大豆突变体库的构建及子叶折叠突变相关基因的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆【Glycine max (L.) Merr.】是世界上最重要的经济作物之一,由于基因组结构复杂、遗传转化效率低等原因限制了其功能基因组研究的发展。但随着大豆基因组测序的初步完成,大豆功能基因组研究将成为研究的重点。突变体是基因功能研究的重要材料,也是大豆遗传改良的基础材料,鉴于此,本研究利用叠氮化钠,60Coγ射线,甲基磺酸乙酯等方法处理大豆品种“南农86-4”,“南农87c-38”和“南农94-16”,以初步构建大豆突变体库,并对其中一个子叶突变体开展了较系统的研究。主要结果
     如下:
     1、大豆突变体库的构建
     对3个品种的M2、M3世代的突变体进行了表型性状调查和分析,都获得包括叶、茎、花、种子等性状变异的材料,其中“南农86-4”叶变异120份、茎变异24份、花变异26份、种子变异9份、熟期及育性变异6份,共185份;“南农87c-38”叶变异10份、茎变异4份、花变异3份、种子变异3份、熟期及育性变异42份,共62份;“南农94-16”叶变异84份、茎变异3份、花变异10份、种子变异21份、熟期及育性变异2份,共120份。对部分突变体的蛋白质及油分含量进行了分析,发现“南农86-4”突变系蛋白质含量范围为:39.5%-52.5%,油分含量范围为:15.3%-22.9%,“南农94-16”突变系蛋白质含量范围为:39.1%-48.1%,油分含量范围为:17.3%-22.2%。
     2、大豆子叶突变体的鉴定与分析
     1)农艺品质性状
     对通过NaN3-60Coy射线诱变“南农94-16”获得的子叶折叠突变体进行农艺性状综合调查,发现该突变体表现为子叶向外折叠,种皮部分皱缩,比对照品种晚熟9天左右,而其它表型无明显差异。子叶形态观察结果表明,突变体子叶折叠形态是在种子发育初期由于子叶伸展受到抑制形成。蛋白质测定表明,突变体蛋白质含量比对照高3个百分点。氨基酸组份分析表明,与对照相比,突变体的17种氨基酸中除丝氨酸含量没有明显变化,脯氨酸、苏氨酸、酪氨酸含量有一定的降低外,其它13种氨基酸含量都增加,尤其是蛋氨酸含量增加33%以上。游离氨基酸测定结果表明,突变体比对照含量高74%以上。
     2)遗传分析
     通过杂交对子叶折叠突变体进行遗传分析,F2结果分析表明,该性状由两对隐性细胞核基因控制。
     3)基因组水平分析
     为了总体了解子叶折叠突变体与对照在基因组水平上的差异,本研究对突变体及对照的基因组DNA进行了SSR标记分析。筛选大豆SSR标记共957对,结果显示有9对标记表现差异,这些标记集中分布在三个连锁群B1、D2、G的三个位点上。据前人研究结果分析,B1连锁群上的标记Satt426附近有蛋白质与油分的QTL; G连锁群上的Satt163、Satt038> Sat_168. Satt570. AW734137标记附近有种子性状的QTL。
     为了发现突变体与对照在基因组水平上的差异,本研究运用比较基因组杂交芯片(Affymetrix(?) GeneChip)进行分析,对数据结果以信号值相差1.2倍为标准进行筛选,获得明显差异的19个候选基因,其中突变体比对照杂交信号值增强的有10个基因,突变体比对照杂交信号值减弱的有9个基因,参考其它作物的研究结果,对这些基因进行了初步的功能预测,突变体比对照杂交信号增强的10个基因中有7个基因编码的蛋白为未知蛋白,3个基因编码的蛋白预测为已知蛋白。3个已知蛋白的功能分别为:天冬氨酸-tRNA连接酶,UDP-葡糖基转移酶,EF-hand钙结合蛋白CCD1.突变体比对照杂交信号减弱的9个基因中有3个基因编码的蛋白为未知蛋白,6个基因编码的蛋白预测为已知蛋白。6个已知蛋白的功能分别为:亮氨酸氨基肽酶,翻译起始因子,核糖体蛋白,Dof锌指蛋白,丙酮酸脱氢酶,细胞色素P450单氧酶。为了从中发现可能与子叶形态密切相关的基因,我们用RT-PCR对19个候选基因在开花后30天的种子中进行了差异表达研究。其中突变体比对照杂交信号值增强的10个基因中,Gma.15488的表达结果与CGH芯片结果一致,但Gma.15488编码的蛋白为未知蛋白,突变体比对照杂交信号值减弱的9个基因中,TC208897的表达结果与CGH芯片结果一致,TC208897编码的蛋白为Dof锌指蛋白。19个基因中除了这两个基因外,其它基因或者全部没有表达,或者表达水平一致,说明这两个在子叶中差异表达的基因最有可能与子叶的异常发育相关,但需要进一步验证。
     4)子叶突变对大豆种子蛋白组成的影响
     为了研究子叶折叠性状可能对种子贮藏蛋白组成的影响,本研究运用双向电泳技术对由三种不同处理方式获得的表型相似的子叶折叠突变体进行比较研究,获得3个共同的差异蛋白质,其中两个均为球蛋白亚基G3/AlaBlb,在突变体中含量增加;另一个为大豆凝集素,在突变体中含量降低。
     3、大豆TILLING技术的建立与初步应用
     本研究还对新发展的基因功能研究方法TILLING技术进行了优化,将粗提取的CEL I酶初步运用于大豆TILLING技术中,在75份与大豆叶形性状相关的突变体材料中检测KNOX基因,结果显示一个突变体在该基因内发生单碱基变化,但编码的蛋白没有变化。
Soybean [Glycine max (L.) Merr.] is one of the most economically important crops in the world. However, complex organization of genomic DNA and low efficiency on genetic transformation restricts the advancement of functional genomics research. With the completion of soybean genome sequencing, the research of gene function will become the research hotspot. Mutants are the important materials for the advancement of functional genomics research, and are the basic materials for soybean genetic improvement.Therefore, in this research; soybean cv. "Nannong 86-4", cv. "Nannong 87c-38" and cv. "Nannong 94-16" were treated with NaN3,60Co y rays and EMS to construct the mutant population. Meanwhile, a systematic research for curled cotyledon mutant has been developed. Main results are as follows:
     1. Construction of mutant population
     Phenotypic characters of M2 and M3-generation mutants were investigated for various mutants including morphological characters such as leaf, stem, flower and seed. There are 185 mutants identified from "Nannong 86-4" including 120 for leaf,24 for stem,26 for flower,9 for seed,6 for maturity and fertility, respectively. There are 62 mutants identified from "Nannong 87c-38" including 10 for leaf,4 for stem,3 for flower,3 for seed,42 for maturity and fertility, respectively. There are 120 mutants identified from "Nannong 94-16" including 84 for leaf,3 for stem,10 for flower,21 for seed,2 for maturity and fertility, respectively. Proteins and the oils of partial mutants have been studied. The protein content of mutants in "Nannong 86-4" was in the range of 39.5%-52.5% and the oil content range was 15.3%-22.9%. While in "Nannong 94-16" the protein and oil content range variation was 39.1%-48.1% and 17.3%-22.2%, respectively.
