应用[J].中国水稻科学,2006,20(1):8-12.
    [46] 孙文浩,俞子文,邰根福,等.1990.凤眼莲无菌苗培养及其克藻效应.植物生理学报,16:301.
    [47] 涂鹤龄.麦田杂草化学防除[M]。化学工业出版社,北京,2003。
    [48] 王大力,马瑞霞,刘秀芬.水稻化感抗草种质资源的初步研究[J].中国农业科学,2000,33(3):94-96
    [49] 王大力.水稻化感作用研究综述[J].生态学报,1998,183(3):26-334
    [50] 王海燕,蒋展鹏.化感作用及其在环境保护中的应用[J].环境污染治理技术与设备,2002,3(6):86-89.
    [51] 王洪嫒,管华诗,江晓路.微生物生态学中分子生物学方法及T-RFLP技术研究[J].中国生物工程杂志,2004,24(8):42-47.
    [52] 王少丽,乔传令,盛承发.单链构象多态性(SSCP)及其在昆虫学中的应用[J].遗传,2002,24(4):483-485.
    [53] 王朋,梁文举,孔垂华,等.2004.外来杂草入侵的化学机制.应用生态学报,15(4):707-711.
    [54] 王璞,赵秀琴.浸提条件对小麦秸秆中化感物质检测结果的影响.植物学通报,2001,18(6):735-738.
    [55] 王艳平,汤陵华,方先文,杜崇春。化感水稻不同组织水浸提液对稗草的化感作用。植物遗传资源学报2003,4(3):191-194.
    [56] 王玉芝,张汝民,高岩.冷蒿浸提液对几种饲用植物的化感作用.中国草地学报,2008,30(2):47-53.
    [57] 熊君,林文雄,周军建,等.2005.不同供氮条件下水稻的化感抑草作用与资源竞争分析.应用生态学报,16(5):885-889.
    [58] 徐正浩,何勇,崔绍荣,等.水稻化感材料控制稗草的基因定位研究[J].应用生态学报2003,14(12):2258-2260.
    [59] 徐正浩,余柳青,赵明.水稻对稗草的化感作用研究[J].应用生态学报,2003,14(5):737-740.
    [60] 严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997.
    [61] 阳冬梅,罗林儿.丁布对粘虫幼虫侧栓锥感器冲动发放的影响[J].科学通报,1997,42(1);81-83.
    [62] 印莉萍,黄勤妮,吴平.植物营养分子生理学及信号转导[J].北京:科学出版社,2006.
    [63] 余叔文,汤章城.1998.植物生理与分子生物学.科学出版社,699-720
    [64] 邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学出版社,2001.
    [65] 曾大力,钱前,滕胜.水稻化感作用的遗传分析[J].科学通报,2003,48(1):70-73
    [66] 曾任森.化感作用研究中的生物测定方法综述[J].应用生态学报,1999,9(2):123-126.
    [67] 曾任森,林象联,骆世明等.蟛蜞菊的生化他感作用物的分离鉴定[J].生态学报,1996,16(1):20-27.
    [68] 张宝琛,白雪芳,顾立华,甄润德。生化他感作用与高寒草甸上人工草场自然退化现象的研究[J]。生态学报,1989,9(2):115-119.
    [69] 张晓珂,姜勇,梁文举,孔垂华.小麦化感作用研究进展[J].应用生态学报, 2004,15(10):1967-1972.
    [70] 张晓珂,梁文举,姜勇.东北地区不同小麦品种对黑麦草的化感作用[J].应用生态学报,2006,17(7):1191-1195.
    [71] 张玉聚,孙化田,王春生.除草剂及其混用与农田杂草化学防治[M].北京:中国农业科技出版社,2000:80-81.
    [72] 张玉聚,徐凤波.除草剂应用技术与市场开发[M].郑州:郑州大学出版社,2003:195-202
    [73] 赵华,谷岩,孔垂华.水稻化感品种对土壤微生物的影响[J].生态学报,2006,26(8):2770-2773
    [74] 郑洪元,张德生.1982.土壤动态生物化学研究法.北京:科学出版社,1-282
    [75] 中国科学院南京土壤研究所微生物室编著.1985.土壤微生物研究法.北京:科学出版社,1-347
    [76] 中国科学院上海植物生理研究所,上海市植物生理学会,现代植物生理学实验指南.1999.北京:科学出版社,318-322
    [77] 周志红。植物化感作用的研究方法及影响因素。生态科学,1999,18(1) :33-35。
    [78] 朱广廉,钟诲文,张爱琴.1990.植物生理学实验.北京:北京大学出版社
    [79] 朱南文,闵航,陈美慈,等.1996.TTC-脱氢酶测定方法的探讨.中国沼气,14(2):3-5.
