聚合物太阳能电池机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物太阳能电池,迄今为止以其原料价格低廉、生产工艺相对简单、可以大面积制造等为特点。同时,各种各样日臻成熟的制备聚合物薄膜的方法之出现,亦为电池的制备提供了有力的支撑。这样,使得聚合物太阳能电池成为目前该领域的研究热点之一。
     本论文针对聚合物太阳能电池的机理及实验进行了较为深入的探索,旨在提高器件光电转换效率。
     本论文的主要工作,是从聚合物太阳能电池器件结构优化入手,在研究电池光电转换过程以及损耗机理的基础上,利用Matlab软件,模拟分析了有机电池输出特性、光子吸收特性和载流子输运特性:在此基础之上制备了基于P3HT/PCBM和MDMO-PPV/PCBM的两种复合体聚合物太阳能电池,并进行了实验验证。找到了电池材料给体受体合适的混合比例、合适的成膜溶剂;研究了对复合体膜进行热处理,以及增加缓冲层等这些提高聚合物太阳能电池性能的重要途径。
     首先,建立了有机太阳能电池的等效电路模型,利用Matlab软件生成了有机电池输出特性仿真系统,模拟了有机太阳能电池的输出特性。同时还对有机太阳能电池的串联电阻和分流电阻对输出特性的影响进行了仿真研究。
     进而,为了验证模型的合理性,制备了基于P3HT/PCBM的复合体结构聚合物有机太阳能电池并实测数据,同时还将仿真结果与其它的实验结果进行对比分析,发现数值模拟和实验结果符合较好,从而证明所建立的电路模型,对描述有机太阳能电池的输出特性可靠。
     之后,以P3HT/PCBM的复合体结构有机太阳能电池参数为基础,建立了复合体异质结器件光子吸收模型和载流子输运模型,模拟了基于P3HT/PCBM的复合体结构有机太阳能电池光吸收和电荷输运过程,分析和实验结果都表明,对于体异质结有机太阳能电池,都存在最佳参数可以提高光电转换效率。
     综上所述,本工作对聚合物太阳能电池,从理论和实验两方面,进行了有益的探索。从理论上,利用光学干涉效应、电荷漂移和扩散理论,建立了等效电路模型、光子吸收模型、载流子输运模型和输出特性仿真系统;在实验上,系统研究了电池材料给体受体的混合比例、成膜选择的溶剂,以及对复合体膜进行热处理和增加缓冲层等对有机太阳能电池转换效率的影响,得到了具有实际指导意义和理论参考价值的结果:
     研究表明,复合体中给体受体材料(D/A)比例不同,会直接影响成膜的表面形貌,改变给体相和受体相的分离状况,从而影响电池的开路电压和短路电流;选择不同溶剂成膜制备的聚合物太阳能电池,得到不同的薄膜表面微相结构状态;对制备的电池进行热处理,可以形成良好的微相分离及导电网络,有利于电荷的传输,增大器件的短路电流,提高填充因子;在有机活性层和ITO基底之间,以及有机活性层和电极之间插入缓冲夹层,同样可提高器件的开路电压和短路电流。
Polymer solar cells are by far characterized of low-cost raw material, simple process and being produced in large area. Meanwhile, the advent of various increasing mature methods of making process for polymer film is a beneficial guarantee for the production of polymer solar cells. Therefore, the polymer solar cells become one of the heat pots of present research area.
     With the purpose of enhancing the transformation efficiency of photovoltaic devices, an intensively exploration has been made on the mechanism and experiment study of polymer solar cell and some new results has been achieved.
     This paper, starting with the optimization of the mechanism of polymer solar cells, researches the process of optic-electric transformation and loss mechanism, simulates the output properties of organic solar cell, optical absorption, and charge carriers transport by Matlab, then makes the polymer solar cells based on the complex of P3HT/PCBM and MDMO-PPV/PCBM, carries out the experiment, discovers the proper proportion of donor and acceptor and solvent and founds device annealing and spinning interlayer are the important ways to enhance the performance of polymer solar cells.
     To imitate the influence of organic solar cell, mechanism and equivalent circuit of organic solar cell were analyzed and the computer simulation mode on properties of organic solar cell was established. We prepared bulk heterojunction organic solar cells, and the comparison showed that there was coincidence between the results of simulation and experiment.
