ZrN和ZrC薄膜的微观结构、化学键态、应力、硬度和摩擦学性能关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Investigation on the Relationship among Microstructure, Chemical Bonding State,stress, Hardness and Tribological Properties of ZrN and ZrC Films
  • 作者:孟庆南
  • 论文级别:博士
  • 学科专业名称:材料物理与化学
  • 学位年度:2013
  • 导师:郑伟涛
  • 学科代码:080501
  • 学位授予单位:吉林大学
  • 论文提交日期:2013-10-01
摘要
氮化锆(ZrN)和碳化锆(ZrC)薄膜具有出色的物理和化学性能使其可以被应用于各种极端条件,如宇航用耐高温材料和核反应中燃料颗粒的涂覆材料。此外,由于其高硬度耐磨损的特点也可以用于切削工具的保护涂层。ZrN和ZrC薄膜的高电导率和优秀的化学稳定性也是其能够胜任滑动电接触器件,如电刷、微电器件,电路开关和机动车的启动器。ZrN和ZrC薄膜可通过多种方法制备,其中最普遍易行的方法是磁控溅射方法。
     本文中首先将采用反应磁控溅射的方法制备多晶ZrN薄膜,并探究了晶体择优取向、相结构和薄膜应力、硬度之间的关系:
     在第二章中,通过改变基底偏压增加粒子能量进而向ZrN薄膜中引入不同大小的应力。以应力对ZrN薄膜微观结构和相结构的影响作为着眼点,通过热力学计算探究并建立应力、择优取向演变和相转变之间的关系。热力学计算结果表明应变能是ZrN薄膜择优取向演变和相转变的驱动力,在高应力状态下薄膜总是优先选择低应变能的取向或相生长;
     由于在沉积薄膜的过程中,残余应力不可避免的会被引入,而残余应力对硬度测量中接触点附近样品的塑性形变行为势必产生影响。因此,在第三章中我们选择ZrN薄膜借助于原子力显微镜对应力与硬度的关系进行研究。通过对比有应力样品和应力释放后样品的最大载荷和接触面积来研究应力在硬度测量过程中的作用,并在此基础上探究应力对纳米压痕硬度测量的影响;
     在氮化物超硬薄膜的研究中多层膜体系通常表现出超常的硬度,因此在第四章中使用磁控溅射制备了ZrN/SiNx多层膜用以进一步提升ZrN薄膜的硬度,并探究了界面偶极现象对多层膜硬度增强的贡献。首先对ZrN/SiNx双层膜进行XPS深度剖析以表征界面电子状态,其结果表明ZrN/SiNx界面处出现电子极化现象,电子从ZrN层向SiNx层转移。此外,界面极化程度受SiNx层密度的影响。相应ZrN/SiNx多层膜的硬度测量表明多层膜的硬度增强和界面电子极化之间存在一定的内在联系;
     在实际生产应用中薄膜的耐摩擦性能直接决定了薄膜的使用寿命,ZrN薄膜的硬度优异但在耐磨擦性能上略显薄弱。与氮化物薄膜相比,碳化物薄膜的耐磨损性能更为优秀。因此,在后面的两章中通过磁控溅射制备了ZrC和ZrSiC薄膜,并研究了薄膜中微观结构、化学键态、应力、硬度、摩擦学性能和电学性能之间的关系:
     在第五章中通过改变溅射过程中CH4流量制备了具有不同碳含量的ZrC薄膜。在碳含量较低时薄膜表现为典型的nc-ZrC/a-C纳米复合结构,当碳含量高于86at.%时薄膜转变为非晶结构。薄膜的力学、摩擦学和电学性能明显依赖于纳米复合结构中a-C的含量。大量的a-C将导致电阻率快速增加且硬度下降,但其润滑作用会使得摩擦系数被大幅度改善。此外a-C相中碳原子的化学键态同样对性能有着一定的影响,较大的sp2/sp3将有助于释放薄膜的应力和改善电学性能。与其他典型的过渡金属碳化物纳米复合膜相比(如nc-MeC/a-C, Me=Ti, Nb)ZrC薄膜表现出更低的摩擦系数。
     尽管ZrC薄膜表现出优秀的耐磨擦性能,但其硬度与ZrN薄膜相比仍有所下降,而Si的加入将有可能在维持低摩擦系数的同时改善ZrC薄膜的硬度。因此在第六章中使用共溅射制备了ZrSiC非晶薄膜,系统的讨论了薄膜成分和化学键态的变化对薄膜结构和性能的影响,并与第五章中ZrC薄膜的结果进行对比。分析结果表明ZrSiC的电阻率表现出与ZrC类似的变化趋势,但硬度和摩擦系数的结果明显不同。在ZrSiC中硬度对a-C含量变化不敏感却强烈的依赖于Si-C键的含量。ZrSiC薄膜在摩擦过程中存在明显的摩擦化学反应,转移层中a-C的含量对摩擦性能的改善起着不可忽视的作用。但另一方面,剥层磨损的出现将抑制甚至恶化薄膜的摩擦学性能。转移层中a-C的含量以及剥层磨损的程度共同支配着ZrSiC的摩擦系数。
Zirconium nitride and zirconium carbide have excellent physical and chemicalproperties suggesting a potential use in extreme environments, e.g. as-hightemperature aerospace material or as coating for fuel particles in high temperaturenuclear reactors. In addition, zirconium nitride and zirconium carbide can be used as aprotective film in cutting tools because of their high hardness and wear resistance.Furthermore, the high electrical conductivity combined with a good chemicalinertness suggest a potential use in sliding electrical contacts, such as brushes,microelectromechanical devices, circuit breakers and motor vehicle starters.Zirconium nitride and zirconium carbide films can be deposited by many techniquesand the most widely used techniques is sputter.
     Based on these issues, we start to deposite polycrystalline ZrN films, andinvestigate the relationship among preferred orientation, phase structure, stress andhardness.
     In Chapter2, the stress of zirconium nitride films is controlled by changing theenergy of sputtered atoms. The influence of stress on the evolution of microstructure,such as prefer orientation and phase transition, has been studied. Thethermodynamic calculations are used to understand the evolution of the preferredorientation. Also the mechanism of a phase transition from substoichiometric tooverstoichiometric films is revealed. According to the thermodynamic calculations,with increasing strain energy, induced by an increase in Vb, the preferred orientationchanges from ZrN(200) to ZrN(111). Being high enough, the strain energy becomes adriving force for a phase transition of the film.
     The residual stresses are often unintentionally introduced into films during thedeposition process. Therefore, the influence of the residual stress on deformationbehavior (pile-up) around the indent on the surface of zirconium nitride film has beeninvestigated in Chapter3. Atomic force microscopy (AFM) is performed to reveal thebehavior of deformation (e.g. pile-up) around the indent on the surface of the film. The pile-up occurs for the film under a compressive stress, and is enlarged withincreasing the compressive stress, which leads to that the actual contact area byindenter significantly deviates to the one calculated by Oliver–Pharr method. Aftercorrecting the contact area contributed by pile-up via AFM experiments, the residualstress does not affect the nanoindentation measured hardness and modulus.
     In Chapter4, the hardness enhancement mechanism for ZrN/SiNx multi-layershas been studied. First, ZrN/SiNx double-layers with different density of SiNx layers,which is controlled by applying different substrate bias for depositing SiNx layers, aresynthesized for investigating the interfacial electronic structure. Results indicated thatthe interfacial electrostatic polarization existed as the ZrN and SiNx bond with eachother to form a heterojunction, since the electrons donated from ZrN layer to SiNxlayer. Moreover, the degree of polarization is affected by the density of SiNx layer.The corresponding ZrN/SiNx multi-layers are deposited for studying the correlationbetween interfacial electronic structure and mechanical properties. The results ofhardness test imply that the interfacial electrostatic polarization would enhance thehardness to a certain extent.
     The working life of film on practical application is depanded on the tribologicalproperties. ZrN film has an excellent hardness, but does not have good tribologicalproperties. Comparing to ZrN, ZrC film shows an outstanding tribological properties.Therefore, in the following chapters we have deposited ZrC and ZrSiC films, andinvestigeted the relationship among microsturcture, chemical bonding state, stress,hardness, tribological properties and electrical properties.
     In Chapter5, Zirconium carbide films have been deposited on silicon (100)substrates using CH4as a carbon source. The films exhibit a typical nanocompositestructure consisting of nanocrystalline ZrCx(nc-ZrC) grains embedded in a matrix ofamorphous carbon (a-C) at low carbon content. Almost no crystalline phase can befound for carbon contents above86at.%. The mechanical, tribological and electricalproperties of the films showed a significant dependency on the amount of the a-C inthe nanocomposite structure. A larger amount of a-C gives rise to reduced hardnessand higher resistivity of the film. However, both friction coefficient and wear resistance are improved by increasing the content of the surplus a-C. The influence ofbinding state of excess a-C phase on the properties has also been investigated. Alarger sp2/sp3ratio was beneficial to relax the stress and improve the electricalproperties. The Zr-based films exhibited lower friction coefficients thannanocomposites films based on e.g. Ti suggesting a potential application for thismaterial in sliding contacts.
     In Chapter6, ZrSiC films with different Zr content and Si/C atomic radio havebeen deposited by magnetron co-sputtering. The relationship between composition,microstructure, chemical bond state, hardness, friction, and resistivity has beenstudied. Also, the results for ZrSiC films have been compared with those for ZrCfilms in Chapter5. The resistivity for ZrSiC films is similar to that for ZrC films. Themain difference is the influence of a-C content on hardness and friction. The affectionof a-C content on hardness for ZrSiC films is not obviously, because themicrostructure is XRD amorphous. The hardness of ZrSiC films depends on the Si-Cbond fraction in the films. The wear chemical reactive has been found during the weartest, and the a-C fraction in the transfer layer is also contributed to improve thefriction for ZrSiC films. However, the friction of some films with higher zirconiumcontent or silicon content shows an abnormal increase with the increase in a-C content,which is attributed to the existence of delamination. In summary, not only the a-Ccontent in transfer layer but also the level of delamination controls the friction ofZrSiC films.
