竹材在亚、超临界甲醇中的醇解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石燃料的枯竭和全球环境的严重恶化,开发可再生的清洁能源迫在眉睫。生物质能作为一种清洁能源,更是一种可再生能源,越来越受到关注。竹材,重要的森林资源之一,在我国,分布广,资源蕴藏量大,是一种理想的可再生生物质资源。同时,近年来,以甲醇为反应介质的超临界流体液化技术得到了广泛研究。本文在综述了大量参考文献的基础上,制定了一套竹材在亚、超临界甲醇中醇解的实验方案,并引入了K2CO3和MCM-41两种催化剂,进行了一系列比较实验研究,针对竹材在不同情况下的醇解行为进行了深入和全面的分析。实验结果对深入认识竹材醇解规律、设计及优化竹材醇解加工工艺、开发高附加值的醇解产品具有重要的指导意义。
     首先,本文采用甲醇作为反应介质与浙江毛竹粉末在不锈钢高压反应釜内进行亚、超临界醇解反应,用气相色谱-质谱联用仪(GC-MS)和气相色谱(GC)分别分析了醇解液体产物的成分组成和部分产物的产率。考察了反应温度、反应时间和竹材粉末与甲醇的固液比对竹材亚、超临界产率的影响。实验结果表明,反应温度和压力达到甲醇的超临界条件时,竹材粉末的醇解较亚超临界时更为彻底,且转化率与时间成正比。根据GC-MS分析,亚、超临界醇解产物的组成很复杂,可检测出数十种化合物,主要是糠醛(纤维素和半纤维素的主要醇解产物)、含氧有机物、含苯环化合物和杂环化合物。其中,糠醛的含量最高。研究表明,采用超临界醇解技术,在相对温和的条件下(低于300℃)可使竹材中有极大分子选择性的降解,尤其是竹材中纤维素和半纤维素的降解,达到了降解废弃竹材的目的。为详细了解竹材的结构信息和亚、超临界醇解反应的机理奠定了基础,也为开发废弃竹材的高效利用的新工艺提供了理论依据。同时采用模式函数法对等温动力学过程进行拟合,通过对动力学结果进行比较和分析,结合可能的醇解机理,对毛竹的亚、超临界醇解行为进行了讨论。结果表明,超临界状态下,醇解反应的活化能降低,反应更容易进行,反应受温度的影响变小;亚临界状态下反应可简单模拟为一级反应,而超临界状态下,反应为二级反应,反应更为复杂,有更多的成分参与反应。
     其次,本文以正硅酸乙酯(TEOS)、十六烷基三甲基溴化铵(CTAB)、氢氧化钠(NaOH)为原料,采用水热法合成了介孔分子筛MCM-41催化剂,并用五水硝酸锆(Zr(NO3)4·5H2O)为Zr源,水为溶剂,采用浸渍法制备了负载型Zr-MCM-41介孔分子筛催化剂。同时对MCM-41和Zr-MCM-41进行了XRD、IR、N2吸附、TG等表征分析。
     最后,本文将自行合成的MCM-41分子筛和K2CO3催化剂加入到竹材的亚、超临界醇解体系中,考察了反应温度、反应时间、竹材粉末与甲醇的固液比和催化剂用量对竹材亚、超临界催化醇解产率的影响。实验结果表明,两种催化剂均能不同程度的提高反应速率,K2CO3的催化效果更好,反应进行更加彻底,但MCM-41可循环利用,是一种理想的适合于创造环境友好工艺的催化剂;两种催化剂对竹材的催化机理不同,MCM-41分子筛孔道大小均匀、六方有序排列,具有高比表面积和大吸附容量,有利于有机分子的快速扩散,这使得它能为大分子进行择型反应提供有利空间和有效酸性活性中心,液体产物中C10以下的醇、醚、酯类等有机小分子的含量明显增多,尤其是乙酸甲酯的含量,但它对木素的降解并无太大贡献;K2CO3催化剂则更多的起到溶解木素的作用,减少氧杂环的生成。采用模式函数法对催化醇解的等温动力学过程进行拟合,发现有K2CO3催化时,更多的木素开始降解,醇解机理更为复杂,不能用简单的一步反应来描述;使用MCM-41分子筛催化时,在亚、超临界状态下,反应活化能都有不同程度降低,反应受温度影响更小,达到反应平衡的时间更短。
Along with the fossil fuel being used up and the global environment being destroyed badly, it is extremely urgent to develop a clean and renewable energy. If biomass is utilized reasonably, it is not only a renewable energy, but also a clean energy. In recent years, the liquefaction technology of supereritical fluid taking methanol as the solvent and reaction medium has got extensive research. Bamboo is an ideal renewable resource as one of the most important forest resources in China with wide distribution and large amount. Based on summarizing of many literatures, an experimental scheme that bamboo was liquefied in subcritical and supercritical methanol with or without K2CO3and MCM-41has been worked out, and then, a series ofexperimental researches have been carried out. Results here will contribute to the understanding the disciplines of alcoholysis, also provide guide for product processing design and high value-added product development.