     Based on optical interference and carrier transport principle, we propose models of the organic polymer bulk heterojunction photovoltaic cells. The functional relation of exciton generation rate, carrier densities and short circuit current densities versus the depth of the film has been simulated and analyzed, and the model is validated by experiment. We demonstrate that model can be useful for the organic photovoltaic cells with high power conversion efficiency.
     Above all, this paper for the first time investigates the polymer solar cells both in theory and in experiments from a new perspective. Theoretically, equivalent circuit of organic solar cell, models of incoherent optical absorption and charge carriers transport, simulation system of output properties of organic solar cells, were established according to the optical principle and diffusion theory; experimentally, the effect on solar cell's conversion efficiency of proportion of donor and acceptor,solvent select , device annealing and spinning interlayer have been systematically researched. The result is both practical and learned with high value.
     The research shows that the different proportion of donor and acceptor changed device's open circuit voltage and short circuit current, improved performance of devices. Solvent select also changed film's microstructure and improve organic solar cells' performance. We have studied the effect of thermal annealing on the performance of bulk heterojunction solar cells. We explain the observed trends in device characteristics in terms of differences in the film morphology. Thermal annealing provides interfaces and pathways for charge transfer, and to maximize the photo-induced charge separation, improving power conversion efficiency of polymer solar cells. The effect of spin-casting interface buffer layer on the performance of Donor/Acceptor bulk hetero-junction organic polymer photovoltaic cells was studied in this paper. Comparing the devices with and without buffer layer, the open-circuit voltage and short-circuit current of the device with buffer layer were influenced, and the solar cell's conversion efficiency was improved as well.
引文
[1] 毛爱华.太阳能电池研究和发展现状.包头钢铁学院学报,2002,(21):94-98
    [2] 梁宗存,沈辉,李鄑洪.太阳能电池研究进展.能源工程,2000,(4):8-11
    [3] 杨基南.太阳能电池产业的现状和发展.微细加工技术,2005,(2):1-4
    [4] 黄宝圣.太阳能电池的新进展.化学教育,2002,(7,8):7-9
    [5] Adolf Goetzberger, Joachim Luther, Gerhard Willeke. Solar cells: past, present, future. Solar Energy Materials & Solar Cells, 2002, (74): 1-11
    [6] R.H. Friend, G.J. Denton, J.J.M. Halls, et al. Electronic Processes of Conjugated Polymers in Semiconductor Device Structures. Synthetic Metals, 1997, 84(1-3): 463-470
    [7] 封伟,王晓工.有机光伏材料与器件研究的新进展.化学通报,2003,(5):291-300
    [8] Chrisoph J. Brabec. Organic Photovoltaics: technology and market. Solar Energy Materials & Solar Cells, 2004, (83): 273-292
    [9] Holger Spanggaard, Frederik C. Krebs. A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials & Solar Cells, 2004, (83): 125-146
    [10] 孟庆巨,刘海波,孟庆辉.半导体器件物理.(第一版).北京:科学出版社,2005.216-225
    [11] 冯文修.半导体物理学基础教程.(第一版).北京:国防工业出版社,2005.185-196
    [12] 徐明生,季振国,厥瑞麟.有机太阳能电池研究进展.材料科学与工程,2000,18(3):92-99
    [13] Wernaer J H, Arch J K, Brendel R, et al. Crystalline thin film silicon solar cells, in: Amsterdam. Proc 12~(th) European Photovoltaic solar energy conference, the Netherland, 1994. 1823-1826
    [14] Satio Y. Conduction mechanism of high-resistivity polycrystalline silicon films. J Appl. Phys., 1985, 57: 2010