     2. Identification and analysis of a curled cotyledon mutant in soybean
     1) Characters of agronomic and quality
     First, overall investigation of agronomic characters of curled cotyledon mutant suggested the mutant cotyledons curled outwards and seed coats were partially shrunken. Plants raised from mutant seeds were found to mature 9 days later than the wild type. The result of observation showed significant difference in morphology between the mutant and its wild type at the seed formation stage. Analysis of quality characters indicated a 3% higher protein content in mutant than wild type. Analysis of 17 kinds of amino acids in mutant indicated that serine content was not affected, while, proline, threonine and tyrosine were reduced. The rest however, showed increased, levels especially the methionine which increased by as much as 33% in the mutant. Analysis of free amino acid content in mutant was 74% higher than that of wild type.
     2) Genetic analysis
     Genetic analysis of the curled-cotyledon mutant by hybridization indicated that it was a double recessive mutant based on nuclear inheritance.
     3) Analysis in genome level
     To further address the difference in genomics between curled-cotyledon mutant and wild type, SSR marker research was developed, altogether 957 pairs were screened, and result showed difference on 9 pairs of markers. These markers were mainly concentrated in three linkage groups namely B1, D2, and G. According to the previous findings, QTL for the protein and the oil was located on B1 linkage group nearby marker Satt426. QTL for the seed character was located among cluster markers Satt163, Satt038, Sat_168, Satt570 and AW734137 on linkage group G
     Furthermore, in order to search the difference between mutant and wild type in the genome level, CGH array was used. Regarding a certain specific value of 1.2 times as the threshold,19 different genes were obtained. The ten genes with stronger signal in mutant than that in wild type, among 7 genes encode unknown protein, and 3 genes encode known protein. Functions of the known protein are showed as follows:aspartate-tRNA ligase, UDP-glycosyltransferase, EF-hand Ca2+-binding protein CCD1. The nine genes with stronger signal in mutant than that in wild type, among 3 genes encode unknown protein, and 6 genes encode known protein. Functions of the 6 known proteins are as follows:leucine amino peptidase, translation initiation factor, structural constituent of ribosome, Dof zinc finger protein, pyruvate dehydrogenase, and cytochrome P450 monooxygenase. To discover the possible gene that closely related to cotyledon, the validation of RT-PCR with seeds obtained within 30 days after flower indicates that among the 10 genes with stronger signal there is only one gene complied with the result of CGH. It is Gma.15488. Among the 9 genes with weaker signal there is only one gene complied with the result of CGH. It is TC208897. The result of research indicates that there are intimate relationship between 2 genes above and the cotyledon shape. This viewpoint also needs to carry on further confirmation, such as to obtain full length gene and transgene so on.