     Firstly, Bamboo powder (BP) collected from Shengzhou, Zhejiang. were deploymerized with supercritical methanol in a stainless-steel magnetically stirred autoclave. The alcoholysis products were analyzed with GC-MS system. The effect of reaction temperature, reaction time, and on the yields of the alcoholysis products was examined. The experiment results show that BP were more deeply deploymerized by methanol under supercritical condition than under subcritical condition and the yields of the alcoholysis products are proportional to reaction time. Dozens of organic compounds were detected by GC-MS analysis from supercritical alcoholysis products, and most of the species detected are furfural which is the main product of the cellulose and the hemicellulose and oxygen-containing organic chemicals, especially the methoxy compounds. A large number of phenol derivatives which can be used as high-value-added chemicals and farty acid esters which can be used to produce high class lubricating oils and bio-oil with high quality were detected from supercritical alcoholysis products. Moreover, the results show that the big molecule of BP, especially the cellulose and the hemicellulose, can be deploymerized under relatively gentl℃e condition(<300癈)by using supercritical alcoholysis, which will offer an important means to understanding the molecule structure of the bamboo. Simultaneity, it will provide theoretical basis of exploiting new technology for the effective utilization of bamboo.
     Secondly, in this paper, mesoporous molecular sieve MCM-41was perpared hydrothermally with TEOS, CTBA, NaOH as source materials and then used as supports for mesoporous molecular sieve Zr-MCM-41with Zr(NO3)4·5H2O as Zr source and H2O as solvent via impregnation method.
     Finally, in this paper, as catalyst. MCM-41and K2CO3were added into the subcritical and supercritical alcoholysis system of bamboo, the effects of reaction temperature, reaction time, bamboo powder and solid-liquid ratio of methanol and catalyst content were examined. The results show that the reaction rate with this two catalysts can be improved to varying degrees, of which the catalytic effect of K2CO3is better, and MCM-41can be recycled, which is an ideal catalyst to create an environment friendly; the catalytic mechanism of this two catalysts is different, such as MCM-41zeolite whose pore size is uniform, ordered the six-party, with the rapid proliferation of high specific surface area and adsorption capacity, can make it optional type for the macromolecular favorable space and effective acid active centers of reaction, and make the C10alcohols, ethers, esters liquid product increased significantly, especially the methyl acetate content, but it has little contribution to the degradation of lignin; K2CO3serves to dissolve the lignin, and reduce the generation of oxygen heterocycles. By using the model function to fit the isothermal kinetics of catalytic alcoholysis process, it is found that with K2CO3, more lignin begin to degrade, and alcoholysis mechanism is more complex, which can not be described with a simple step reaction; with MCM-41, no matter in the subcritical or supercritical process, the activation energy has reduced to varying degrees, the reaction is affected by temperature less, and the reaction reaches the equilibrium quickly.