    [15] Ishiara T, Arimoto S. High efficiency thin film silicon solar prepared by zone-melting recrystallization. Appl. Phys. Lett., 1995, 63: 3604-3606
    [16] Carlson D E, Wroski C R. Solar cells using discharge-produced amorphous silicon. J. Elect. Mater., 1997, 6: 95-96
    [17] Staebler D L, Wroski C R. Reversible conductivity changes in discharge-produced amorphous Silicon. Appl. Phys. Lett., 1977, 31: 292-293
    [18] O'regan B, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991, 353(24): 717-737
    [19] Kazuya Tada, Hiroshi Harada, Mitsuyoshi Onoda, et al. Percolation in cartier transport in FET with dye doped conducting polymers. Synthetic Metals, 1999, 102(1-3): 982-983
    [20] W. A. Gazotti, J. N. Camaioni, G. Casalbore-Miceli, et al. A new configuration of the solid-state battery: magnesium polymer proton conductor gold, based on the use of poly(o-methoxyaniline). Synthetic Metals, 1997, 90(1-3): 31-36
    [21] E Tsuchida, K Yamamoto, T Asada, et al. Preparation of poly(1, 4-phenylene) by electro-oxidative polymerization. Chemistry Lett., 1987, (8): 1541-1544
    [22] I D Noriis, L A P Kane-Maguire, G G Wallace. A Novel Strategy for Synthesis of Optically Active Polyanilines. Macromolecules, 1998, 31(19): 6529
    [23] 段晓菲,王金亮,毛景.有机太阳能电池材料的研究进展.大学化学,2005,20(6):1-8
    [24] 张力,张秋禹.窄带隙高分子光伏材料.化学通报,2006,(69):1-8
    [25] 霍延平,曾和平,汪焕峰.富勒烯稠合体与共轭聚合物作为有机太阳能电池材料的研究进展.有机化学,2004,24(10):1191-1199
    [26] 路胜利,刘宽,杨慕杰.聚合物太阳能电池材料的研究进展.高分子材料科学工程,2005,21(4):1-4
    [27] 张智,向军辉,赵福群.染料分子结构对光伏器件性能的影响.化学通报,2006,(3):173-178
    [28] Loussa(O|¨)ef N, Hassine L, Boutabba N. Theoretical and experimental study of photocurrent action spectrum of ITO/sexithiophene/Al structure. Synthetic metals, 2002, 128: 283-287
    [29] 沐俊应,徐娟,梁氏秋水.有机薄膜太阳能电池的研究进展.电子工艺技术, 2007, 28(3): 93-96
    [30] Al-Mohamad A. Solar cells based on two organic layers. Energy conversion and management, 2004, (45): 2661-2665
    [31] 林鹏,张志峰,熊德平.有机太阳能电池研究进展.光电子技术,2004,24(1):55-60
    [32] Goldsmity G. J, Inigo A. R, Xavier F P. Cooper phthalocyanine as an efficient dopant in development of solar cells. Material Research Bulletin, 1997, 32(5): 539-546
    [33] Sean E shaheen, Christoph J Brabec, Sariciftci N Serdar, et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett., 2001, (78): 841-843
    [34] Schon J H, Kloc C, Bucher E. Single crystalline pentacene solar cells. Synthetic metals, 2000, (115): 177-180
    [35] Sharma G D, Sangodkar S G, Roy M S. Effect of rare-earth doping on the electrical and photoelectrical properties of furazano[3, 4-b] piperazine(FP) thin-film devices. Synthetic Metals, 1996, (80): 249-256
    [36] Tang C W, Vanslyke S A. Two-layer organic photovoltaic cell. Appl. Phys. Lett., 1986, (48): 183
    [37] Sun S S. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells. Materials science and engineering B, 2005, 116: 251-256
    [38] Osasa T, Yamamoto S, Iwasaki Y. Photocarrier generation in organic thin-film solar cells with an organic hetero-junction. Solar energy materials & solar cells, 2006, (90): 1519-1526
    [39] Ltaief A, Davenas J, Bouazizi A. Film morphology effects on the electrical and optical properties of bulk hetero-junction organic solar cells based on MEH-PPV/ C60 composite. Materials science and engineering C, 2005, (25): 67-75
    [40] Gao J, Hide F, Wang H. Efficent photodetectors and photovoltaic cells from composites of fullerenes and conjugated polymers: photo induces electron transfer. Synthetic metals, 1997, (84): 979-980