引文
[1] B. Chapman, Glow Discharge Processes, John Wiley&Sons, Inc.[M]. New York,1980, pp.177.48
    [2] K. Wasa and S. Hayakawa, Handbook of Sputter Deposition Technology:Principles, Technology and Applications, Noyes (Ed.),[M]. New Jersey,1992.
    [3] P. Sigmund, Topics in Applied Physics: Sputtering by Particle Bombardment I, R.Behrisch (Ed.), Springer-Verlag [M]. Berlin,1981.
    [4] R. A. Powell and S. M. Rossnagel, Thin Films: PVD for Microelectronics: SputterDeposition Applied to Semiconductor Manufacturing, Academic Press [M]. SanDiego,1999.
    [5] G. K. Wehner and G. S. Anderson, Vacuum Technology, Thin Films, andSputtering: an Introduction, R. V. Stuart (Ed.), Academic Press [M]. New York,1983.
    [6] J. A. Thornton, Deposition Technologies for Films and Coatings: Developmentand Applications, R. F. Bunshah (Ed.), Noyes Publications [M]. NJ,1982.
    [7] D. L. Smith, Thin-Film Deposition: Principles and Practice, McGraw-Hill (Ed.),
    [M]. New York,1995.
    [8] J. Floro, C. Jahnes and D. J. Mikalsen, Vacuum Technology, LaboratoryProcedures and Deposition Processes, T. J. Watson Research Center [M]. NY,1986.
    [9] S. M. Rossnagel, Thin Films Processes II, J. L. Vossen and W. Kern (Eds.),Academic Press [M]. New York,1991.
    [10] Q. M. Wang and K. H. Kim, Microstructural control of Cr-Si-N films by a hybridarc ion plating and magnetron sputtering process [J]. Acta Mater.,2009,57:4974-4987.
    [11] L. Hultman, Growth of Single-and Polycrystalline TiN and ZrN Thin Films byReactive Sputtering [D], Link ping University,1988.
    [12] E. Klokholm and B. S. Berry:.115, Intrinsic stress in evaporated metal films [J].J. Electrochem. Soc.,1968,115:823-826.
    [13] R. Abermann, R. Kramer and J. M ser, Structure and internal stress in ultra-thinsilver films deposited on MgF2and SiO substrates.[J]. Thin Solid Films.,1978,52:215-229.
    [14] R. Koch and R. Abermann, Microstructural changes in vapour-deposited silver,coper and gold films investigated by internal stress measurements.[J]. Thin SolidFilms,1986,140:217-226.
    [15] R. Abermann, Measurements of the intrinsic stress in thin metal films.[J].Vacuum,1990,41:1279-1290.
    [16] A. L. Shull and F. Spaepen, Measurements of stress during vapor deposition ofcopper and silver thin films and multilayers.[J]. J. Appl. Phys.,1996,80:6243-6259.
    [17] R. Abermann and R. Koch, The internal stress in thin silver, copper and goldfilms.[J]. Thin Solid Films,1985,129:71-78.
    [18] R. Abermann and H. P. Martinz, Internal stress and structure of evaporatedchromium and MgF2films and their dependence on substrate temperature.[J]. ThinSolid Films,1984,115:185-194.
    [19] G. Thurner and R Abermann, On the mechanical properties of uhv-deposited Crfilms and their dependence on substrate temperature, oxygen pressure and substratematerial [J]. Vacuum,1990,41:1300-1301.
    [20] G. Thurner and R. Abermann, Internal stress and structure of ultrahigh vacuumevaporated chromium and iron films and their dependence on substrate temperatureand oxygen partial pressure during deposition.[J]. Thin Solid Films,1990,192:277-285.
    [21] H. J. Schneeweiss and R. Abermann, Ultra-high vacuum measurements of theinternal stress of PVD titanium films as a function of thickness and its dependence onsubstrate temperature.[J]. Vacuum,1992,43:463-465.
    [22] J. W. Shin, Stess generation and relaxation in the thin films: the role of kineticsand grain boundaries [D], Seoul National University,2001.
    [23] Gennes, P.-G. de, F. Brochard-Wyart and D. Quere, Capillarity and WettingPhenomena, Springer [M].2004.
    [24] C. W. Mays, J. S. Vermaak and D. Kuhlmann-wilsdorf, On surface stress andsurface tension-II. Determination of the surface stress of gold [J]. Surf. Sci.,1968,12:134-140.
    [25] M. Laugier, Intrinsic stress in thin films of vacuum evaporated LiF and ZnSusing an improved cantilevered plate technique.[J]. Vacuum,1981,31:155-157.
    [26] R. Koch, The intrinsic stress of polycrystalline and epitaxial thin metal films [J].J. Phys.: Condens. Matter,1994,6:9519-9550.50
    [27] J. A. Floro, S. J. Hearne, J. A. Hunte, P. Kotula, E. Chason, S. C. Seel and C. V.Thompson, The dynamic competition between stress generation and relaxationmechanisms during coalescence of Volmer-Weber thin films [J]. J. Appl. Phys.,2001,89:4886-4897.
    [28] R. C. Cammarata, Surface and interface stress effects in thin films.[J]. Prog. Surf.Sci.,1994,46:1-38.
    [29] R. C. Cammarata and T. M. Trimble, Surface stress model for intrinsic stresses inthin films [J]. J. Mater. Res.,2000,15:2468-2474.
    [30] R. W. Hoffman, Stresses in thin films: The relevance of grain boundaries andimpurities.[J]. Thin Solid Films,1976,34:185-190.
    [31] W. D. Nix and B. M. Clemens, Crystallite coalescence: A mechanism for intrinsictensile stresses in thin films.[J]. J. Mater. Res.,1999,14:3467-3473.
    [32] L. B. Freund and E. Chason, Model for stress generated upon contact ofneighboring islands on the surface of a substrate.[J]. J. Appl. Phys.,2001,89:4866.
    [33] S. C. Seel and C. V. Thompson, Tensile stress generation during islandcoalescence for variable island-substrate contact angle.[J]. J. Appl. Phys.,2003,93:9038.
    [34] E. Chason, B. W. Sheldon and L. B. Freund, Origin of compressive residualstress in polycrystalline thin films.[J]. Phys. Rev. Lett.,2002,88:156103.
    [35] H. J. Frost and M. F. Ashby, Deformation-mechanism maps: the plasticity andcreep of metals and ceramics,[M]. Pergamon Press,1982.
    [36] G. G. Stoney, The Tension of Metallic Films Deposited by Electrolysis [J]. Proc.R. Soc. Lond. A.,1909,82:172.
    [37] G. C. A. M. Janssen, M. M. Abdalla, F. V. Keulen, B. R. Pujada and B. V.Venrooy, Celebrating the100th anniversary of the Stoney equation for film stress:Developments from polycrystalline steel strips to single crystal silicon wafers [J].Thin Solid Films,2009,517:1858-1867.
    [38] W. C. Oliver and G. M. Pharr, An improved technique for determining hardnessand elastic modulus using load and displacement sensing indentation experiments [J].J. Mater. Res.,1992,7:1564-1583.
    [39] G. M. Pharr, W. C. Oliver and F. R. Brotzen, On the generality of the relationshipamong contact stiffness, contact area, and elastic modulus during indentation [J]. J.Mater. Res.,1992,7:613-617.
    [40] W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus byinstrumented indentation: Advances in understanding and refinements to methodology[J]. J. Mater. Res.,2003,19:3-20.
    [41] I. N. Sneddon, The relation between load and penetration in the axisymmetricboussinesq problem for a punch of arbitrary profile [J]. Int. J. Eng. Sci.,1965,3:47-57.
    [42] G. M. Pharr and A. Bolshakov, Understanding nanoindentation unloading curves[J]. J. Mater. Res.,2002,17:2660-2671.
    [43] J. Woirgard and J.-C. Dargenton, An alternative method for penetra-tion depthdetermination in nanoindentation measurements.[J]. J. Mater. Res.,1997,12:2455-2458.
    [44] A. Bolshakov and G. M. Pharr, Influences of pileup on the measurement ofmechanical properties by load and depth sensing indentation techniques [J]. J. Mater.Res.,1998,13:1049-1058.
    [45] C.-M. Cheng and Y.-T. Cheng, On the initial unloading slope in indentation ofelastic-plastic solids by an indenter with an axisymetrical smoth profile [J]. Appl.Phys. Lett.,1997,71:2623-2625.
    [46] M. Rodríguez, J. M. Molina-Aldareguía, C. González and J. LLorca,Determination of the mechanical properties of amorphous materials throughinstrumented nanoindentation [J]. Acta Mater.,2012,60:3953-3964.
    [47] J. A. Greenwood and J. B. P. Williamson, Contact of nominally flat surfaces [J].Proc R Soc (Lond) A,1966,295:300-319.
    [48] D. F. Diao, K. Kato and K. Hokkirigawa, Fracture mechanisms of ceramiccoatings in indentation.[J]. Trans. ASME J. Tribology,1994,116:860-869.
    [49] K. Holmberg and A. Mattkews, Coatings Tribology, Dowson (Ed.), TribologySeries,28, Elsevier [M]. The Netherlands,1994.
    [50] K. Kato, Micro-mechanisms of wear-wear models [J]. Wear,1992,153:277-295.
    [51] K. Kato, Microwear mechanics of coating [J]. Surf. Coat. Technol.,1995,76-77:469-474.
    [52] B. R. Lawn, Fracture of Brittle Solids, Cambridge University Press [M]. NewYork,1993.
    [53] B. R. Lawn, A. G. Evans and D. B. Marshall, Elastic/plastic indentation damagein ceramics: The medium/radial crack system.[J]. J. Am. Ceram. Soc.,1980,63:574-581.