引文
[1]闵恩泽,吴巍.可再生生物质资源[J].化工进展,2002,21(5):357-359.
    [2]邱钟明,陈砺.生物质气化技术研究现状及发展前景[J].可再生能源,2002,(4):16-19.
    [3]张无敌.21世界发展生物质能前景广阔[J].中国能源,2001,(5):35-38.
    [4]Gfinther Fischer, Leo Schrattenholzer. Global bioenergy potentials through 2050[J]. Biomass and Bioenergy,2001,20(3):151-159.
    [5]Hoogwijk Monique, Faaij Andro, Richard Van den Broek, et al. Exploration of the ranges of the global potential ofbiomass for energy[J]. Biomass and Bioenergy, 2003,25(2):119-133.
    [6]浙江省森林资源监测中心,浙江省林业勘察设计院.林业在浙江国民经济与社会发展中的地位和作用,1996年9月.
    [7]Matti Parikka. Global biomass fuel resources[J]. Biomass and Bioenergy,2004, 27(6):613-620.
    [8]王新杰,胡俊梅.农作物秸秆资源化利用的限制因素分析[J].资源与环境,2007,58(2):58-59.
    [9]Khan N, Saleem Z, Wahid A. Refiew ofnatural energy sources and global power needs[J]. Renewable and Sustainable Energy Reviews,2007,12(7):1959-1973.
    [10]袁权.能源化学进展[M].北京:化学工业出版社,2005:165-229.
    [11]顾树华,段茂盛.中国生物质资源概况及其能源利用[M].吉林:小型生物质发电技术研讨会,1998,(1):1-5.
    [12]何京.人类社会的新能源—生物质能[J].广西节能,2005:35-36.
    [13]王久臣,戴林,田宜水等.中国生物质能产业发展现状及趋势分析[J].农业工程学报,2007,23(9):276-282.
    [14]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005,4.
    [15]吴巍,阂思泽.绿色可持续发展石油化工生产技术的新进展[J].化工进展,2004,23(3):235-237.
    [16]肖波,周英彪,李建芬.生物质能循环经济技术[M].北京:化学工业出版社,2006:207-209.
    [17]李志合,易维明.生物质能利用及发展[J].山东工程学院学报,2000,9(14):34-38.
    [18]丁素珍,王孟杰.生物质能的开发与利用[J].农业工程学报,1993,12:52-57.
    [19]Antonio C Caputo, Mario Palumbo, et al. Economics of biomass energy utilization in combustion and gasification plants:effects of logistic variables[J]. Biomass and Bioenergy,2005, (28):35-51.
    [20]别如山,李炳熙,陆慧林等.燃烧生物质废料—流化床锅炉[J].热能动力工程,2000,15(4):344-347.
    [21]Eric.D. Larson.Technology for Electricity and Fuels from Biomass[J], Annu RevEnergy Environ,1993, (18):567-630.
    [22]盛奎川,吴杰.生物质成型燃料的物理品质和成型机理的研究进展[J].农业工程学报,2004,32(2):242-245.
    [23]姚向君.生物质能源清洁转换利用技术[M].北京:化学工业出版社,2005:208-210.
    [24]车战斌.生物质就地及时压缩成形技术—Highzones技术[J].中国能源,2005,27(1):28-31.
    [25]刘贞先,伊晓路,孙立等.中国生物质废弃物利用现状分析[J].环境科学与管理,2007,2,32(2):104-106.
    [26]赵辉.生物质高温气流床气化制取合成气的机理试验研究[D].杭州:浙江大学,2007.
    [27]杜风光,史吉平,张龙等.纤维质生产燃料乙醇产业化研究进展[J].中国麻业科学,2007,(1):72-74.
    [28]钟浩,谢建等.生物质热解气化技术的研究现状及具发展[J].云南师范大学学报.2001,21(1):41-45.