    [41] S.V. Rakhmanova, E.M. Conwell. Mobility variation with field in conducting polymer films. Synthetic metals, 2001, (116): 389-391
    [42] Franz Padinger, Roman S. Rittberger, Niyazi S. Sariciftci. Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials, 2003, 13(1): 85-88
    [43] Youngkyoo Kim, Stelios A. Choulis, Jenny Nelson, et al. Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl. Phys. Lett., 2005, 86(063502): 1-3
    [44] 於黄忠,彭俊彪.溶剂及器件结构对MEH-PPV与PCBM电池性能影响.物理化学学报,2007,23(10):1637-1641
    [45] 於黄忠,彭俊彪.MEH-PPV与PCBM共混体系光电池中电荷传输及性能与光强的关系.高等学校化学学报,2007,(12):2359-2363
    [46] 李炳田,任斌,黄河.有机太阳能电池研究进展.中山大学学报,2003,(42):240-244
    [47] 科技简讯.墙纸式太阳能电池.光机电信息,2002,(6):10-15
    [48] Stelios A. Choulis, Vi-En Choong, Aditee Patwardhan, et al. Interface modification to improve hole-injection properties in organic electronic devices. Advanced Functional Materials, 2006, (16): 1075-1080
    [49] Joonyoung Park, Sung-Hwan Han, S.Senthilarasu, et al. Improvement of device performance by thin interlayer in conjugated polymers/methanofullerene plastic solar cell. Solar energy materials & solar cells, 2007, (91): 751-753
    [50] K. Takahashi, H. Nanbu, T. Komuta. Enhanced quantum yield in porphyin in hetyerodimer solar cell. Chemistry Letters, 1993. 613-616
    [51] Katsumi Yashino. Novel electrical and optical properties of liquid conducting polymers and oligomers. IEEE Transactions On Dielectrics and Electrical Insulation, 1994, 1(3): 353-364
    [52] I. D.Norris, L. A. P.Kane, G. G.Wallace. Thermochromism in Optically Active Polyaniline Salts. Macromolecules, 1998, 31(19): 6529-6533
    [53] P M Grant, T Tani, W D Krounbi, et al. Properties of metal/polyac-etylene schottky barriers. Appl. Phys. Lett., 1981, 52(2): 869-872
    [54] 任斌.有机太阳能电池材料及器件的研究:[硕士学位论文].广州:华南师范大学图书馆,2003
    [55] 周清梅.聚合物固体薄膜太阳能电池的性能研究:[博士学位论文].广州:华南理工大学图书馆,2004
    [56] Nadia Camaioni, Giovanni Ridolfi, Giuseppe Casalbore, et al. The effect of a Mild Thermal Treatment on the Performance of Poly(3alkylthiophene)Fullerene Solar Cells. Advanced Functional Materials, 2002,14(23): 1735-1738
    [57] C. J. Brabec, A. Cravino, D. Meissner, et al. Origin of the Open Circuit Voltage of Plastic Solar Cells. Advanced Functional Materials, 2001, 11: 374-380
    [58] Christoph J. Brabec, Sean E. Shaheen, Christoph Winder, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys.Lett., 2002, 80(7):1288-1290
    [59] P. Peumans, S. R Forrest. Very high efficiency double-heterostructure copper phthalocyanine/C_(60) photovoltaic cells. Appl. Phys. Lett., 2001, 79(1): 126-128
    [60] 封伟,冯奕珏.有机光伏器件活性层的微观结构有序性与电荷输运.化学进展,2006,18(2/3):182-188
    [61] T.Jeranko, H.Tributsch, N.S. sariciftci, et al. Patterns of efficiency and degradation of composite polymer solar cells. Solar Energy Materials&Solar Cells, 2004, 83: 247-262
    [62] Tobias Rauch, Debora Henseler, Pavel Schilinsky, et al. Performance of bulk- heterojunction organic photodetectors. IEEE Conference on Nanotechnology, 2004, (4): 632-634
    [63] Basudev P, Amlan J P. Organic heterojunction Photovoltaic cells: role of functional groups in electron acceptor materials. Chinese Physics, 2004, 81: 469-476
    [64] Fengwei, Xu You-long, Yi Wen-Hui, et al. Effect of crystalline microstructure on the photophysical performance of polymer/perylene composite films. Chinese Physics, 2003, 12(04): 426-432
    [65] Youngkyoo Kim, Stelios A Choulis, enny Nelson, et al. Device annealing effect in organic solar cells with blends of rigioregular poly and soluble fullerene. Applied Physics Letters, 2005. 86(63502): 1-3