    [80] 左胜鹏,马永清,李秀维.不同基因型小麦成熟期地上部的化感作用研究[J].农业环境科学学报,2005,24(4):652-657.
    [81] 左胜鹏,马永清.基于系统工程原理的作物化感潜力评价及其应用初探[J].中国农业科学,2006,39(3):530-537.
    [82] Bais H P, et al. 2001. Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell.Dev. Biol. Plant, 37:730-741.
    [83] Bais H P, Vepachedu R, Gilroy S, et al. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science, 301 (5638): 1377-1380.
    [84] Barnes J P, Putnam A R. 1986. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale).Weed Sci, 34:384-390.
    [85] Barnes, J.P., and A.R. Putnam.. Rye residues contribute weed suppression in no till cropping systems. J Chem Ecol,1983,9:1045-1057.
    [86] Bansal G L. 1994. The science of allelopathy: Problems and prospects. Allelopathy in agriculture and forestry.Scientific publishers. Jodhpur. India.
    [87] Bansal G L. Allelopathy effect of buttercups on wheat varieties[J], Allelopathy Journal, 1997,4(1): 139-142.
    [88] Barazani, O., and Friedman, J. Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol, 2001,27: 41-55.
    [89] Baziraakenga R, Leroux G O, Slmard R R. Effect of benzoic and cinnamic acids on membrane permeability of soybean roots[J]. Journal of Chemical Ecology, 1995,21(9): 1271-1285.
    [90] Bertholdsson. Early vigour and allelopathy - two useful traits for enhanced barley and wheat competitiveness with weeds[J]. Weed Research, 2005, 45: 94-102.
    [91] Blum U, Sharer SR. Microbial population and phenolic acids in soil[J]. Soil Biol.Biochemistry, 1988, 20(6): 793-800.
    [92] Blum U, Gerlg TM, Worsharn AD.et al. Allelopathic activity in wheat-conventional and wheat-no-till soils: Development of soil extract bioassays[J]. Journal of Chemical Ecology, 1992,18: 2191-2221.
    [93] Bode H R. 1958. Beitrage zur Kenntnis allelopatischer Ercheinungen bei einigen Juglandaceen. Planta,51:440-480.
    [94] Brajesh K. Singh, Peter Millard, Andrew S. Whiteley. et al. 2004. Unravelling rhizosphere-microbial interactions: opportunities and limitations. TRENDS in Microbiology,. 12(8):386-393.
    [95] Booker,FL, Blum U. Fiscus E L. Short term of ferulic acids on ion uptake and water relations on cucumber seedlings[J] Journal of Experimental Botany, 1992,43(250):649-655.
    [96] Callaway R M, Aschehoud E T. 2000. Invasive Plants versus their new and old neighbors: A mechanism for exotic invasion. Science, 290(5491):521-523.
    [97] Choesin, D N., Boerner R E J. Allyl isothiocyanate release and the allelopathic potential of Brassica napus(Brassicaceae). Is Brassica napus allelopathic? American Journal of Botany, 1991,78: 1083-1090.
    [98] Choi K H, Dobbs F C. 1999. Comparison of two kinds of biolog microplates (GN and ECO) in their ability to distinguish among Aquatic microbial communities. Journal of Microbiological Methods, 36(3): 203-213.
    [99] Ciompi S, Gentili E, Guidi L, et al. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Science, 1996, 118(2): 177-184
    [100] Copaja SV, Niemeyer HM, Wratten SD. Hydroxamic acid levels in Chilean and British wheat seedings[J]. Annals of Applied Biology, 1991, 118: 223-227.
    [101] Cruz O R, Anaya A L. Ramos L..Effect ofallelopathic compounds of corn pollen and cell division of watermelon[J] Journal of Chemical Ecology,1988, 149(1): 71-86.
    [102] Dilday R H,Lin J,Yang W. Identification of allelopathy in the USDA-ARS rice germplasm collection[J]. Australia.Journal of Experimental Agriculture, 1994, 34:907-910.