     4) Influence of curled cotyledon on seed storage protein in soybean
     In order to study the influence of cotyledon shape difference to the mature seed storage protein components in soybean, three kinds of curled-cotyledon mutants was searched by 2-D electrophoresis. The research results showed that there were 3 common proteins which are different in mutant and wild type. The increased two protein spots in mutants are both globulin subunit G3/AlaBlb, at meanwhile, the protein spot that decrease is lectin.
     3. The establishment and application of TILLING in soybean
     Studies of optimizing the new method of TILLING have been conducted. CEL I enzyme that extracted from celery were used in TILLING The KNOX gene was studied using 75 mutants of leaf; as a result, one base change was found in this gene in one mutant.
引文
Ashraf M, Foolad M R.2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany.59 (2):206-216
    Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M.1997. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant. Plant Cell.9:841-857
    Ahloowalia B S, Maluszynski M.2001. Induced mutations-A new paradigm in plant breeding. Euphutica. 118:167-173
    Beachy.1983. Molecular characterization of a soybean variety lacking a subunit of the 7S seed storage protein. Plant Molecular Biology.4:413-422
    Bradford M M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry.72:248-254
    Braun H P, Emmermann M, Mentzel H.1994. Primary structure and expression of a gene encoding the cytosolic ribosomal protein S4 from potato. Biochim Biophys Acta.1218:435-438
    Boyes D C, Zayed A M, Ascenzi R, McCaskill A J, Hoffman N E, Davis K R, Gorlach J.2001. Growth Stage-Based Phenotypic Analysis of Arabidopsis:A Model for High Throughput Functional Genomics in Plants. Plant Cell.13:1499-1510
    Choi G, Kim J I, Hong S W, Shin B, Choi G, Blakeslee J J, Murphy A S, Seo Y W, Kim K, Koh E J, Song P S, Lee H.2005. A Possible Role for NDPK2 in the Regulation of Auxin-mediated Responses for Plant Growth and Development. Plant Cell Physiology.46 (8):1246-1254
    Colbert T, Till B J, Tompa R, Reynolds S, Steine M N, Yeung A T, McCallum C M, Comai L,Henikoff S. 2001. High-Throughput Screening for Induced Point Mutations. Plant Physiology.126:480-484
    Chen J J, Wu R, Yang P C.1998. Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics.51 (3):313-324
    Comai L, Young K, Till B J, Reynolds S H, Greene E A, Codomo C A, Enns L C, Johnson JE, Burtner C, Odden A R, Henikoff S.2004. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. The Plant Journal.37:778-786
    Duval M, Hsieh T F, Kim S Y, Thomas T L.2002. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology.50:237-248
    Dassow G, Meir E, Munro E F.2000. The segment polarity network is a robust development module. Nature.406 (13):188-192
    Daimon Y, Takabe K, Tasaka M.2003. The CUP-SHAPED COTYLEDON Genes Proote Adventitious Shoot Formation on Calli. Plant Cell Physiology.44 (2):113-121
    Derbyshire E, Wright D J, Boulter D.1976 Legumin and vicilin, storage proteins of legume seeds. Phytochemistry.15 (1):3-24
    Domoney O, Welham T, Sidebottom C.1993. Purification and characterization of pisum-seed trypsin inhibitors. The Journal of Experimental Biology.44:271
    ECOLUPIN.2002. European collaboration towards structural and functional genomics of lupin crops for ecology and sustainable agriculture. Expression of interest for an FP6 Integrated Project call indentifier EOI.FP6
    Elferink R O.2003. One step further towards real high-throughput functional genomics. TRENDS in Biotechnology.21 (4):146-148
    Friedman M, Brandon D L.2001. Nutritional and health benefits of soy proteins. Journal of Agricultural & Food Chemistry.49:1069-1086
    Guengerich F.2001. Functional Genomics and Proteomics Applied to the Study of Nutritional Metabolism. Methods in Nutrition Science.1:259-263
    Greene E A, Codomo C A, Taylor N E, Henikoff J G, Till B J, Reynolds S H, Enns L C, Burtner C, Johnson J E, Odden A R, Comai L, Henikoff S.2003. Spectrum of Chemically Induced Mutations From a Large-Scale Reverse-Genetic Screen in Arabidopsis. Genetics.164:731-740