    [66] M.Glatthaar, M.Riede, N.Keegan. et al. Efficency limiting factors of organic bulk heteroj unction solar cells identified by electrical impedance spectroscopy. Solar Energy Materials&Solar Cells, 2007, 91: 390-393
    [67] Christoph J Brabec. Organic photovoltatics: technology and market. Solar Energy Materials & Solar Cells, 2004, 83: 273-292
    [68] Amit Jain, Avinashi Kapoor. A new approach to study organic solar cell using Lamber W-function. Solar Energy Materials & Solar Cells, 2005, 86: 197-205
    [69] Amit Jain, Sandeep Sharma, Avinashi Kapoor. Solar cell array parameters using Lamber W-function. Solar Energy Materials & Solar Cells, 2006, 90: 25-31
    [70] Ren Ju, Guo Wenge, Zheng Jianbangl. Anlysis and simulation of solar cells properties based on P-N junction. Acta Photonica Sinica, 2006, 35(2): 171-175
    [71] Zheng Jianbang, Ren Ju, Guo Wengel. Computer simulation of influences of interal Resistance on the output properties of conventional solar cells. Acta Energiae Solaris Sinica, 2007, 27(2): 121-125
    [72] L.J.A. Koster, E.C.P. Smiths, V.D. Mihailetchi, et al. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Physical Review, 2005, 72 (085202): 1-9
    [73] M.E. Rincon, R.A. Guirado-Lopez, J.G. Rodriguez-Zavala, et al. Molevula films based on polythiophene and fullerol: theoretical and experimental studies. Solar Energy Materials & Solar Cells, 2005, 87: 33-47
    [74] A.J. Breeze, Z.Schlesinger, S.A. Carter, et al. Improving power efficiencies in polymer-polymer blend photovoltaics. Solar Energy Materials & Solar Cells, 2004, 83:263-271
    [75] P.Vanlaeke, A.Swinnen, I.Haeldermans, et al. P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and eletro-optical characteristics. Solar Energy Materials & Solar Cells, 2006, 90: 2150-2158
    [76] J.C. Bernede, H. Derouiche, V. Djara, et al. Organic photovoltaic devices: influence of the cell configuration on its performances. Solar Energy Materials & Solar Cells, 2005, 87: 261-270
    [77] M. Glatthaar, M. Riede, N. Keegan, et al. Efficiency limiting factors of organic bulk heteojunction solar cell identified by electrical impedance spectroscopy. Solar Energy Materials & Solar Cells, 2007, 91: 390-393
    [78] Chunhe Yang, Hongmei Li, Qingjiang Sun, et al. Photovoltaic cells based on the blend of MEH_PPV and polymers with substituents containing containing C_(60) moieties. Solar Energy Materials & Solar Cells, 2005, 85: 241-249
    [79] Sam-Shajing Sun. Design of a block copolymer solar cell. Solar Energy Materials & Solar Cells, 2003, 79: 257-264
    [80] Lionel Sicot, Celine Fiorini, Ander Lorin, et al. Improvement of the photovoltaic properties of polythiophene-based cells. Solar Energy Materials & Solar Cells, 2000, 63: 49-60
    [81] Maher Al-Ibrahim, H. Klaus Roth, Uladzimir Zhokhavets, et al. Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Solar Energy Materials & Solar Cells, 2005, 853: 13-20
    [82] Toshimitsu Tsuzuki, Yasuhiko Shirota, Jorn Rostalski, et al. The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Solar Energy Materials & Solar Cells, 2000, 61: 1-8
    [83] N. Camationi, G. Ridolfi, G. Casalbore-Miceli, et al. A stabilization effect of fullerene in donor-acceptor organic solar cells. Solar Energy Materials & Solar Cells, 2003, 76: 107-113
    [84] I. M. Dharmadasa. Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Solar Energy Materials & Solar Cells, 2005, 85: 293-300