    [103] Donald A.Crutchfield et al. Effect of Winter wheat(Tritium aestinum) Straw mulch level on weed control[J]. Weed Science, 1985,34: 110-114.
    [104] Dudai N, Putievsky E, Lerner H.R., Ravid U, Lewinsohn E. and Mayer A.R. Biotransformation of constituents of essential oils by germinating wheat seed[J]. Phytochemistry, 2000, 55, 375—382.
    [105] Dixon R A. 2001. Natural products and plant disease resistance. Nature, 411:843-847.
    [106] Einhelig F A. Mechanism of action of allelochemicals in allelopathy[J]. Allelopathy 1995,1:97-115.
    [107] Einhelig F A.Interactions involving allelopathy in cropping systems[J]. Agronomy Journal, 1996,88:886-893.
    [108] Einhelig FA, Eckrich PC. Interactions of temperature and ferunic acid stresson grain sorghum and soy beans[J]. Journal of Chemical Ecology, 1984, 10(1): 161-170.
    [109] Fisher NH, Williamson GB, Weidenhamer JD, et al. In research of allelopathy in Florida scrub: Therole of terpenoids[J]. Journal of Chemical Ecology, 1994,20(7): 1355-1380.
    [110] Flores H E, et al. 1999. 'Radicle' biochemistry: the biology of root-specific metabolism. Trends Plant Sci, 4:220-226.
    [111] Fragoeiro S, Magan N. 2005. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microbiol, 7(3):348-355.
    [112] Friebe A., Vilich V., Hennig L., Kluge M.,et al. 1998.Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G graminis var. graminis, G graminis var. avenae, and Fusarium culmorum. Appl Environ Microbiol. 64(7): 2386-2391.
    [113] Fujii Y, Shibuya and Yasuda T. Method for screening allelopathic activities by using the logistic function(Richards' function) fitted to lettuce seed germination and growth curves[J]. Weed Resarch, Japanese, 1990, 35:353-361.
    [114] Fujii Y, Akihiro Frurbyashi, Syuntaro Hiradate. Rhizosphere soil method:a new bioassay to evaluate allelopathy in the field. Proceedings and selected papers of the fourth world congress on allelopathy. 2004. 490-492.
    [115] Gallo M, Amonette R, Lauber C, et al. 2004. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol, 48(2):218-229.
    [116] Gaspar E M, Never H C. Chemistry constituents in allelopathic straw of wheat(Triticum aestivum L.) [J]. Allelopathy Journal, 1995,2:79-87.
    [117] Gattas Hallak A M, Davide L C,Souza L F. Effects of sorghum(Sorghub bicolor L.) root exudates on the cell cycle of the bean plant(Phaselus vulgaris)root[J]. Genetics and Molecular Biology, 1999, 22(1): 95-99.
    [118] Ghareyazie B. , N. Huang, G. Second, et al. 1995. Classification of rice germplasm. I. Analysis using ALP and PCR-based RFLP, TAG Theoretical and Applied Genetics. ,91: 218-227.
    [119] Grodzicker T. et al. Physical mapping of temperature-sensitive mulations of adenoviruses, Cold Spring Harbor Symp Quant Biol, 1974, 39: 439-446.
    [120] GuenziWD, McCalla TM. Phenolic acid in oat,wheat,sorghum,and com residues and their phytoto-xicity[J]. Agronomy Journal, 1966,58: 303-304.
    [121] Hairston J E, Sanford J O, Pope D F, Horneck D A. Soybean-wheat double cropping: implications from straw management and supplemental nitrogen[J]. Agronomy Journal, 1987, 79:281-286.
    [122] Halligan J P. 1973. Bare areas associated with shrub stands in grassland: the case of Artemistia California. Bioscience, 23:429432.
    [123] Hashimoto Y, ShuDo K. Chemistry of biologically active benzonazinoids[J]. Phytochemistry, 1996, 43(3):551-559.
    [124] Harsh, P B, SangW P, Tiffany L, Weirl R, Callaway M, Vivanco J M. 2004. How plants communicate using the underground information Superhighway. Trends in Plant Science, 1:26-32.
    [125] Hashimoto Y, ShuDo K. Chemistry of biologically active benzonazinoids[J]. Phytochemistry, 1996, 43(3): 551-559.