    [54] D. B. Marshall, B. R. Lawn and A. G. Erans, Elastic/plastic indentation damagein ceramics: The lateral crack system [J]. J. Am. Soc.,1982,65:561-566.
    [55] Y. I. Golovin, Nanoindentation and mechanical properties of solids insubmicrovolumes, thin near-surface layers, and films: A Review [J]. Physics of theSolid State,2008,50:2205-2236.
    [56] S. Kokubo, Change in hardness of a plate by bending [J]. Science Reports of theTohoku Imperial University (Series1),1932,21:256-267.
    [57] G. Sines and R. Carlson, Hardness measurement for determination of residualstresses [J]. ASTM Bulletin,1952,180:35-37.
    [58] T. Y. Tsui, W. C. Oliver and G. M. Pharr, Influences of stress on the measurementof mechanical properties using nanoindentation: Part I. Experimental studies in analuminum alloy [J]. J. Mater. Res.,1996,11:752-759.
    [59] A. Bolshakov, W. C. Oliver and G. M. Pharr, Influences of stress on themeasurement of mechanical properties using nanoindentation: Part II. Finite elementsimulations [J]. J. Mater. Res.,1996,11:760-768.
    [60] S. Suresh and A. E. Giannakopoulos, A new method for estimating residualstresses by instrumented sharp indentation [J]. Acta Mater.,1998,46:5755-5767.
    [61] S. Carlsson and P.-L. Larsson, On the determination of residual stress and strainfields by sharp indentation testing.: Part I: theoretical and numerical analysis [J]. ActaMater.,2001,49:2179-2191.
    [62] S. Carlsson and P.-L. Larsson, On the determination of residual stress and strainfields by sharp indentation testing.: Part II: experimental investigation [J]. Acta Mater.,2001,49:2193-2203.
    [63] Y.-H. Lee and D. Kwon, Measurement of residual-stress effect bynanoindentation on elastically strained (100) W [J]. Scripta Mater.,2003,49:459-465.
    [64] Y.-H. Lee and D. Kwon, Estimation of biaxial surface stress by instrumentedindentation with sharp indenters [J]. Acta Mater.,2004,52:1555-1563.
    [65] T. W. Scharf and S. V. Prasad, Solid lubricants: a review [J]. J. Mater. Sci.,2013,48:511-531.
    [66] F. P. Bowden and D. Tabor, The friction and lubrication of solids., ClarendonPress [M]. Oxford,1986.
    [67] E. R. Braithwaite, Solid lubricants and surfaces., Clarendon Press [M]. Oxford,1964.
    [68] R. F. Deacon and J. F. Goodman, Lubrication by lamellar solids.[J]. Proc R SocLond A,1958:464-482.
    [69] I. C. Roselman and D. Tabor, The friction of carbon fibres [J]. J. Phys. D: Appl.Phys.,1976,9:2517-2532.
    [70] D. H. Buckley, Surface effects in adhesion, friction, wear and lubrication.,Elsevier [M]. Amsterdam,1981.
    [71] A. Erdemir, Tribology of diamond-like carbon films: fundamentals andapplications., C. Donnet (Ed.), Springer [M]. New York,2008.
    [72] J. Robertson, Diamond-like amorphous carbon [J]. Mater. Sci. Eng. R.,2002,37:129-281.
    [73] A. Erdemir and C. Donnet, Tribology of diamond-like carbon films: Recentprogress and future prospects.[J]. J. Phys. D: Appl. Phys.,2006,39: R311-R327.
    [74] Y. Liu, A. Erdemir and E. I. Meletis, An investigation of the relationship betweengraphitization and frictional behavior of DLC coatings [J]. Surface and CoatingsTechnology,1996,86-87:564-568.
    [75] J. C. Sánchez-Lópeza, A. Erdemirb, C. Donnetc and T. C. Rojas,Friction-induced structural transformations of diamondlike carbon coatings undervarious atmospheres [J]. Surface and Coatings Technology,2003,163-164:444-450.
    [76] A. A. Voevodin, A. W. Phelps, J. S.Zabinski and M. S. Donley, Friction inducedphase transformation of pulsed laser deposited diamond-like carbon [J]. DiamondRelat. Mater.,1996,5:1264-1269.
    [77] A. Erdemir, F. A. Nichols, X. Z. Pan, R. Wei and P. Wilbur, Friction and wearperformance of ion-beam-deposited diamond-like carbon films on steel substrates [J].Diamond Relat. Mater.,1993,3:119-125.
    [78] D. Sheeja, B. K. Tay, S. P. Lau and X. Shi, Tribological properties and adhesivestrength of DLC coatings prepared under different substrate bias voltages [J]. Wear,2001,249:433-439.
    [79] S. Xu, B. K. Tay, H. S. Tan, L. Zhong, Y. Q. Tu, S. R. P. Silva and W. I. Milne,Properties of carbon ion deposited tetrahedral amorphous carbon films as a functionof ion energy [J]. J. Appl. Phys.,1996,79:7234-7240.
    [80] B. K. Tay, X. Shi, D. I. Flynn and Z. Sun, Hydrogen free tetrahedral carbon filmpreparation and tribological characterization [J]. Surf. Eng.,1997,13:213-217.
    [81] B. K. Tay, Y. H. Cheng, X. Z. Ding, S. P. Lau, X. Shi, G. F. You and D. Sheeja,Hard carbon nanocomposite films with low stress [J]. Diamond Relat. Mater.,2001,10:1082-1087.
    [82] A. A. Voevodin, S. V. Prasad and J. S. Zabinski, Nanocrystallinecarbide/amorphous carbon composites [J]. J. Appl. Phys.,1997,82:855-858.
    [83] S. Zhang, X. L. Bui and Y. Fu, Magnetron-sputtered nc-TiC/a-C(Al) toughnanocomposite coatings [J]. Thin Solid Films,2004,467:261-266.
    [84] A. A. Voevodin and J. S. Zabinski, Load-adaptive crystalline/amorphousnanocomposites [J]. J. Mater. Sci.,1998,33:319-327.
    [85] D. Martínez-Martínez, C. López-Cartes, A. Justo, A. Fernández, J. C.Sánchez-López, A. García-Luis, M. Brizuela and J. I. O ate, Tailored synthesis ofTiC/a-C nanocomposite tribological coatings [J]. J. Vac. Sci. Technol. A,2005,23:1732-1736.
    [86] S. Zhang, W. L. Bui, J. Jiang and X. Li, Microstructure and tribologicalproperties of magnetron sputtered nc-TiC/a-C nanocomposite [J]. Surf. Coat. Technol.,2005,198:206-211.
    [87] U. Wiklund and M. Larsson, Low friction PVD titanium-carbon coatings [J].Wear2000,241:234-238.
    [88] M. Stuber, H. Leiste, S. Ulrich, H. Holleck and D. Schild,150,218.,Microstructure and properties of low friction TiC C nanocomposite coatings depositedby magnetron sputtering [J]. Surf. Coat. Technol.,2002,250:218-226.
    [89] D. Nilsson, F. Svahn, U. Wiklund and S. Hogmark, Low-friction carbon-richcarbide coatings deposited by co-sputtering [J]. Wear,2003,254:1084-1091.
    [90] Z. Xingzhong, L. Jiajun, Z. Baoliang, O. Jinlin and X. Qunji, Tribologicalproperties of TiC-based ceramic/high speed steel pairs at high temperatures [J]. Ceram.Int.,1998,24:13-18.
    [91] O. Wilhelmsson, M. R sander, M. Carlsson, E. Lewin, B. Sanyal, U. Wiklund, O.Eriksson and U. Jansson, Design of Nanocomposite Low-Friction Coatings [J]. Adv.Funct. Mater.,2007,17:1611-1616.
    [92] E. Lewin, K. Buchholt, J. Lu, L. Hultman, A. L. Spetz and U. Jansson, Carbideand nanocomposite thin films in the Ti-Pt-C system [J]. Thin Solid Films,2010,518:5104-5109.
    [93] M. Andersson, S. Urbonaite, E. Lewin and U. Jansson, Magnetron sputtering ofZr–Si–C thin films [J]. Thin Solid Films,2012,520:6375-6381.
    [94] I. Iliuc, Tribology of thin layers., Elsevier [M].1980.
    [95] H. Mehner, D. Klaffke and E. Schierhorn, Mossbauer analysis of wear particlesproduced by oscillatory sliding in steel/ceramics couples.[J]. Hyperfine Interact,,1994,93:1823-1829.
    [96] K.-H. Habig, Chemical vapor deposition and physical vapor deposition coating:Properties, tribological behaviour and applications.[J]. J. Vac. Sci. Technol. A,1986,4:2832-2843.
    [97] M. Woydt, J. Kadoori, H. Hausner and K.-H. Habig, Development of engineeringceramics according to tribological considerations.[J]. Cfi/Ber. DKG. J. Ger. Ceram.Soc.,1990,67:123-130.
    [98] A. Magnéli, Structures of ReO3-type with recurrent dislocations ofatoms:"Homologous series" of molybdenum and tungsten oxides.[J]. ActaCrystallogr.,1953,6:495-500.
    [99] S. Anderson and A. Magnéli, Diskrete titanoxydphasen imZusammensetzungsbereich TiO1.75-TiO1.90.[J]. Die Naturwiss.,1956,43:195-196.
    [100] T. Aizawa, A. mitisuo, S. Yamamoto, T. Sumitomo and S. Muraishi,Self-lubrication mechanism via the in situ formed lubricious oxide tribfilm [J]. Wear,2005,259:708-718.
    [101] M. N. Gardos, Magnéli phases of anion-deficient rutile as lubricious oxides.Part I. Tribological behavior of single-crystal and polycrystalline rutile (TinO2n-1)[J].Tribol Lett,2000,8:65-78.
    [102] S. V. Prasad and J. S. Zabinski, Lubricants: Super Slippery Solids.[J]. Nature,1997,387:761-763.