    [29]邱钟明,陈砺.生物质气化技术研究现状及发展前景[J].可再生能源,2002,4:16-19.
    [30]刘爱兵,刘星剑.生物质能的利用现状及展望[J].江西林业科技,2006,(4): 37-40.
    [31]姚志彪,李云全.应用生物质气化技术实现农业废弃物资源化[J].能源研究与利用,2005,(3):35-37.
    [32]吴创之,马隆龙,陈勇.生物质气化发电技术发展现状[J].中国科技产业,2006:76-79.
    [33]夏朝风,张无敌.全球城市固体废弃物及其能源潜力概述[J].云南师范大学学报,1998,18(2):32-35.
    [34]蒋国良,袁超,史景钊等.生物质转化技术与应用研究进展[J].河南农业大学学报,2005,39(4):464-471.
    [35]罗婕,刘志国.生物质利用技术研究进展[J].株洲师范高等专科学校学报,2006,49(2):48-50.
    [36]殷福珊.中国生物质能源的发展现状及趋势[J].日用化学品科学,2006,29(11):1-3.
    [37]Arai Kunio. Conversion of Polymer Sand Biomass themical Inter Mediate Swith Supercritical Water[J]. Macromol,1998, (135):205-214.
    [38]Bridgwater A V, Peacke G V C. Fast pyrolysis presses for biomass[J]. Renewable and Sustainable Energy Reviews,2000,4(1):1-73.
    [39]Jale Yanik, Chfistoph Kommayer, Mehmet Saglam, et al. Fast pyrolysis of agricultural wastes:Characterization of pyrolysis products[J]. Fuel Pressing Technology,2007,88(10):942-947.
    [40]杨湄,刘昌盛,黄凤洪等.秸秆热解液化制备生物油技术[J].中国油料作物学报,2006,28(2):228-232.
    [41]乔国朝,王述祥.生物质热解液化技术研究现状及展望[J].林业机械与木工设备,2005,33(5):4-7.
    [42]Auiri Masafumi. Effect of Catalyst Addition on ColiqueFaction Press of Coal and Biomass in Supercritical Water[J]. Sekitan Kagakn Kaigi Happyo Ronbunshu, 1997, (34):69-72.
    [43]Antal Michael. Hydrogen Production from High MoistureConten Biomass in Supercritical Water[J]. Pr.SDOE Hydrogen Program Rev,1996, (1):499-511.
    [44]Demirbas A. Supercritical fluid extraction and chemicals from biomass with supercritical fluids[J]. Energy Conversion and Management,2001,42:279-294.
    [45]董玉平,王理鹏,邓波等.国内外生物质能源开发利用技术[J].山东大学学报(工学版),2007,37(3):64-69.
    [46]周中仁,吴文良.生物质能研究现状及展望[J].农业工程学报,2005,21(12):12-15.
    [47]李春华,张德会.国外町再生能源政策的比较研究[J].中国科技论坛,2007,(12):124-127.
    [48]曾麟,王革华.世界主要发展生物质能国家的目的与举措[J].可再生能源,2005,(2):53-55.
    [49]袁振宏,李学凤,蔺国芬.我国生物质能技术产业化基础的研究.2003.
    [50]胡正梁,王均文.国外、省外可再生能源发展动向[J]山东经济战略研究,2008,4(6):21-22.
    [51]辛欣.生物质能—未来全球能源的新亮点[J].节能与环保,2005,(10):15-17.
    [52]朱俊生.中国新能源和可再生能源发展状况[J].可再生能源,2003,(2):38.
    [53]Fangrui M, Davis C L, Hanna M A. Biodiesel productions review[J].Biore source Technology,1999,70(1):13-15.
    [54]陈维.超临界流体萃取的原理和应用[M].北京:化学工业出版社,1998:176-184.
    [55]朱自强.超临界流体技术原理和应用[M].北京:化学工业出版社,2000:235-288.