    [ 126] Hejl A M, Einhelig F A, Rasmussen J A. Effects of juglone on growth photosythesis and respiration[J]. Journal of Chemical Ecology, 1993, 19(3): 559-568.
    [ 127] ILL MIN CHUNG; JUNG TAE KIM; KIM Seung-Hyun Evaluation of allelopathic potential and quantification of momilactone A,B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. Journal of agricultural and food chemistry, 2006, 54(7): 2527-2536.
    [128] Inderjit FA. Soil microorganisms: An important determinant of allelopathic activity. Plant and Soil, 2005 274:227~236.
    [129] Inerjit M , Olofsdotter. Using and Improving Laboratory Bioassays in Rice Allelopathy[A]. Olofsdotter M. Allelopathy in rice [M ]. Philippines. International Rice Research Institute publish 1998: 45-55.
    [130] Jeffreyas A J. Nature, 1985, 316: 76.
    
    [131] Jeffreyas A J., Mc Leod A, Tamaki A, et al. Nature, 1991, 354: 204.
    [132] John D. Mattice, Robert H. Dilday, Edward E. Gbur and Briggs W. Skulman. Barnyardgrass Growth Inhibition with Rice Using High-Performance Liquid Chromatography to Identify Rice Accession Activity[J]. Agronomy Journal, 2001, 93:8-11.
    [133] Jorge M. Vivanco, Harsh P.Bais, et al. 2004. Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecology Letters, 7: 285-292.
    [134] Joshi S P, Gupta V S, Aggarwal R K. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR)polymorphism in the genus Oryza. Theoretical and Applied Genetics, 2000, I00: 1311-1320.
    [135] Katsuichiro, Kobayashi. 2004. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management, 4:1-7
    [136] Khanh TD, Chung IM, Xuan TD and Tawata S .The exploitation of crop allelopathy in sustainable agricultural production[J]. Journal of Agronomy and Crop Science, 2005, 191, 172-184.
    [137] Kim, K.U., Shin, D.H., Kim, H.Y., Lee, I.J. & Olofsdotter, M. 1999. Evaluation of allelopathic potential in rice germplasm. Korean J. of Weed Sci.9 (2): 1-9.
    [138] Kimber RWL. Phytotoxicity from plant residues Ⅲ The relative effect of toxins and nitrogen immobilization on the germination and growth of wheat[J]. Plant andSoil, 1973, 38: 543-555.
    [139] Konieczny, A., Ausubel, FM. 1993 A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4, 403-410.
    [140] Kothari S K, Marschner H, George E. 1990. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol, 116:303-311.
    [141] Kruse M, Strandberg M, Strandberg B. Ecological Efects of Allelopathic Plants-A Review. National Environmental Research Insititute, Silkeborg, Denmark. NERI Technical Report, 2000, No.315.
    [142] Litt M,Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. AmJ Hum Genet,1989,44 (3) :397 - 401.
    [143] Luu KT, Matches AG, Peters EJ. Allelopathy effects of tall fascueon birds foot trefoilas influenced by N fertilization and seasonal change[J]. Agronomy Journal, 1982, 74(5): 805-808.
    [144] Lynch J M,Gunn K B,Panting L M.On the concentration of acetic acid in straw and soil[J].Plant and Soil. 1980,56: 93-98.
    [145] Lynch J M.Production and phytotoxicity of acetic acid in anaerobic soils containing plant residues[J].Soil Biology and Biochemistry , 1978, 10:131-135.
    [146] Lynch J M..Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw[J]. Journal of Applied Bacteriology, 1977, 42:81-87.
    [147] Ma Y-Q. Allelopathic studies of common wheat(Triticum aestivum L.) [J]. Weed Biology and Management. 2005,5(3): 93-104.
    [148] Mao Jian, Yang Linzhang, Y Shi uming, et al. Crude extract of Astragalus mongholicus root inhibits crop seed germination and soil nitrifying activity[J]. Soil Biology and Biochemistry, 2006, 38:201-208.
    [149] Marschner H. 1995. Mineral Nutrition of Higher Plants. Ed2. Academic Press.
    [150] Murry AH. Effects of simple phenolic compounds of heather (Callunavulgaris) on rumen microbialactivity invitro[J]. Journal of Chemical Ecology, 1996, 22(8): 1493-1505.
    [151] Nagaoka T, Ogihara Y. Application of ISSR polymorphism in wheat cultivars using RAPD fingerprinting. Theoretical and Applied Genetics, 1997, 94(5): 597-602.