    [103] H. E. Sliney, Solid Lubricant Materials for High Temperatures: A Review.[J].Tribol Lett,1982,15:303-314.
    [104] S. V. Prasad and J. S. Zabinski, Tribology of tungsten disulphide (WS2).Characterization of wear-induced transfer films.[J]. J. Mater. Sci. Lett.,1993,12:1413-1415.
    [105] T. J. F. Quinn, The role of oxidation in the mild wear of steel [J]. Br. J. Appl.Phys. Rev. B,1962,13:33-37.
    [106] F. H. Stott and G. C. Wood, The influence of oxides on the friction and wear ofalloys [J]. Tribol. Int.,1978,11:211-218.
    [107] N. P. Suh, Overview of the delamination theory of wear [J]. Wear,1977,44:1-16.
    [108] K. Friedrich and A. K. Schlarb, Tribology of Polymeric Nanocomposites-Friction and Wear of Bulk Materials and Coatings, B. J. Briscoe (Ed.), Elsevier [M].Tribology and interface engineering series NO.55
    [109] J. Zhang and A. T. Alpas, Transition between mild and severe wear inaluminium alloys [J]. Acta Mater.,1997,45:513-528.
    [110] D. F. Diao and Y. Sawaki, Fracture mechanisms of ceramic coating during wear[J]. Thin Solid Films,1995,270:362-366.
    [111] M. Wittmer, Properties and microelectronic applications of thin films ofrefractory metal nitrides [J]. J. Vac. Sci. Technol. A,1985,3:1797-1803.
    [112] M. B. Takeyama, A. Noya and K. Sakanishi, Diffusion barrier properties of ZrNfilms in the Cu/Si contact systems [J]. J. Vac. Sci. Technol. B,2000,18:1333-1337.
    [113] W. D. Sproul, Reactively sputtered nitrides and carbides of titanium, zirconium,and hafnium [J]. J. Vac. Sci. Technol. A,1986,4:2874-2878.
    [114] V. R. Juza, A. Rabenau and I. Nitschke,[J]. Z. anorg. Allg. Chemie,1964,332:1.
    [115] L. Krusin-Elbaum, Oxidation kinetics of ZrN thin films [J]. Thin Solid Films,1983,107:111-116.
    [116] JCPDS PDF card No.65-0972.
    [117] K. Schwarz, A. R. Williams, J. J. Cuomo, J. H. E. Harper and H. T. G. Hentzell,Zirconium nitride—a new material for jpsephson junctions [J]. Phys. Rev. B,1985,32:8312-8316.
    [118] J.-E. Sundgren and H. T. G. Hentzell, A review of the present state of art in hardcoatings grown from the vapor phase [J]. J. vac. Sci. Technol. A,1986,4:2259-2279.
    [119] Dzivenko, High-pressure synthesis, structure and properties of cubic zirconium(IV) and hafnium (IV) nitrides [D], Vom Fachbereich Material-undGeowissenschaften der Technischen Universit t Darmstadt Germany,2009.
    [120] L. E. Toth, Transition metal carbides and nitrides, Academic Press [M]. NewYork,1971.
    [121] R. Fix, R. G. Gordon and D. M. Hoffman, Chemical Vapor-Deposition ofTitanium, Zirconium, and Hafnium Nitride Thin-FIims [J]. Chen. Mater.,1991,3:1138-1148.
    [122] C. Kral, W. Lengauer, D. Rafaja and P. Ettmayer, Critical review on the elasticproperties of transition metal carbides, nitrides and carbonitrides [J]. J. Alloys Compd.,1998,265:215-223.
    [123] J. W. Li, D. A. Dzivenko, A. Zerr, C. Fasel, Y. P. Zhou and R. Riedel, Synthesisof Nanocrystalline Zr3N4and Hf3N4Powders from Metal Dialkylamides [J]. Z. Anorg.Allg. Chem.,2005,631:1449-1455.
    [124] R. Juza, A. Rabenau and I. Nitschke, über ein braunes Zirkonnitrid Zr3N4[J]. Z.Anorg. Allg. Chem.,1964,332:1-4.
    [125] M. Lerch, Nenu Anionendefizit-Materialen auf der Basis von ZrO2: Synthese,Charakterisierung und Eigenschaften von tern ren und quatern ren Nitridoxiden desZirconiums [D], Bayerische Julius-Maximilians-Universit t,1997.
    [126] A. Zerr, G. Miehe and R. Riedel, Synthesis of cubic zirconium and hafniumnitride having Th3P4structure [J]. Nat. Mater.,2003,2:185-189.
    [127] P. Kroll, Assessment of the Hf-N, Zr-N and Ti-N phase diagrams at highpressures and temperatures: balancing between MN and M3N4(M=Hf, Zr, Ti)[J]. J.Phys.: Condens. Matter,2004,16: S1235-S1244.
    [128] M. Mattesini, R. Ahuja and B. Johansson, Cubic Hf3N4and Zr3N4: A class ofhard materials.[J]. Phys. Rev. B,2003,68:184108.
    [129] P. Kroll, Hafnium nitride with thorium phosphide structure: Physical propertiesand an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures andtemperatures [J]. Phys. Rev. Lett.,2003,90:125501.
    [130] J. E. Lowther, Influence of nitrogen stoichiometry on properties oflow-compressibility advanced nitrides [J]. Physica B,2005,358:72-76.
    [131] X. Ming, S. Wang, G. Yin, J. Li, Yuxiang, L. Chen and Y. Jia, Optical propertiesof cubic Ti3N4, Zr3N4, and Hf3N4[J]. Appl. Phys. Lett.,2006,89:151908.
    [132] M. Chhowalla and H. E. Unalan, Thin films of hard cubic Zr3N4stabilized bystress [J]. Nat. Mater.,2005,4:317-322.
    [133] E. Lewin, Design of Carbide-based Nanocomposite Coatings [D], ActaUniversitatis Upsaliensis,2009.
    [134] T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals
    [M]. Metals Park,1986.
    [1] C. Brugnoni, F. Lanza, G. Macchi, R. Müller, E. Parnisari, M. F. Stroosnijder and J.Vinhas, Evaluation of the wear resistance of ZrN coatings using thin layer activation[J]. Surf. Coat. Technol.,1998,100-101:23-26.
    [2] C.-S. Chen, C.-P. Liu, H.-G. Yang and C.-Y. A. Tsao, Influence of substrate bias onpractical adhesion, toughness, and roughness of reactive dc-sputtered zirconiumnitride films [J]. J. Vac. Sci. Technol. A,2004,22:2041-2047.
    [3] J. Vetter and R. Rochotzki, Tribological behaviour and mechanical properties ofphysical-vapour-deposited hard coatings: TiNx, ZrNx, TiCx, TiCx/a-C [J]. Thin SolidFilms,1990,192:253-261.
    [4] D. Pilloud, A. S. Dehlinger, J. F. Pierson, A. Roman and L. Pichon, Reactivelysputtered zirconium nitride coatings: structural, mechanical, optical and electricalcharacteristics [J]. Surf. Coat. Technol.,2003,174-175:338-344.
    [5] J. V. Ramana, S. Kumar, C. David, A. K. Ray and V. S. Raju, Characterisation ofzirconium nitride coatings prepared by DC magnetron sputtering [J]. Mater. Lett.,2000,43:73-76.
    [6] C.-P. Liu and H.-G. Yang, Systematic study of the evolution of texture andelectrical properties of ZrNx thin films by reactive DC magnetron sputtering [J]. ThinSolid Films,2003,444:111-119.
    [7] H. N. Al-Shareef, X. Chen, D. J. Lichtenwalner and A. I. Kingon, Analysis of theoxidation kinetics and barrier layer properties of ZrN and Pt/Ru thin films for DRAMapplications [J]. Thin Solid Films,1996,280:265-270.
    [8] M. B. Takeyama, T. Itoi, E. Aoyagi and A. Noya, High performance of thinnano-crystalline ZrN diffusion barriers in Cu/Si contact systems [J]. Appl. Surf. Sci.,2002:450-454.
    [9] J.-L. Ruan, D.-F. Lii, J. S. Chen and J.-L. Huang, Microstructural and electricalcharacteristics of reactively sputtered ZrNx thin film [J]. Ceram. Int.,2009,35:1999-2005.
    [10] M. Nagao, Y. Fujimori, Y. Gotoh, H. Tsuji, and J. Ishikawa, Emissioncharacteristics of ZrN thin film field emitter array fabricated by ion beam assisteddeposition technique [J]. J. Vac. Sci. Technol. B,1998,16:829-832.
    [11] M. Veszelei, K. Andersson, C.-G. Ribbing, K. J rrendahl and H. Arwin, Opticalconstants and Drude analysis of sputtered zirconium nitride films [J]. Appl. Opt.,1994,33:1993-2001.
    [12] H. M. Benia, M. Guemmaz, G. Schmerber, A. Mosser and J.-C. Parlebas,Investigations on non-stoichiometric zirconium nitrides [J]. Appl. Surf. Sci.,2003,200:231-238.
    [13] D. Wu, Z. Zhang, W. Fu, X. Fan and H. Guo, Structure, electrical and chemicalproperties of zirconium nitride films deposited by dc reactive magnetron sputtering [J].Appl. Phys. A,1997,64:593-595.
    [14] H. Spillmann, P. R. Willmott, M. Morstein and P. J. Uggowitzer, ZrN, ZrxAlyNand ZrxGayN Thin Films-Novel Materials for Hard Coatings Grown Using PulsedLaser Deposition [J]. Appl. Phys. A.,2001,73:441-450.
    [15] L. Pichon, T. Girardeau, A. Straboni, F. Lignou, P. Guerin and J. Perriere,Zirconium nitrides deposited by dual ion beam sputtering: physical properties andgrowth modelling [J]. Appl. Surf. Sci.,1999,150:115-124.
    [16] W. Ensinger, K. Volz and M. Kiuchi, Ion beam-assisted deposition of nitrides ofthe4th group of transition metals [J]. Surf. Coat. Technol.,2000,128-129:81-84.