    Grebe M, Gadea J, Steinmann T, Kientz M, Rahfeld J U, Salchert K, Koncz C, Jurgens G 2000. A conserved domain of the Arabidopsis GNOM protein mediates subunit interaction and cyclophilin 5 binding. Plant Cell.12:343-356
    Golz J F, Hudson A.1999. Plant development:YABBYs claw to the fore. Current Biology.9:R861-3
    Gilchrist E J, Haughn G W.2005. TILLING without a plough:a new method with applications for reverse genetics. Current Opinion in Plant Biology.8:1-5
    Guo S, Kemphues K J.1995. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell.81:611-620
    Gao J, Kim S R, Chung Y Y.1994. Developmental and environmental regulation of two ribosomal protein genes in tobacco. Plant Molecular Biology.25:761-770
    Gualberti G, Papi M, Bellucci L, Ricci I, Bouchez D, Camilleri C, Costantino P, Vittorioso P.2002. Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell.14:1253-1263
    Giacomelli L, Rudella A, Wijk K J.2006. High Light Response of the Thylakoid Proteome in Arabidopsis Wild Type and the Ascorbate-Deficient Mutant vtc2-2. A Comparative Proteomics Study. Plant Physiology.141 (2):685-701
    Gallardo K, Le Signor C, Vandekerckhove J.2003. Proteomics of Medicago truncatula seed development establishedthe time frame of diverse metabolic processes related to reserve accumulation. Plant Physiology.133:664-682
    Guo H S, Xie Q, Fei J-F, Chuad N H.2005. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell.17: 1376-1386
    Hirschi K D.2003. Insertional mutants:a foundation for assessing gene function. TRENDS in Plant Science.8 (5):205-207
    Hill J E, Breidenbach R W.1974. Proteins of soybean seeds II. Accumulation of major protein components during seed development and maturation. Plant Physiology 53:747-751
    Hardtke C S, Berleth T.1998. The Arabidopsis gene MONOPTEROUS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO Jouranl.17:1405-1411
    Henikoff S, Comai L.2003. Single-Nucleotide mutations For Plant Functional Genomics. Plant Biotechnology Journal.54:375-401
    Hajduch M, Ganapathy A, Stein J W, Thelen J J.2005. A Systematic Proteomic Study of Seed Filling in Soybean. Establishment of High-Resolution Two-Dimensional Reference Maps, Expression Profiles, and an Interactive Proteome Database. Plant Physiology.137:1397-1419
    Hermant E M, Helm R M, Jung R, Kinney A J.2003. Genetic modification removes an immunodominant allergen from soybean.Plant Physiology.132:36-43
    Haile F J, Higley L G, Specht J E, Spomer S M.1998. Soybean Leaf Morphology and Defoliation Tolerance. Agronomy Journal.90:353-362
    Huristone A F L, Haramis A G, Wienholds E, Begthel H, Korving J, Eeden F, Cuppen E, Zivkovic D, Plasterk R H A, Clevers H.2003. The Wnt/β-catenin pathway regulates cardiac valve formation. Letters to Nature.425:633-637
    Hong S K, Kitano H, Satoh H, Nagato Y.1996. How is embryo size genetically regulated in rice? Development.122:2051-2058
    Henikoff S, Till B J, Comai L.2004. TILLING. Traditional Mutagenesis Meets Functional Genomics. Plant Physiology.135:630-636
    Ito E M H M.2003. Interfering mutations provide in vivo evidence that Escherichia coli SecE functions in multimeric states. Molecular & General Genomics.268:808-815
    Imin N, Kerim T, Rolfe B G, Weinman J J.2004. Effect of early cold stress on the maturation of rice anthers. Proteomics.4:1873-1882
    Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F.2002. bZIP transcription factors in Arabidopsis. Trends Plant Science.7:106-11
    Kitamura K.1993. Trends in Food Science and Technology. Theoretical and Applied Genetics.4:258
    Kozak M.1999. Initiation of translation in prokaryotes and eukaryotes. Gene.234:187-208
    Krober O A, Cartter J L.1962. Quantitative interrelations of protein and nonprotein constituents of soybeans. Crop Science.2:171-172.
    Katsube T, Gidamis A B, Jirokanamori.1994. Modification Tolerability of the Hypervariable Region of Soybean Proglycinin. Journal of Agricultural & Food Chemistry.42:2639-2645