    [85] Kohshin Takahashi, Noriko Kuraya, Takahiro Yamaguchi, et al. Three-layer organic solar cell with high-power conversion efficiency of 3.5%. Solar Energy Materials & Solar Cells, 2000, 61: 403-416
    [86] 封伟,高中扩.有机光伏电池物理性能的模拟.物理学报,2008,57(4):2567-2573
    [87] 任驹,郑建邦,赵建林.给体-受体型有机太阳电池光敏层的优化设计.物理学报,2007,56(5):2568-2872
    [88] Florent Monestier, Jean-Jacques Simon, Philipppe Torchio, et al. Modeling the short circuit current density of polymer solar cells based on P3HT: PCBM blend. Solar Energy Materials & Solar Cells, 2007, 91: 405-410
    [89] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, et al. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Physical Review B 72, 2005, 085205: 1-9
    [90] M. Glatthaar, M.Riede, N.Keegan, et al. Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Solar Energy Materials & Solar Cells, 2007, 91: 390-393
    [91] 於黄忠,彭俊彪.共混型聚合物太阳电池原理及研究进展.化学进展,2007,19(11):1689-1694
    [92] 於黄忠,彭俊彪.不同比例的MEH-PPV与PCBM共混体系光电性能研究.物理学报,2008,57(6):3898-13904
    [93] 於黄忠,彭俊彪.影响共混结构聚合物光电性能的因素.高分子材料科学与工程,2008,24(9):23-31
    [94] A. Yakimov, S. R. Forrest. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Applied Physics Letters, 2002, 806(9): 1667-1669
    [95] 宗骐,谢续明,王秀风.高分子共混物薄膜表面形貌形成过程中的溶剂效应.高等学校化学学报,2004,25(12):2363-2366
    [96] P. Vanlaeke, A. Swinnen, I. Haeldermans, et al. P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics. Solar Energy Materials & Solar Cells, 2006, 90: 2150-2158
    [97] Gang Li, Yan Yao, Hoichang Yang, et al. "Solvent Annealing" Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene)and Methanofullerenes. Adv. Funct. Mater., 2007, 17: 1636-1644
    [98] Gang L, Vishal S, Jingsong H, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater., 2005, 4: 864-868
    [99] Heejoo Kim, Won-Wook So, Sang-Jin Moon. The importance of post-annealing process in the device performance of poly(3-hexylthiophene): Methanofullerene polymer solar cell. Solar Energy Materials & Solar Cells, 2007, 91: 581-587
    [100] Vishal Shrotriya, Jianyong Ouyang, Ricky J. Tseng, et al. Absorption spectra modification in poly(3-hexylthiophene): methanofullerene blend thin films. Chemical Physics Letters, 2005, 411(1-3): 138-143
    [101] V. D. Mihailetchi, H. X. Xie, B. de Boer, et al. Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater., 2006, 16: 699-708
    [102] 於黄忠,彭俊彪.热处理对P3HT与PCBM共混体系光电性能的影响.物理化学 学报, 2008, 24(5): 905-908
    [103] W. Ma, C. Yang, X. Gong, et al. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv. Funct.Mater., 2005,15:1617-1622
    [104] Marisol Reyes-Reyes, Kyungkon Kim, David L. Carroll, et al. High Efficiency Photovoltaic Devices based on Annealed Poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 Blends. Appl. Phys. Lett., 2005, 87(083506):1-3
    [105] Franz Padinger, Roman S. Rittberger, Niyazi S. Sariciftci. Effect of Postproduction Treatment on Plastic Solar Cells. Adv. Funct. Mater., 2003,13: 85-88
    [106] D. Gebeyehu, C.J. Brabec, F. Padinger, et al. The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Syntgetuc Metals, 2001, 118: 1-9
    [107] Ji-Seon Kim, Richard H.Friend. Spin-cast thin semiconducting polymer interlayer for improving device effiency of polymer light-emitting diodes. Appl. Phys. Lett., 2005,87(023506): 1-3
    [108] Tetsuya Taima, Masayuki Chikamatsu, Yuji Yoshida, et al. Effect of intrinsic layer thickness on solar cell parameters of organic p-i-n heterojunction photovoltaic cells. Appl. Phys. Lett., 2004, 85(26): 6412-6414

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700