    [17] A. Zerr, G. Miehe and R. Riedel, Synthesis of cubic zirconium and hafniumnitride having Th3P4structure [J]. Nat. Mater.,2003,2:185-189.
    [18] M. Mattesini, R. Ahuja and B. Johansson, Cubic Hf3N4and Zr3N4: A class ofhard materials.[J]. Phys. Rev. B,2003,68:184108.
    [19] X. Ming, S. Wang, G. Yin, J. Li, Yuxiang, L. Chen and Y. Jia, Optical propertiesof cubic Ti3N4, Zr3N4, and Hf3N4[J]. Appl. Phys. Lett.,2006,89:151908.
    [20] W. Y. Ching, Y.-N. Xu and L. Ouyang, Electronic and dielectric properties ofinsulating Zr3N4[J]. Phys. Rev. B,2002,66:235106.
    [21] M. Chhowalla and H. E. Unalan, Thin films of hard cubic Zr3N4stabilized bystress [J]. Nat. Mater.,2005,4:317-322.
    [22] Y. R. Sui, Y. Xu, B. Yao, L. Xiao and B. Liu, Preparation, characterization andproperties of N-rich Zr-N thin film with Th3P4structure [J]. Appl. Surf. Sci.,2009,255:6355-6358.
    [23] W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus byinstrumented indentation Advances in understanding and refinements to methodology[J]. J. Mater. Res.,2004,19:3-20.
    [24] G. G. Stoney, The Tension of Metallic Films Deposited by Electrolysis [J]. Proc.R. Soc. Lond. A.,1909,82:172.
    [25] H. Yanagisawa, S. Shinkai, K. Sasaki, J. Sakurai, Y. Abe, A. Sakai and S. Zaimad,Epitaxial growth of ZrN(111) thin films on Si(111) substrate by reactive sputteringand their surface morphologies [J]. J. Cryst. Growth,2006,297:80-86.
    [26] M. Lerch, E. Fuglein and J. Wrba, Synthesis, crystal structure, and hightemperature behavior of Zr3N4[J]. Z. Anorg. Allg. Chem.,1996,622:367-372.
    [27] Dzivenko, High-pressure synthesis, structure and properties of cubic zirconium(IV) and hafnium (IV) nitrides [D], Vom Fachbereich Material-undGeowissenschaften der Technischen Universit t Darmstadt Germany,2009.
    [28] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarkand M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEPcode [J]. J. Phys.: Condens. Matter2002,14:2717-2744.
    [29] D. Vanderbilt, Ultrasoft Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B,1990,41:7892-7895.
    [30] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.Singh and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992,46:6671-6687.
    [31] J. D. Pack and H. J. Monkhorst,"Special points for Brillouin-zoneintegrations"-a reply [J]. Phys. Rev. B,1977,16:1748-1749.
    [32] B. G. Pfrommer, M. C té, S. G. Louie and M. L. Cohen, Relaxation of Crystalswith the Quasi-Newton Method [J]. J. Comp. Physiol.,1997,131:233-240.
    [33] T. D. Keijser, J. I. Langford, E. J. Mittemeijer and A. B. P. Vogels, Use of theVoigt function in a single-line method for the analysis of X-ray diffraction linebroadening [J]. J. Appl. Crystallogr.,1982,15:308-314.
    [34] A. Rizzo, M. A. Signore, L. Mirenghi and E. Serra, Properties of ZrNx films withx>1deposited by reactive radiofrequency magnetron sputtering [J]. Thin Solid Films,2006,515:1307-1313.
    [35] M. D. Re, R. Gouttebaron, J. P. Dauchot, P. Leclère, G. Terwagne and M. Hecq,Study of ZrN layers deposited by reactive magnetron sputtering [J]. Surf. Coat.Technol.,2003,174-175:240-245.
    [36] P. Prieto, L. Galan and J. M. Sanz, Electronic structure of insulating zirconiumnitride [J]. Phys. Rev. B,1993,47:1613-1615.
    [37] D. R. McKenzie and M. M. M. Bilek, Electron diffraction from polycrystallinematerials showing stress induced preferred orientation [J]. J. Appl. Phys.,1999,86:230-236.
    [38] M. M. M. Bilek, D. R. McKenzie, R. N. Tarrant, S. H. M. Lim and D. G.McCulloch, Plasma-based ion implantation utilising a cathodic arc plasma [J]. Surf.Coat. Technol.,2002,156:136-142.
    [39] Y. Zoo and T. L. Alford, Comparison of preferred orientation and stress in silverthin films on different substrates using x-ray diffraction [J]. J. Appl. Phys.,2007,101:033505.
    [40] W. Liu, J. C. Li, W. T. Zheng and Q. Jiang, NiAl(110)/Cr(110) interface: Adensity functuinal theory study [J]. Phys. Rev. B,2006,73:205421.
    [41] J.-H. Huang, C.-H. Ho and Y. Ge-Ping, Effect of Nitrogen Flow Rate on theStructure and Mechanical Properties of ZrN Thin Film on Si(100) and Stainless SteelSubstrates [J]. Mater. Chem. Phys.,2007,102:31-38.
    [42] H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai and Yu. Ge-Ping, Hardness andresidual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment[J]. Mater. Sci. Eng., A,2009,500:104-108.
    [43] D. R. McKenzie and M. M. M. Bilek, Thermodynamic theory for preferredorientation in materials prepared by energetic condensation [J]. Thin Solid Films,2001,382:280-287.
    [44] O. Knotek and A. Barimani, On spinodal decomposition in magnetron-sputtered(Ti,Zr) nitride and carbide thin films [J]. Thin Solid Films,1989,174:51-56.
    [1] Q. N. Meng, M. Wen, C. Q. Qu, C. Q. Hu and W. T. Zheng, Preferred orientation,phase transition and hardness for sputtered zirconium nitride films grown at differentsubstrate biases [J]. Surf. Coat. Technol.,2011,205:2865-2870.
    [2] Q. N. Meng, M. Wen, C. Q. Hu, S. M. Wang, K. Zhang, J. S. Lian and W. T.Zheng, Influence of the residual stress on the nanoindentation-evaluated hardness forzirconium nitride films [J]. Surf. Coat. Technol.,2012,206:3250-3257.
    [3] M. Wen, C. Q. Hu, Q. N. Meng, Z. D. Zhao, T. An, Y. D. Su, W. X. Yu and W. T.Zheng, Effects of nitrogen flow rate on the preferred orientation and phase transitionfor niobium nitride films grown by direct current reactive magnetron sputtering [J]. J.Phys. D: Appl. Phys.,2009,42:035304.
    [4] M. Wen, C. Q. Hu, C. Wang, T. An, Y. D. Su, Q. N. Meng and W. T. Zheng,Effects of substrate bias on the preferred orientation, phase transition and mechanicalproperties for NbN films grown by direct current reactive magnetron sputtering [J]. J.Appl. Phys.,2008,104:203527.
    [5] K. Zhang, M. Wen, Q. N. Meng, C. Q. Hu, X. Li, C. Liu and W. T. Zheng, Effectsof substrate bias voltage on the microstructure, mechanical properties and tribologicalbehavior of reactive sputtered niobium carbide films [J]. Surf. Coat. Technol.,2012,212:185-191.
    [6] W. C. Oliver and G. M. Pharr, An improved technique for determining hardnessand elastic modulus using load and displacement sensing indentation experiments [J].J. Mater. Res.,1992,7:1564-1583.
    [7] G. M. Pharr, Measurement of mechanical properties by ultra-low load indentation[J]. Mater. Sci. Eng., A,1998,253:151-159.
    [8] Y. T. Cheng and C. M. Cheng, Scaling, dimensional analysis, and indentationmeasurements.[J]. Mater. Sci. Eng. R.,2004,44:91-149.
    [9] X. D. Li and B. Bhushan, A review of nanoindentation continuous stiffnessmeasurement technique and its applications [J]. Mater. Charact.,2002,48:11-36.
    [10] X. D. Li, W.-C. Chang, Y. J. Chao, R. Z. Wang and M. Chang, NanoscaleStructural and Mechanical Characterization of Low-dimensional Nanomaterials andBiomaterials [J]. Nano Lett.,2004,4:613-617.
    [11] J. I. Jang, Estimation of Residual Stress by Instrumented Indentation: A Review[J]. J. Ceram. Process. Res.,2009,10:391-400.
    [12] I. N. Sneddon, The relation between load and penetration in the axisymmetricboussinesq problem for a punch of arbitrary profile [J]. Int. J. Eng. Sci.,1965,3:47-57.
    [13] W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus byinstrumented indentation Advances in understanding and refinements to methodology[J]. J. Mater. Res.,2004,19:3-20.
    [14] A. Bolshakov and G. M. Pharr, Influences of pileup on the measurement ofmechanical properties by load and depth sensing indentation techniques [J]. J. Mater.Res.,1998,13:1049-1058.
    [15] X. Y. Zhou, Z. D. Jiang, H. R. Wang and R. X. Yu, Investigation on methods fordealing with pile-up errors in evaluating the mechanical properties of thin metal filmsat sub-micron scale on hard substrates by nanoindentation technique [J]. Mater. Sci.Eng., A,2008,488:318-332.
    [16] Y. Chen, T. Laha, K. Balania and A. Agarwala, Nanomechanical properties ofhafnium nitride coating [J]. Scr. Mater.,2008,58:1121-1124.
    [17] D. Beegan, S. Chowdhury and M. T. Laugier, A nanoindentation study of copperfilms on oxidised silicon substrates [J]. Surf. Coat. Technol.,2003,176:124-130.
    [18] S. Kompella, S. P. Moylan and S. Chandrasekar, Mechanical properties of thinsurface layers affected by material removal processes [J]. Surf. Coat. Technol.,2001,146-147:384-390.