    Kerim T, Imin N, Weinman J J, Rolfe B G.2003. Proteome analysis of male gametophyte development in rice anthers. Proteomics.3:738-751
    Kallioniemi A, Kallioniemi O P, Sudar D.1992. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science.258:818-821
    Kamiya N, Nishimura A, Sentoku N, Takabe E, Nagato Y, Kitano H, Matsuoka M.2003. Rice globular embryo 4 (gle4) mutant is defective in radial pattern formation during embryogenesis. Plant Cell Physiol.44:875-883
    Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T.2005. LEAFY COTYLEDON1 Controls Seed Storage Protein Genes through Its Regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiology.46 (3):399-406
    Kota R, Wolf M, Michalek W, Graner A.2001. Application of denaturing high-performance liquid chromatography for mapping of single nucleotide polymorphisms in barley(Hordeum vulgare L.). Gemome.44:523-528
    Kiyosue T, Yoshiba Y, Yamaguchi K.1996. Anuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is up regulated by proline but down regulated by dehydration in Arabidopsis. Plant Cell.8:1323-1335
    Leung H.2003. Genetic resources conservation, evaluation, and gene discovery. International Rice Research Institute. Project summary and highlights.13-16
    Larsen K.2005. Molecular cloning and characterization of a cDNA encoding endonuclease from potato(Solanum tuberosum). Journal of plant physiology.162:1263-1269
    Luquez V M, Guiamet J J.2002. The stay green mutations d1 and d2 increase water stress susceptibility in soybeans. Journal of Experimental Botany.53 (373):1421-1428
    Liu C M, Johnson S, Gregorio S D, Wang T L.1999. singlecotyledon (sic) Mutants of Pea and Their Significance in Understanding Plant Embryo Development. Developmental Genetics.25:11-22
    Li X, Lassner M, Zhang Y.2002. Deleteagene:a fast neutron deletion mutagenesis-based gene knockout system for plants. Comparative and Functional Genomics.3:158-160
    Liljegren S J, Roeder A H, Kempin S A, Gremski K, Ostergaard L, Guimil S, Reyes D K, Yanofsky M F. 2004. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell.116:843-53
    Moehs C P.2005. TILLING:Harvesting functional genomics for crop improvement. Information Systems for Biotechnology News Report.3:6-7
    MacNeil J S.2004. Plant genome initiatives create high-tech blueprint for functional genomics. The Scientist.18 (3):34-37
    Manabe T.2000. Combination of electrophoretic techniques for comprehensive analysis of complex proteinsystems. Electrophoresis.21:11-16
    Muskett P R, Clissold L, Arocco A M, Springer P S, Martienssen R, Dean C.2003. A Resource of Mapped Dissociation Launch Pads for Targeted Insertional Mutagenesis in the Arabidopsis Genome. Plant Physiology.132:506-516
    McCallum C M, Comai L, Greene E A, Henikoff S.2000a. Targeted screening for induced mutations. Nature Biotechnology.18:455-457
    McCallum C M, Comai L, Greene E A, Henikoff S.2000b. Targeting Induced Local Lesions IN Genomes (TILLING) for Plant Functional Genomics. Plant Physiology.123:439-442
    Mallory A C, Dugas D V, Bartel D B, Bartel B.2004. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Current Biolology.14:1035-1046
    Maruyama N, Mun L C, Tatsuhara M, Sawada M.2006. Multiple Vacuolar Sorting Determinants Exist in Soybean 11S Globulin. Plant Cell.18 (5):1253-1273
    Mooney B P, Thelen J J.2004. High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag databases for protein identification. Phytochemistry.65:1733-1744
    Meng Q C, Zhang C H, Gai J Y, Yu D Y.2007. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean(Glycine max(L.)Merr.). Journal of plant physiology.164:1002-1012
    Ng P C, Henikoff S.2003. SIFT:predicting amino acid changes that affect protein function. Nucleic Acids Research.31 (13):3812-3814
    Nielsen T H, Krapp A, Rjper-Schwartz U.1998. Sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase and is modified by the phosphate and nitrogen.Plant,Cell and Environment.21:443-454
    Natarajan S S, Xu C P, Bae H H, Caperna T J, Garrett W M.2006. Characterization of Storage Proteins in Wild (Glycine soja) and Cultivated (Glycine max) Soybean Seeds Using Proteomic Analysis. Journal of Agricultural & Food Chemistry,54:3114-3120