    [152] Nair MG, Whiteneck CJ and Putnam AR. 2, 2'-oxo-1, 1 '-azobenzene, a microbially transformed allelochemical from 2, 3-benzoxazorinone:I. Journal of Chemical Ecology, 1990, 16: 353-364.
    [153] Navarez, D.C.; Olofsdotter, M. 1996, International Weed Control Congress, Copenhagen (Denmark), 25-28, Jun 1996.
    [154] Niemeyer HM. Hydroxamic acids(4-hydroxy-1,4-bengoxazin-3, ones)defence chemicals in the gramineae[J].Phytochemistry, 1988,27(1): 3349-3358.
    [155] Om H, Dhiman S D, Ktlnlar S, et al..Allelopathtic response of phalaris minor to crop and weed plants in rice-wheat system[J]. Crop Protection, 2002, 21: 699-705.
    [156] Oueslati O. Allelopathy in two durum wheat(Triticum durum L. )varieties[J]. Agriculture Ecosystems and Environment, 2003, 96: 161-163.
    [157] Padhy B, Patnaik P K, Tripathy A K. Allelopathic potential of Eucalyptus leaf litter leachates on germination and seedling growth of fingermillet[J]. Allelopathy Journal, 2000, 7(1): 69-78.
    [158] Patterson D T. Effeets of allelopathic chemicals on growth and physiological response of soybean(Clycine max)[J]. Weed Science, 1981,290):53-58.
    [159] Philippe Hinsinger, Claude Plassard, Benoit Jaillard. 2006. Rhizosphere: A new frontier for soil biogeochemistry.Journal of Geochemical Exploration, 88:210- 213.
    [160] Perez P J. 1991. Root excudates of wild oats: allelopathic effect on spring wheat. Phytochemistry,30(7):2199-2202.
    [161] Petra Marschner, Sari Timonen. 2005. Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Applied Soil Ecology .28: 23-36.
    [162] Putnam, A.R. and Tang, C.S. The Science of Allelopathy [M]. 1986, New York: John Wiley & Sons, p1-19.
    [163] Qasem JR, Abu-Irmaileh BE. Allelopathic effect of Salviasyriaca L.(Syriansage) in wheat[J] .Weed Research,1985, 25(1): 47-52.
    [164] Rice EL. Allelopathy, 2nd ed. New York.Academic Press Inc. 1984,1-3.
    [165] Rice E L. 1974. Allelopathy. New York: Academic Press.
    [166] Risch, N., Merikangas, K., The future of genetic studies of complex human diseases, Science, 1996 (273):1516-1517.
    [167] Schortemeyer M, Santrckova H, Sandowsky MJ. 1997. Relationship between root length density and soil microorganisms in the rhizospheres of white clover and perennial ryegrass [J] . Commun. Soil Sci .Plant A nal,28:1675-1682.
    [168] Schenck N G. 1976. Microorganisms and Root Development and Function. Soil and Crop Science Society,Madison, FL.
    [169] Schmidt K R, Chand S, Gostomski P A, et al. 2005. Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil[J]..Biotechnol Prog, 21(2):377-385
    [170] Shilling DG, Liebl RA.W orsham AD, et al. Rye and wheat mulch: The suppression of certain broadleaf weeds and the isolation and identification of phytotoxins[J]. ACS Symposium Series, 1985, 286: 243-271.
    [171] Shibu J,Andrew R G..Allelopathy in black walnut(Juglans nigra L.) alley cropping Ⅱ. Effects of juglone on hydroponically growth corn (Zea mays L.) and soybean(Glycine max L Merr.) growth and physiology[J] Plant and soil, 1998, 203: 19-205.
    [172] Shin, D.H.,. Kim, K.U., Sohn, D.S., Kang, S.U., Kim, H.Y., Lee, I.J. Kim, M.Y. 2000. Regulation of gene expression related to allelopathy. In Kim, K.U. & Shin, D.H., eds. Proc. of the Int. Workshop in Rice Allelopathy (Kyungpook National University, Taegu, Korea, 17-19 August 2000). Institute of Agricultural Science and Technology, Kyungpook National University, Taegu, pp. 109-124.