    [19] Y. J. Huang, Y. L. Chiu, J. Shen, J. J. J. Chen and J. F. Sun, Nanoindentationstudy of Ti-based metallic glasses [J]. J. Alloys Compd.,2009,479:121-128.
    [20] A. L. Romasco, L. H. Friedman, L. Fang, R. A. Meirom, T. E. Clark, R. G.Polcawich, J. S. Pulskamp, M. Dubey and C. L. Muhlstein, Deformation behavior ofnanograined platinum films [J]. Thin Solid Films,2010,518:3866-3874.
    [21] D. Beegan, S. Chowdhury and M. T. Laugier, Work of indentation methods fordetermining copper film hardness [J]. Surf. Coat. Technol.,2005,192:57-63.
    [22] Y. H. Lee, W. j. Ji and D. Kwon, Stress Measurement of SS400Steel Beam Usingthe Continuous Indentation Technique [J]. Exp. Mech.,2004,44:55.
    [23] A. Bolshakov, W. C. Oliver and G. M. Pharr, Influences of stress on themeasurement of mechanical properties using nanoindentation: Part II. Finite elementsimulations [J]. J. Mater. Res.,1996,11:760-768.
    [24] Z. H. Xu and X. D. Li, Influence of equi-biaxial residual stress on unloadingbehaviour of nanoindentation [J]. Acta Mater.,2005,53:1913-1919.
    [25] T. Y. Tsui, W. C. Oliver and G. M. Pharr, Influences of stress on the measurementof mechanical properties using nanoindentation: Part I. Experimental studies in analuminum alloy [J]. J. Mater. Res.,1996,11:752-759.
    [26] Y.-H. Lee, J. H. Hahn, S. H. Nahm, J. I. Jang and D. Kwon, Investigations onindentation size effects using a pile-up corrected hardness [J]. J. Phys. D: Appl. Phys.,2008,41:074027.
    [27] Y.-H. Lee and D. Kwon, Estimation of biaxial surface stress by instrumentedindentation with sharp indenters [J]. Acta Mater.,2004,52:1555-1563.
    [28] X. Zhao and P. Xiao, Residual stresses in thermal barrier coatings measured byphotoluminescence piezospectroscopy and indentation technique [J]. Surf. Coat.Technol.,2006,201:1124-1131.
    [29] Y.-H. Lee, K. Takashima and D. Kwon, Micromechanical analysis on residualstress-induced nanoindentation depth shifts in DLC films [J]. Scr. Mater.,2004,50:1193-1198.
    [30] M. H. Zhao, X. Chen, J. Yan and A. M. Karlsson, Determination of uniaxialresidual stress and mechanical properties by instrumented indentation [J]. Acta Mater.,2006,54:2823-2832.
    [31] C. M. Lepienski, G. M. Pharrb, Y. J. Parkb, T. R. Watkins, A. Misra and X. Zhang,Factors limiting the measurement of residual stresses in thin films by nanoindentation[J]. Thin Solid Films,2004,447-448:251-257.
    [32] Y. C. Huang, S. Y. Chang and C. H. Chang, Effect of residual stresses onmechanical properties and interface adhesion strength of SiN thin films [J]. Thin SolidFilms,2009,517:4857-4861.
    [33] E. K. Storms, An Equation which Describes. Fission Gas Release from UNReactor Fuel [J]. J. Nucl. Mater.,1988,158:119-129.
    [34] Y. S. Kim and G. L. Hofman, AAA Fuels Handbook, Argonne NationalLaboratory [M].2003.
    [35] G. M. Pharr, W. C. Oliver and F. R. Brotzen, On the generality of the relationshipamong contact stiffness, contact area, and elastic modulus during indentation [J]. J.Mater. Res.,1992,7:613-617.
    [36] X. Wang and P. Xiao, Residual stresses and constrained sintering of YSZ/Al2O3composite coatings [J]. Acta Mater.,2004,52:2591-2603.
    [37] M. Murakami, Deformation in thin films by thermal strain [J]. J. Vac. Sci.Technol., A,1991,9:2469-2476.
    [38] H. Ljungcrantz, L. Hultman, J.-E. Sundgren and L. Karlsson, Ion induced stressgeneration in arc-evaporated TiN films [J]. J. Appl. Phys.,1995,78:832-837.
    [39] H. Windischmann, An intrinsic stress scaling law for polycrystalline thin filmsprepared by ion beam sputtering [J]. J. Appl. Phys.,1987,62:1800-1807.
    [40] C. A. Davis, A simple model for the formation of compressive stress in thin filmsby ion bombardment [J]. Thin Solid Films,1993,226:30-34.
    [41] T. D. Keijser, J. I. Langford, E. J. Mittemeijer and A. B. P. Vogels, Use of theVoigt function in a single-line method for the analysis of X-ray diffraction linebroadening [J]. J. Appl. Crystallogr.,1982,15:308-314.
    [42] C. M. Lepienski, G. M. Pharr, Y. J. Park, T. R. Watkins, A. Misra and X. Zhang,Factors limiting the measurement of residual stresses in thin films by nanoindentation[J]. Thin Solid Films,2004,447-448:251-257.
    [43] D. R. McKenzie, Generation and applications of compressive stress induced bylow energy ion beam bombardment [J]. J. Vac. Sci. Technol. B,1993,11:1928-1935.
    [44] Y.-H. Lee and D. Kwon, Measurement of residual-stress effect bynanoindentation on elastically strained (100) W [J]. Scripta Mater.,2003,49:459-465.
    [45] K. O. Kese, Z. C. Li and B. Bergman, Influence of residual stress on elasticmodulus and hardness of soda-lime glass measured by nanoindentation [J]. J. Mater.Res.,2004,19:3109-3119.
    [46] K. O. Kese, Z. C. Li and B. Bergman, Method to account for true contact area insoda-lime glass during nanoindentation with the Berkovich tip [J]. Mater. Sci. Eng., A,2005,404:1-8.
    [47] K. O. Kese and Z. C. Li, Semi-ellipse method for accounting for the pile-upcontact area during nanoindentation with the Berkovich indenter [J]. Scr. Mater.,2006,55:699-702.
    [1] H. S derberg, M. Oden, T. Larsson, L. Hultman and J. M. Molina-Aldareguia,Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers [J]. Appl. Phys. Lett.,2006,88:191902.
    [2] Y. S. Dong, W. J. Zhao, J. L. Yue and G. Y. Li, Crystallization of Si3N4layers andits influences on the microstructure and mechanical properties of ZrN/Si3N4nanomultilayers [J]. Appl Phys Lett,2006,89:121916.
    [3] M. Wen, Q. N. Meng, C. Q. Hu, T. An, Y. D. Su, W. X. Yu and W. T. Zheng,Structure and mechanical properties of δ-NbN/SiNx and δ'-NbN/SiNxnano-multilayer films deposited by reactive magnetron sputtering [J]. Surf. Coat.Technol.,2009,203:1702-1708.
    [4] S. Veprek, The search for novel, superhard materials [J]. J. Vac. Sci. Technol. A1999,17:2401.
    [5] R. C. Cammarata, T. E. Schlesinger, C. Kim, S. B. Qadri and A. S. Edelstein,Nanoindentation study of the mechanical properties of copper-nickel multilayeredthin films [J]. Appl Phys Lett,1990,56:1862-1864.
    [6] J. S. Koehler, Attempt to Design a Strong Solid [J]. Phys. Rev. B,1970,2:547-551.
    [7] R. L. Opila, G. D. Wilk, M. A. Alam, R. B. v. Dover and B. W. Busch,Photoemission study of Zr-and Hf-silicates for use as high-κ oxides: Role of secondnearest neighbors and interface charge [J]. Appl Phys Lett,2002,81:1788-1790.
    [8] R. F. Zhang, A. S. Argon and S. Veprek, Understanding why the thinnest SiNxinterface in transition-metal nitrides is stronger than the ideal bulk crystal [J]. Phys.Rev. B,2010,81:245418.
    [9] J. Patscheider, N. Hellgren, T. H. Richard, I. Petrov and J. E. Greene, Electronicstructure of the SiNx/TiN interface: A model system for superhard nanocomposites [J].Phys. Rev. B,2011,83:125124.
    [10] I. Bertóti, Characterization of nitride coatings by XPS [J]. Surf. Coat. Technol.,2002,151-152:194-203.
    [11] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg,Handbook of X-ray photoelectron spectroscopy., Perkin-Elmer Corporation PhysicalElectronics Division [M]. USA,1979.
    [12] M. Debessai, P. Filip and S. M. Aouadi, Niobium zirconium nitridesputter-deposited protective coatings [J]. Appl. Surf. Sci.,2004,236:63-70.
    [13] C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six and W. T.Jansen, Auger and photoelectron line energy relationships in aluminum-oxygen andsilicon-oxygen compounds [J]. J. Vac. Sci. Technol.,1982,21:933-944.
    [14] G. Abadias and P. H. Guerin, In situ stress evolution during magnetron sputteringof transition metal nitride thin films [J]. Appl. Phys. Lett.,2008,93:111908.
    [15] X. Chu and S. A. Barnett, Model of superlattice yield stress and hardnessenhancements [J]. J. Appl. Phys.,1995,77:4403-4411.
    [1] S. Ueta, J. Aihara, A. Yasuda, H. Ishibashi, T. Takayama and K. Sawa, Fabricationof uniform ZrC coating layer for the coated fuel particle of the very high temperaturereactor [J]. J. Nucl. Mater.,2008,376:146-151.
    [2] K. Minato, T. Ogawa, K. Fukuda, H. Sekino, Y. Nozawa and I. Takahashi, Fissionproduct release from ZrC-coated fuel particles during postirradiation heating at1600°C [J]. J. Nucl. Mater.,1995,224:85-92.
    [3] K. Minato, K. Fukuda, H. Sekino, A. Ishikawa and E. Oeda, Deterioration ofZrC-coated fuel particle caused by failure of pyrolytic carbon layer [J]. J. Nucl.Mater.,1998,252:13-21.