    Ott R W, Hansen L K.1996. Repeated sequences from the Arabidopsis thaliana genome function as enhancers in transgenic tobacco. Molecular & General Genetics.252:563-571
    Oleykowski C A, Mullins C R B, Godwin A K Yeung A T.1998. Mutation detection using a novel plant endonuclease. Nucleic Acids Research.26:4597-4602
    Pinkel D, Alertson D G 2005. Array comparative genomic hybridization and its applications in cancer. Nature Genetics.37(Suppl):S11-S17
    Penmetsa R V, Cook D R.2000. Production and Characterization of Diverse Developmental Mutants of Medicago truncatula. Plant physiology.123:1387-1397
    Papi M, Sabatini S, Bouchez D.2000. Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. genes & development.14 (1):28-33
    Perry J A, Wang T L, Welham T J, Gardner S, Pike J M, Yoshida S, Parniske M.2003. A TILLING Reverse Genetics Tool and a Web-Accessible Collection of Mutants of the Legume Lotus japonicus. Plant physiology.131:866-871
    Richmann J L, Heard J, Martin G 2000. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science.290:2105-2110
    Raidl M, Pirker C, Schulte-Hermann R.2004. Multiple chromosomal abnormalities in human liver(pre) neoplasia. Journal of hepatology.40 (4):660-668
    Ren T, Qu F, Morris T J.2000. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell.12:1917-1925
    Rose T M, Schultz E R, Henikoff J G, Pietrokovski S, McCallum C M, Henikoff S.1998. Consensus-degenerat hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Research.26 (7):1628-1635
    Stemple D L.2004. TILLING-a high-throughput harvest for functional genomics. Nature Reviews.5: 1-7
    Shoemaker R C.2003. The Status of Soybean Genomics and Its Role in the Development of Soybean Biotechnologies. AgBioForum.6 (1&2):4-7
    Scheres B, Browse J.2001. Playing with Arabidopsis. Plant Physiology.126:468-470
    Selmecki A, Bergmann S, Berman J.2005. Comparative genome hybridization reveals widespread aneuploidyin Candida albicans laboratory strains. Molecular Microbiology.55(5):1553-1565
    Slade A J, Fuerstenberg S I, Loeffler D, Steine M N, Facciotti D.2005. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. National Biotechnology.23:75-81
    Sun T P, Goodman H M, Ausubel F M.1992. Cloning the Arabidopsis GA1 Locus by Genomic Subtraction. Plant Cell.4:119-128
    Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jfirgens G 2000. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Development.14:1471-1484
    Smits B M G, Mudde J, Plasterk R H A, Cuppen E.2003. Target-selected mutagenesis of the rat. Genomics.83:332-334
    Song Q J, Marek L F, Shoemaker R C.2004. A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics.109:122-128
    Schuler M A, Schmitt E S, Beachy R N.1982. Closly related familes of genes code for the a and a' subunits of the soybean 7S storage protein complex. Nucleic Acids Research.24 (10):8226-8244
    Smits B M G, Souza U M D, Berezikov E, Cuppen E, Sluyter F.2004. Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region. Genes, Brain and Behavior.3: 138-148
    Suzuki A, Tsunoghae Y, Tanaka I.1987. The structure of Bowman-Birk type protease inhibitor A-form peanut(Arachis hypogaea) at 3.3 resolution. The Journal of Biological Chemistry.101:267
    Sokurenko E V, Tchesnokova V, Yeung A T, Oleykowski C A, Trintchina E, Hughes K T, Rashid R A, Brint J M, Moseley S L, Lory S.2001. Detecition of simple mutantions and polymorphisms in large genomic regions. Nucleic Acids Research.29 (22):1-8
    Souer E, van Houwelingen A, Kloos D, Mol J, Koes R.1996. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell.85:159-170
    Stacey G, Vodkin L, Parrott W A, Shoemaker R C.2004. National Science Foundation-Sponsored Workshop Report. Draft Plan for Soybean Genomics. Plant Physiology.135:59-70
    Tabata S.2002. Impact of genomics approaches on plant genetics and physiology. Plant Research Journal.115:271-275
    Till B J, Burtner C, Comai L, Henikoff S.2004. Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Research.32:2632-2641