    [173] Tang CS,Young C C.Collection and identityication of allelopathic compounds from undisturbed root system of Bigalta Juncgrass[J].Plant Physiology, 1982, 69:155-160
    [174] Tang C S,Waiss A C. Short-chain fatty acids as growth inhibitors in decomposing wheat straw[J].Journal of Chemistry Ecology, 1978, 4:225-232.
    [175] Tang CS, Oliver LR, Nishimoto RK. Plants tress and allelopathy [A]. In: Inderjit. Allelopathy: Organisms,processes and applications [M]. Washington, DC: ACS. Symp. Ser. 582 Am. Chen. Soc., 1995. 142-157.
    [176] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J] . Nucleic Acids Res ,1989,17:6463 - 6471
    [177] Travis S. Walker, Harsh Pal Bais, Erich Grotewold, and Jorge M. Vivanco. 2003.Root Exudation and Rhizosphere Biology, Plant Physiology, 132:44-51。
    [178] Vaughan D, Ord B. influence of phenolic acids on morphological changes in roots of Pisum sativum[J]. Journal of Science of Food and Agriculture, 1990, 52(3): 289-299.
    [179] Wallace J M, Whitehand L C. Adverse synergistic effects between acetic, propionic, butyric and valeric acids on the growth wheat seedling roots[J]. Soil Biology and Biochemistry, 1980, 12:445-446.
    [180] Weston LA. Utilization of allelopathy for weed management in Agroecosystems[J]. Agronomy Journal, 1996,88: 860-866.
    [181] Weising K1 ,Nybom H. ,Wolff K., Meyer W. DNA fingerprinting in plants and fungi[M].CRC Press, Inc. ,Boca Raton, 1994.
    [182] Weidenhamer J D. 1996. Distinguishing Resource Competition and Chemical Interference: Overcoing the Methodological Imprasse. Agronomy Journal. 88:866-875.
    [183] Weidenhamer JD, Hartnett DC, Romeo JT. Density-dependent phytotoxicity: Distinguishing resources competition and allelopathic interference in plants [J]. Journal of Application Ecology, 1989, 26(3): 613-624.
    [184] Welsh J. ,McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucl Acids Res., 1990,18(24) : 7213 - 7218.
    [185] Whittaker R H, Ferry P D. Allelochemics:Chemical interactions between species[J]. Science, 1971, 171:757-770.
    [186] Williams J. G. ,Kubelik A.R. ,Livak K. J ,et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucl Acids Res. ,1990,18 (22) :6531 - 6535.
    [187] Wu H, Haig T, Prafley J, el al. Distributionan and exudation of allelochemicals in wheat Triticum aestivum[J].Journal of Chemical Ecology, 2000c, 26(9): 2141-2154.
    [188] Wu H,Pradey J,Lemerle D, et al.Differential allelopathic potential among wheat accessions to annual ryegrass. Proceedilgs of the 9th Australian Agronomy Conference. Wagga, Australia. 1998, 567-571.
    [189] Wu H, Pradey J, Lemerle D, and Haig T, et al. Evaluation of seedling allelopathy in 453 wheat(Triticum aestivum)accessions against annual ryegrass(Lolium rigidum)by the equal-compartment agar method[J].Australian Journal of Agricultural Research, 2000a, 51:937-944.
    [190] Wu H., Pratley J., Lemerle G. and Haig T. Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) [J]. Australian Journal of Agricultural Research,2000b, 51,259-266.
    [191] Wu H,Prafley J,Lemerle D,An M. Simultaneous determination of phenolic acids and 2,4-dihydroxy-7-methoxy-1,4- benzoxazin-3-one by GC/MS/MS in wheat(Triticum aestivum L.) [J]. Journal of Chromatography A,1999, 864: 315-321.
    [192] Wu H, Haig T, Prafley J, el al. Allelochemicals in wheat(Triticum aestivum L.):Variation of phenolic acids in shoot tissues[J]. Journal of Chemical Ecology, 2001, 27(1): 125-135.
    [193] Xuan T D, Hong NH, Khanh T D, Eiji Tsuzuki, Tawata Shinkichi and Fukuta Masakazu.Utilization of plant allelopathy for biological control of weeds and plant pathogens in rice. The Fourth World Congress on Allelopathy,2005.
    [194] Zabeau M,Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting.European Patent Application Number: 1993.92402629.7, Publication Number EP 0534858 A 1.
    [195] Zietkiewicz E,Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)- anchored polymerase chain reaction amplification. Genomics, 1994, 20: 176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700