    [4] W. H. Kao, Optimized a-C coatings by doping with zirconium for tribologicalproperties and machining performance [J]. Diamond Relat. Mater.,2007,16:1896-1904.
    [5] W. H. Kao, Effect of substrate pulsed-direct current power frequency ontribological properties of a-C:H:Zr-x coatings [J]. Thin Solid Films,2012,529:296-300.
    [6] C.-S. Chen, C.-P. Liu and C. Y. A. Tsao, Influence of growth temperature onmicrostructure and mechanical properties of nanocrystalline zirconium carbide films[J]. Thin Solid Films,2005,479:130-136.
    [7] D. Craciun, G. Socol, N. Stefan, I. N. Mihailescu, G. Bourne and V. Craciun,High-repetition rate pulsed laser deposition of ZrC thin films [J]. Surf. Coat. Technol.,2009,203:1055-1058.
    [8] D. Ferro, J. V. Rau, V. Rossi Albertini, A. Generosi, R. Teghil and S. M. Barinov,Pulsed laser deposited hard TiC, ZrC, HfC and TaC films on titanium: Hardness andan energy-dispersive X-ray diffraction study [J]. Surf. Coat. Technol.,2008,202:1455-1461.
    [9] Y. F. Zheng, X. L. Liu and H. F. Zhang, Properties of Zr–ZrC–ZrC/DLC gradientfilms on TiNi alloy by the PIIID technique combined with PECVD [J]. Surf. Coat.Technol.,2008,202:3011-3016.
    [10] L. E. Toth, Transition Metal Carbides and Nitrides, Academic Press [M]. NewYork,1971.
    [11] M. Sasaki, Y. Kozukue, K. Hashimoto, K. Takayama, I. Nakamura, I. Takano andY. Sawada, Properties of carbon films with a dose of titanium or zirconium preparedby magnetron sputtering [J]. Surf. Coat. Technol.,2005,196:236-240.
    [12] M. Andersson, S. Urbonaite, E. Lewin and U. Jansson, Magnetron sputtering ofZr–Si–C thin films [J]. Thin Solid Films,2012,520:6375-6381.
    [13] M. Balden, B. T. Cieciwa, I. Quintana, E. de Juan Pardo, F. Koch, M. Sikora andB. Dubiel, Metal-doped carbon films obtained by magnetron sputtering [J]. Surf. Coat.Technol.,2005,200:413-417.
    [14] J. Brückner and T. M ntyl, Reactive magnetron sputtering of zirconium carbidefilms using Ar-CH4gas mixtures [J]. Surf. Coat. Technol.,1993,59:166-170.
    [15] J. E. Krzanowski and J. Wormwood, Microstructure and mechanical properties ofMo–Si–C and Zr–Si–C thin films: Compositional routes for film densification andhardness enhancement [J]. Surf. Coat. Technol.,2006,201:2942-2952.
    [16] M. Yoshitake, T. Nosaka, A. Okamoto and S. Ogawa, Deposition of ZrC thinfilms and pasma-polymerized hydrocarbon films in the reactive magnetron sputteringprocess [J]. Thin Solid Films,1992,221:72-78.
    [17] D. Craciun, G. Socol, G. Dorcioman, N. Stefan, G. Bourne and V. Craciun, Highquality ZrC, ZrC/ZrN and ZrC/TiN thin films grown by pulsed laser deposition [J]. JOptoelectron Adv M,2010,12:461-465.
    [18] A. J. Woo, G. Bourne, V. Craciun, D. Craciun and R. K. Singh, Mechanicalproperties of ZrC thin films grown by pulsed laser deposition [J]. J Optoelectron AdvM,2006,8:20-23.
    [19] W. Sun, X. Xiong, B. Y. Huang, G. D. Li, H. B. Zhang, P. Xiao, Z. K. Chen and X.L. Zheng, Preparation of ZrC nano-particles reinforced amorphous carbon compositecoating by atmospheric pressure chemical vapor deposition [J]. Appl. Surf. Sci.,2009,255:7142-7146.
    [20] Y. S. Won, V. G. Varanasi, O. Kryliouk, T. J. Anderson, L. McElwee-White and R.J. Perez, Equilibrium analysis of zirconium carbide CVD growth [J]. J. Cryst. Growth,2007,307:302-308.
    [21] X.-M. He, Structural characteristics and hardness of zirconium carbide filmsprepared by tri-ion beam-assisted deposition [J]. J. Vac. Sci. Technol. A1998,16:2337-2344.
    [22] A. Mekki, G. D. Khattak and L. E. Wenger, Structure and magnetic properties oflead vanadate glasses [J]. J. Non-Cryst. Solids,2003,330:156-167.
    [23] G. C. A. M. Janssen, M. M. Abdalla, F. V. Keulen, B. R. Pujada and B. V.Venrooy, Celebrating the100th anniversary of the Stoney equation for film stress:Developments from polycrystalline steel strips to single crystal silicon wafers [J].Thin Solid Films,2009,517:1858-1867.
    [24][J]. Natl. Bur. Stand.(U. S.) Monogr.25,1985,21:135.
    [25] P. Scherrer,[J]. G ttinger Nachrichten Gesell.,1918,2:98http://en.wikipedia.org/wiki/Scherrer_equation.
    [26] P. Scardi, M. Leoni and R. Delhez, Line broadening analysis using integralbreadth methods: a critical review [J]. J. Appl. Cryst.,2004,37:381.
    [27] G. K. Williamson and W. H. Hall, X-ray line broadening from filed aluminiumand wolfram [J]. Acta metall.,1953,1:22-31.
    [28] E. Lewin, M. R sander, M. Klintenberg, A. Bergman, O. Eriksson and U.Jansson, Design of the lattice parameter of embedded nanoparticles [J]. Chem. Phys.Lett.,2010,496:95-99.
    [29] S. Zhang, W. L. Bui, J. Jiang and X. Li, Microstructure and tribologicalproperties of magnetron sputtered nc-TiC/a-C nanocomposite [J]. Surf. Coat. Technol.,2005,198:206-211.
    [30] N. Nedfors, O. Tengstrand, E. Lewin, A. Furlan, P. Eklund, L. Hultman and U.Jansson, Structural, mechanical and electrical-contact properties ofnanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering [J].Surf. Coat. Technol.,2011,206:354-359.
    [31] M. Balaceanu, M. Braic, V. Braic, A. Vladescu and C. C. Negrila, Surfacechemistry of plasma deposited ZrC hard coatings [J]. J Optoelectron Adv M,2005,7:2557-2560.
    [32] J. Díaz, G. Paolicelli, S. Ferrer and F. Comin, Separation of the sp3and sp2components in the C1s photoemission spectra of amorphous carbon films [J]. Phys.Rev. B,1996,54:8064-8069.
    [33] E. Lewin, P. O.. Persson, M. Lattemann, M. Stüber, M. Gorgoi, A. Sandell, C.Ziebert, F. Sch fers, W. Braun, J. Halbritter, S. Ulrich, W. Eberhardt, L. Hultman, H.Siegbahn, S. Svensson and U. Jansson, On the origin of a third spectral component ofC1s XPS-spectra for nc-TiC/a-C nanocomposite thin films [J]. Surf. Coat. Technol.,2008,202:3563-3570.
    [34] E. Lewin, O. Wilhelmsson and U. Jansson, Nanocomposite nc-TiC a-C thin filmsfor electrical contact applications [J]. J. Appl. Phys.,2006,100:054303.
    [35] M. Andersson, J. H gstr m, S. Urbonaite, A. Furlan, L. Nyholm and U. Jansson,Deposition and characterization of magnetron sputtered amorphous Cr–C films [J].Vacuum,2012,86:1408-1416.
    [36] K. R. Janowski, R. D. Carnahan and R. C. Rossi, Static and Dynamic Oxidationof ZrC,[M]. TDR-669(6250-10)-3(2nd ed.)Aerospace Corp1966.
    [37] A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered andamorphous carbon [J]. Phys. Rev. B,2000,61:14095.
    [38] C. Casiraghi, A. Ferrari and J. Robertson, Raman spectroscopy of hydrogenatedamorphous carbons [J]. Phys. Rev. B,2005,72:085401.
    [39] P. C. T. Ha, D. R. McKenzie, M. M. M. Bilek, S. C. H. Kwok, P. K. Chu and B.K. Tay, Raman spectroscopy study of DLC films prepared by RF plasma and filteredcathodic arc [J]. Surf. Coat. Technol.,2007,201:6734-6736.
    [40] A. Voevodin, U. Capano, S. Laube, M. Donley and J. Zabinski, Design of aTi-TiC-DLC functionally gradient coating based on studies of structural transitions inTi–C thin films [J]. Thin Solid Films1997,298:107-115.
    [41] L. Ji, H. Li, F. Zhao, J. Chen and H. Zhou, Microstructure and mechanicalproperties of Mo/DLC nanocomposite films [J]. Diamond Relat. Mater.,2008,17:1949-1954.
    [42] K. Bewilogua, R. Wittorf, H. Thomsen and M. Weber, DLC based coatingsprepared by reactive d.c. magnetron sputtering [J]. Thin Solid Films,2004,447-448:142-147.
    [43] N. W. Khun and E. Liu, Enhancement of adhesion strength and corrosionresistance of nitrogen or platinum/ruthenium/nitrogen doped diamond-like carbon thinfilms by platinum/ruthenium underlayer [J]. Diamond Relat. Mater.,2010,19:1065-1072.
    [44] C. Adelhelm, M. Balden, M. Rinke and M. Stueber, Influence of doping (Ti, V, Zr,W) and annealing on the sp2carbon structure of amorphous carbon films [J]. J. Appl.Phys.,2009,105:033522.
    [45] Y. M. Foong, A. T. T. Koh, H. Y. Ng and D. H. C. Chua, Mechanism behind thesurface evolution and microstructure changes of laser fabricated nanostructuredcarbon composite [J]. J. Appl. Phys.,2011,110:054904.