    Till B J, Colbert T, Tompa R, EnnsL C, Codomo C A, Johnson J E, Reynolds S H, Henikoff JG, Greene E A, Steine M N, Comai L, Henikoff S.2003a. High-Throughput TILLING for F unctional Genomics. Plant Functional Genomics.236:205-220
    Taylor N E, Greene E A.2003. PARSESNP:a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Research.13:3808-3811
    Takada S, Hibara K, Ishida T, Tasaka M.2001. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development.128:1127-1135
    Takahashi K, Mizuno Y, Yumoto S.1996. Inheritance of the a-subunit deficiency of β-conglycinin in soybean [Glycine max(L.) Merrill] line induced by y-ray irradiation. Breeding Science.46:251-255
    Till B J, Reynolds S H, Greene E A, Codomo C A, Enns L C, Johnson J E, Burtner C, Odden A R, Young K, Taylor N E, Henikoff J G, Comai L, Henikoff S.2003b. Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING Genome Research.13:524-530
    Till B J, Reynolds S H, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C A, Enns L C,Odden A R, Greene E A, Comail L, Henikoff S.2004. Discovery of induced point mutations in maize genes by TILLING BMC Plant Biology.4:12 doi:10.1186/1471-2229-4-12
    Thanh V H, Shibasaki K.1976. Major proteins of soybean seeds:a. straightforward fractionation and their characterization. Journal of Agricultural & Food Chemistry.24:1117-1121.
    Treml B S, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Torres Ruiz R A. 2005. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo.Development.132:4063-4074
    Taoka K, Yanagimoto Y, Daimon Y, Hibara K, Aida M, Tasaka M.2004. The NAC domain mediates functional specificity of CUP-SHAPED COTYLEDON proteins. Plant Journal.40:462-473
    Vicente-Carbajosa J, Moose S P, Parsons R L.1997. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proceedings of the National Academy of Sciences.94 (14):7685-7690
    Vendruscolo E C G, Schuster I, Pileggi M, Scapim C A, Molinari H B C, Marur C J, Vieira L G E.2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology.164(10):1367-1376
    Wool I G.1996. extra ribosomal functions of ribosomal proteins.Trends Biochemal Science.21 (2):164-165
    Washio K.2001. Identification of Dof proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains. biochimica et biophysica acta.1520 (1): 54-62
    Wilcox J R.2004. World distribution and trade of soybean. In RH Boerma, JE Specht, eds, Soybeans: Improvement, Production, and Uses, Ed 3. American Society of Agronomy. Madison. WI.1-14
    Wasinger V C, Cordwell S J, Cerpa A.1995. Progress with gene product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis.16:1090-1094
    Walling L, Drews G N, Goldberg R B.1986.Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proceedings of the National Academy of Sciences.83: 2123-2127
    Wang T L, Domoney C, Hedley C L.2003. Can we improve the nutritional quality of legume seeds?. Plant Physiology.131:886-891
    Wienholds E, Eeden F v, Kosters M, Mudde J, Plasterk R H A, Cuppen E.2003. Efficient Target-Selected Mutagenesis in Zebrafish. Genome Research.13:2700-2707
    Wilson R F, Kwanyuen P.1986. Triacylglycerol synthesis and metabolism in germinating soybean cotyledons. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism.877 (2):231-237
    Wang Y, Putnam C D, Kane M F, Zhang W.2005. Mutation in Rpal results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nature Genetics.37 (7):750
    Wang C T, Yang X D, Chen D X, Zhang J C, Xu J Z, Yang W Q.2002. Production of Extra Large Poded and Small Poded Peanut Mutants Following Chemical Mutagen Treatment. Journal of Peanut Science.31(4):5-8
    Wang H W, Zhang B, Hao Y J, Huang J, Tian A G, Liao Y, Zhang J S, Chen S Y.2007. The soybean Dof-type transcription factor genes, GmDof4 and GmDofll, enhance lipid content in the seeds of transgenic Arabidopsis plants. The Plant Journal.52 (4):716-729
    Xue Y, Li J, Xu Z.2003. Recent highlights of the China Rice Functional Genomics Program. TRENDS in Genetics.19 (7):390-394