    [46] Y. Pei, D. Galvan and J. Dehosson, Nanostructure and properties of TiC/a-C:Hcomposite coatings [J]. Acta Mater.,2005,53:4505-4521.
    [47] D. Sheeja, B. K. Tay, S. P. Lau and X. Shi, Tribological properties and adhesivestrength of DLC coatings prepared under different substrate bias voltages [J]. Wear,2001,249:433-439.
    [48] S. Xu, B. K. Tay, H. S. Tan, L. Zhong, Y. Q. Tu, S. R. P. Silva and W. I. Milne,Properties of carbon ion deposited tetrahedral amorphous carbon films as a functionof ion energy [J]. J. Appl. Phys.,1996,79:7234-7240.
    [49] B. K. Tay, X. Shi, D. I. Flynn and Z. Sun, Hydrogen free tetrahedral carbon filmpreparation and tribological characterization [J]. Surf. Eng.,1997,13:213-217.
    [50] C. F. Hong, J. P. Tu, R. L. Li, D. G. Liu, H. L. Sun, S. X. Mao and R. Peng,Structure of sp2dominant a-C film with superhardness [J]. J. Phys. D: Appl. Phys.,2009,42:215303.
    [51] M. Lejeune, M. Benlahsen and R. Bouzerar, Stress and structural relaxation inamorphous hydrogenated carbon films [J]. Appl. Phys. Lett.,2004,84:344-346.
    [52] G. M. Pharr, Measurement of mechanical properties by ultra-low load indentation[J]. Mater. Sci. Eng., A,1998,253:151-159.
    [53] Q. N. Meng, M. Wen, C. Q. Hu, S. M. Wang, K. Zhang, J. S. Lian and W. T.Zheng, Influence of the residual stress on the nanoindentation-evaluated hardness forzirconium nitride films [J]. Surf. Coat. Technol.,2012,206:3250-3257.
    [54] W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus byinstrumented indentation Advances in understanding and refinements to methodology[J]. J. Mater. Res.,2004,19:3-20.
    [55] T. Zehnder, Nanostructural and mechanical properties of nanocompositenc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering [J]. J.Appl. Phys.,2004,95:4327-4334.
    [56] U. Jansson, E. Lewin, M. R sander, O. Eriksson, B. André and U. Wiklund,Design of carbide-based nanocomposite thin films by selective alloying [J]. Surf. Coat.Technol.,2011,206:583-590.
    [57] S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova and J. Prochazka, Differentapproaches to superhard coatings and nanocomposites [J]. Thin Solid Films,2005,476:1-29.
    [58] H. Y. Dai, C. Y. Zhan, D. Ren, Y. Zou and N. K. Huang, Study in the behaviors ofDLC prepared by MFPUMST at different gas pressure [J]. J. Korean Phys. Soc.,2010,56:1359-1363.
    [59] E. Lewin, Design of Carbide-based Nanocomposite Coatings [D], ActaUniversitatis Upsaliensis,2009.
    [60] Y. Wang, H. Li, L. Ji, X. Liu, Y. Wu, Y. Lv, Y. Fu, H. Zhou and J. Chen, Synthesisand characterization of titanium-containing graphite-like carbon films with lowinternal stress and superior tribological properties [J]. J. Phys. D: Appl. Phys.,2012,45:295301.
    [61] C. Matta, O. L. Eryilmaz, M. I. De Barros Bouchet, A. Erdemir, J. M. Martin andK. Nakayama, On the possible role of triboplasma in friction and wear ofdiamond-like carbon films in hydrogen-containing environments [J]. J. Phys. D: Appl.Phys.,2009,42:075307.
    [62] A. A. Voevodin and J. S. Zabinski, Supertough wear-resistant coatings withchameleon surface adaptation [J]. Thin Solid Films,2000,370:223-231.
    [63] A. Erdemir and C. Donnet, Tribology of diamond-like carbon films: Recentprogress and future prospects.[J]. J. Phys. D: Appl. Phys.,2006,39: R311-R327.
    [64] S. Guruvenket, D. Li, J. E. Klemberg-Sapieha, L. Martinu and J. Szpunar,Mechanical and tribological properties of duplex treated TiN, nc-TiN/a-SiNx andnc-TiCN/a-SiCN coatings deposited on410low alloy stainless steel [J]. Surf. Coat.Technol.,2009,203:2905-2911.
    [65] X. Chen, Z. Peng, Z. Fu, S. Wu, W. Yue and C. Wang, Microstructural,mechanical and tribological properties of tungsten-gradually doped diamond-likecarbon films with functionally graded interlayers.[J]. Surf. Coat. Technol.,2011,205:3631-3638.
    [66] D. Martínez-Martínez, C. López-Cartes, A. Fernández and J. C. Sánchez-López,Influence of the microstructure on the mechanical and tribological behavior ofTiC/a-C nanocomposite coatings.[J]. Thin Solid Films,2009,517:1662-1671.
    [67] K. Zhang, M. Wen, Q. N. Meng, C. Q. Hu, X. Li, C. Liu and W. T. Zheng, Effectsof substrate bias voltage on the microstructure, mechanical properties and tribologicalbehavior of reactive sputtered niobium carbide films.[J]. Surf. Coat. Technol.,2012,212:185-191.
    [68] A. Leyland and A. Matthews, On the significance of the H/E ratio in wearcontrol: a nanocomposite coating approach to optimised tribological behaviour.[J].Wear,2000,246:1-11.
    [69] A. Czy niewski, W. Gulbiński, G. Radnóczi, M. Szerencsi and M. Pancielejko,Microstructure and mechanical properties of W-C:H coatings deposited by pulsedreactive magnetron sputtering [J]. Surf. Coat. Technol.,2011,205:4471-4479.
    [70] C. H. Hinrichs, M. H. Hinrichs and W. A. Mackie, Electrical resistivity ofcrystalline ZrC0.93,1000–3000K [J]. J. Appl. Phys.,1990,68:3401-3404.
    [71] F. Modine, T. Haywood and C. Allison, Optical and electrical properties ofsingle-crystalline zirconium carbide [J]. Phys. Rev. B,1985,32:7743-7747.
    [72] K. T. Wojciechowski, R. Zybala, R. Mania and J. Morgiel, DLC layers preparedby the PVD magnetron sputtering technique [J]. Journal of Achievements in Materialsand Manufacturing Engineering,2009,37:726-729.
    [1] S. Hassani, J.-E. Klemberg-Sapieha and L. Martinu, Mechanical, tribological anderosion behaviour of super-elastic hard Ti-Si-C coatings prepared by PECVD [J]. Surf.Coat. Technol.,2010,205:1426-1430.
    [2] K. Masahiko, N. Keijiro, Z. J and H. Satoshi, Friction and Wear Properties ofSiC-Ti and SiC-Al Films Deposited by Simultaneous RF Magnetron Sputtering [J].Transactions of the Japan Society of Mechanical Engineers. A,2005,71:359-366.
    [3] M. Andersson, S. Urbonaite, E. Lewin and U. Jansson, Magnetron sputtering ofZr–Si–C thin films [J]. Thin Solid Films,2012,520:6375-6381.
    [4] J. E. Krzanowski and J. Wormwood, Microstructure and mechanical properties ofMo-Si-C and Zr-Si-C thin films: Compositional routes for film densification andhardness enhancement.[J]. Surf. Coat. Technol.,2006,201:2942-2952.
    [5] K. Bhanumurthy and R. Schmid-Fetzer, Interface reactions between SiC/Zr anddevelopment of zirconium base composites by in-situ solid state reactions [J]. Scr.Mater.,2001,2001:547-553.
    [6] T. W. Scharf and S. V. Prasad, Solid lubricants: a review [J]. J. Mater. Sci.,2013,48:511-531.
    [7] T. Aizawa, A. mitisuo, S. Yamamoto, T. Sumitomo and S. Muraishi,Self-lubrication mechanism via the in situ formed lubricious oxide tribfilm [J]. Wear,2005,259:708-718.
    [8] H. W. Strauss, R. R. Chromika, S. Hassani, J. E and Klemberg-Sapieha, In situtribology of nanocomposite Ti-Si-C-H coatingd prepared by PE-CVD [J]. Wear,2011,272:133-148.
    [9] N. Moolsradoo, S. Abe and S. Watanabe, Thermal Stability and TribologicalPerformance of DLC-Si-O Films [J]. Advances in Materials Science and Engineering,2011,2011:483437(483437pp).
    [10] S. H. Yang, H. Kong, K. R. Lee, S. Park and D. E. Kim, Effect of environmenton the tribological behavior of Siincorporated diamond-like carbon films [J]. Wear,2002,252:70-79.
    [11] M. N. Gardos, Magnéli phases of anion-deficient rutile as lubricious oxides. PartI. Tribological behavior of single-crystal and polycrystalline rutile (TinO2n-1)[J].Tribol Lett,2000,8:65-78.
    [12] M. Rester, J. Neidhardt, P. Eklund, J. Emmerlich, H. Ljungcrantz, L. Hultmanand C. Mitterer, Annealing studies of nanocomposite Ti-Si-C thin films with respectto phase stability and tribological performance [J]. Materials Science and EngineeringA,2006,429:90-95.
    [13] D. Nilsson, F. Svahn, U. Wiklund and S. Hogmark, Low-friction carbon-richcarbide coatings deposited by co-sputtering [J]. Wear,2003,2003:1084-1091.
    [14] M. Ramachandra and K. Radhakrishna, Effect of reinforcement of flyash onsliding wear, slurry erosive wear and corrosive behavior of aluminium matrixcomposite [J]. Wear,2007,262:1450-1462.
    [15] S. A. Alidokht, A. Abdollah-zadeh, Soheil Soleymania, T. Saeidb and H. Assadi,Evaluation of microstructure and wear behavior of friction stir processed castaluminum alloy [J]. Mater. Charact.,2012,63:90-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700