    Yeung A T, Mattes W B, Oh E Y, Grossman L.1983. Enzymatic properties of purified Escherichia coli uvrABC proteins. Proceedings of the National Academy of Sciences.88:6157-6161
    Yamashita Y, Minoura K, Taya T, Fujiwara S, Kurashina K, Watanabe H, Choi Y L, Soda M, Hatanaka H, Enomoto M, Takada S, Mano H.2007. Analysis of chromosome copy number in leukemic cells by different microarray platforms. Leukemia.1-5
    Yang B, Wen X, Kodali N S, Oleykowski C A, Miller C G, Kulinski J, Besack D, Yeung J A, KowalskiD, Yeung A T.2000. Purification, Cloning, and Characterization of the CEL I Nuclease. Biochemistry. 39:3533-3541
    Zhang Y, Li X.2002. Reverse genetics by fast neutron mutagenesis in higher plants. Functional & Integrative Genomics.2:254-258
    Zhu Y L, Song Q J, Hyten D L, Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B.2003. Single-Nucleotide Polymorphisms in Soybean. Gemetics.163: 1123-1134
    2001. Plant Biology 2001. MEETING REPORT. Plant Cell.13:2165-2173
    鲍根良,严文潮,张小明,左晓旭,叶胜海.粳稻优质米突变体E203的诱变选育研究.核农学报.2002,16(5):268-271
    常胜合,舒海燕,秦广雍,黄群策,陈彦惠.诱变育种在改良热带亚热带玉米种质资源中的应用及前景展望.农艺科学.2005,21(5):174-176
    陈秀兰,柳学余,何震天,韩月澎,杨鹤峰.江苏省农作物辐射诱变育种的成就与展望.核农学报.2004,18(2):121-124
    关荣霞,常汝镇,邱丽娟.栽培大豆蛋白亚基11S7S组成及过敏蛋白缺失分析.作物学报.2004,30(11):1076-1079
    顾永清.钙调素结合蛋白.生命的化学.1993,13(5):20-22
    顾佳清,张智奇,周音,奚银兴,张建军.EMS诱导水稻中花11突变体的筛选和鉴定.上海农业学报.2005,21(1):7-11
    郭光荣.人工诱变与外源DNA直接导入相结合传造遗传变异的探讨.作物研究.1994,8(2):15-16
    郭玉虹,王培英,张军政.EMS对大豆的诱变效应.核农学通报.1994,15(4):162-164
    黄培堂译.分子克隆实验指南(第三版).科学出版社.2002
    季静,王萍,胡汉桥,陈宗亮,王罡.硫酸二乙酯对油葵生物学效应的研究.1997,19(3):28-30
    江泉.农杆菌介导gaga1基因转入大豆和大豆体细胞胚培养的初步研究.硕士学位论文.南京农业大学.2004
    江树业.水稻突变群体的构建及功能基因组学.分子植物育种.2003,1(2):137-150
    李雪华.大豆突变体库的初步构建及突变类型的鉴定.硕士学位论文.南京农业大学.2003
    李子银,陈受宜.植物的功能基因组学研究进展.遗传.2000,22(1):57-60
    李梦,李国权,于少华,朴铁夫,陈光,许耀奎.32P-β射线内照射大豆的诱变效应.1992,14(3):60-64
    李远明,刘伟,鲁振明.大豆蛋白质脂肪积累动态及与产量的关系.大豆通报.2001,(4):6-7
    李学宝,杨学荣.硫酸二乙酯、叠氮化钠对水稻种子萌发、幼苗初期生长的影响.武汉植物学研究.1989,7(4):346-351
    李雄彪,张金忠.简明植物生理生化.南开大学出版社.1992
    刘后利主编.农作物品质育种.湖北科学技术出版社.2001,309-311
    刘华清,吴为人,段远霖,官华忠,陈娟.水稻小穗特征基因FZP的图位克隆.遗传学报.2003,30 (9):811-816
    吕东辉.浅谈诱变技术在大豆育种中的应用.大豆通报.1999,4:17
    吕伯钦,曾昭慧,邓海,庞应发,毕文芳,王志爽,孟慧林.叠氮化钠的毒性研究.卫生研究.1992,21(5):228-233
    孟庆长.大豆GmNAC和GmlFY转录因子编码基因的克隆、鉴定和种子性状的QTL定位研究.博士学位论文.南京农业大学.2006
    孟祥勋.大豆种子贮藏蛋白的研究.东北农业大学学报.1997,28(2):201-207
    钱前,李云海,曾大力,滕胜,汪政科,李学勇,董志刚,戴宁,孙磊,李家洋.水稻脆性突变体的分离及其基因定位.科学通报.2001,46(15):1273-1276
    沈波,朱昌亮.病原生物学中细胞色素P450的重要意义.中国人兽共患病杂志.2001,17(4):97-100
    盛祖嘉.微生物遗传学(第二版).科学出版社.1987
    申慧芳,李国柱.不同抗旱性绿豆突变体的抗旱生理特性.核农学报.2006,20(5):371-374
    施逸民,郑亚生,彭宏,王景辉,邱惠琴,吴丽莉.NaN3与γ射线对水稻诱变效应的比较.福建农学院学报.1983,12(2):115-123
    孙乃恩,孙东旭.朱德煦编著.分子遗传学.南京大学出版社.2002,267
    王彩莲,陈秋方,慎玫,徐刚.β射线对水稻的诱变效应研究.中国核科技报告.1994,00:437-453
    王丽侠,郭顺堂,付翠真.大豆种子贮藏蛋白11S与7S组份的研究.中国粮油学报.2004,19(4):53-57
    王景雪,孙毅,徐培林,仪治本,杜建中,孙丹琼.植物功能基因组学研究进展.生物技术通报.2004(1):18-22
    王玫,翁秀英.大豆诱变育种的研究进展及动向.核农学报.1987,(1):1-4
    王培英,许德春,郭玉虹,孟丽芬,赵晓南.人工诱变改良大豆品质的研究.核农学报.2000,14(1):21-23
    王丕武,许耀奎,张晓玲.大豆EMS诱变的遗传变异与选择.核农学通报.1993.14(5):209-213
    王志珍,邹承鲁.后基因组—蛋白质组研究.生物化学与生物物理学报.1998,30(6):533-539
    王镜岩,朱圣庚,徐长法主编.生物化学.高等教育出版社.2003(第三版),92
    卫功宏,印莉萍.蛋白质组学相关概念与技术及其研究进展.生物学杂志.2002,19(4):1-3
    徐晓燕.大豆种子萌发的蛋白组研究.硕士学位论文.南京农业大学.2006
    徐是雄,唐锡华,傅家瑞.种子生理的研究进展.中山大学出版社.1987
    薛柏,孟丽芬,赵晓南,郭玉红,刘滨红.60Coγ射线照射大豆植株的诱变效果.大豆科学.2000,19(2):150-153
    杨玛丽.大豆理化诱变突变体库的构建及大豆单链特异性核酸酶基因的克隆.硕士学位论文.南
    京农业大学.2007
    叶俊,吴建国.水稻"9311"突变体筛选和突变体库构建.作物学报.2006,32(10):1525-1529
    于秀普,杜连恩,魏玉昌.运用EMS诱发大豆突变筛选出高蛋白和高脂肪含量的种质资源.作物品种资源.1995,1:24-26
    于天江,李集临,徐香玲.利用辐射诱发的染色体畸变选育大豆易位系的初探.东北农业大学学报.1995,26(4):324-335
    余章清,张富厚,范占标,黄喜乐.钴60γ射线对大豆当代辐射效应的研究.河南农业科学.1996,6:15-17
    余章清,张富厚,范占标,黄喜乐.钴60γ射线对大豆辐射后代性状变异的研究及应用.河南农业科学.1997,1:6-8
    赵武善,黄舜斌,陈哲,王明军.近红外投射技术分析大豆籽粒.光谱实验室.2004,21:1199-1202
    赵心爱,薛庆中.利用番茄突变体进行功能基因组学研究.生命科学.2003,15(4):228-232
    张开文.化诱选育优质大豆.农村百事通.2000,19:6-8
    张敏,高秀丽,鲍鹏.大豆与豆豉中游离氨基酸总量测定.贵阳医学院学报.2006,31(5):419-421
    浙江农业大学主编.遗传学.农业出版社.1984,55-56
    郑雷英.理化诱变水稻突变体库的构建及水稻簇生穗突变体-的形态和定位分析.博士学位论文.中国科学院上海植物生理生态研究所.2002
    郑蕊.大豆种子蛋白积累与调控的蛋白质组研究.硕士学位论文.南京农业大学.2005
    周海燕,吴永尧.蛋白质组学研究与应用.湖北民族学院学报(自然科学版).2003,21(1):60-64
    邹伟民,伍育源,黎学军,刁绍谋.激光与γ射线辐照蚕豆诱变效应研究.光电子激光.1993,4(2):128-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700