    [56]郭璇,贺华阳,王涛等.超临界流体技术制备生物柴油[J].现代化工,2003,23(21):15-18.
    [57]Harkey D W, Gutsman M R. A continuous press for the glycerolysis of soybeall oil[J]. Journal of the American Oil Chemistry Society,2004,81(2):203-207.
    [58]邬国英,林西平,巫淼鑫等.棉籽油印译捕舻生物柴油和甘油[J].中国油脂,2003,28(4):70-73.
    [59]葛蕴珊,李晓,吴思进等.餐饮废油制生物柴油的排放特性[J].北京理工大学学报,2004,24(4):290-293.
    [60]Kusdiana D, Saka S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol[J]. Fuel,2001,80:693-698.
    [61]姜涛,韩布兴.超临界流体化学热力学[J].化学进展,2006,18(5):657-669.
    [62]Fangrui M, Davis C L, Hanna MA. Biodiesel productions review[J]. Bioresource Technology,1999,70(1):1-15.
    [63]陈维.超临界流体幕取的原理和应用[M].北京:化学工业出版社,1998:176-184.
    [64]郭璇,贺华网,王涛等.超临界流体技术制各生物柴油[J].现代化工:2003,23(1):15-18.
    [65]宗忠敏,赵炜,唐仕荣等.农作物秸秆解聚研究[J].化学进展,2007,19(7-8):1134-1140.
    [66]Lee S H, OHKITA T. Rapid wood liquefaction by super critical phenol[J]. Wood supercritical fluids [J]. Energy Conversion and Management,2001(42): 279-294.
    [67]李希宏.国内外生物液体燃料发展趋势[J].当代石油石化,2007,15(3):7-17.
    [68]Demirbas A. Supercritical fluid extraction and chemicals from biomass with supercritical fluids [J]. Energy Conversion and Management,2001, (42):279-294.
    [69]Demirbas A. Liquefaction of olive husk by supercritical fluid extraction[J]. Energy Conversion and Management,2000, (41):306-309.
    [70]Demirbas A. Conversion of biomass using glycerin to liquidfuel for blending gasoline as altemative engine fuel[J]. Energy Conversion and Management,2000, (41):1741-1748,1875-1883.
    [71]曲先锋.生物质在超临界水中热解行为的初步研究[J].燃料化学学报,2003,31(3):230-233.
    [72]钱学仁.木材超临界萃取工程[M].哈尔滨:东北林业大学出版社,1999:20-30.
    [73]唐仕荣,周磊,郑宁宦等.玉米秆超临界醇解产物高效液相分析[J].可再生能源,2008,26(1):24-26.
    [74]唐仕荣,周磊,夏纯杰等.玉米秆超临界甲醇解聚产物分析[J].太阳能学报,2009,30(1):112-115.
    [75]陈晓菲.稻秆粉末醇解产物的分析和醇解机理研究[D].湖北武汉:武汉科技大学,2009.
    [76]古文涛,陈晓菲,黄纯洁等.小麦秸秆粉末在亚临界甲醇中反应混合物的组成分析[J].中国科技论文在线,2009,4(9):695-698.
    [77]陈克宇.超临界流体的运用[J].四川化工与腐蚀控制,1998,1(4):58-61.
    [78]Brennecke J F. Intermolecular repulsions and the equation of state.1989.
    [79]Brauns F.E. The Chemistry ofLignin, Academic Press Inc., New York,1852:5.
    [80]Rowland S P, Rowland R M., Younh R A.Academic Press Inc., New York,1978: 147-167.
    [81]Aspinall G O. Advances in Carbohydrate Chemistry,1962,1(14):427.
    [82]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2001,94.
    [83]董新法,李再资,林维明.超临界化学反应研究的新进展[J].现代化工,1997,1:10-13.
    [84]窦营,余学军.世界竹产业的发展与比较[J].世界农业,2008,351(7):18-21.
    [85]翁甫金.浙江领跑中国竹产业[J].中国林业产业,2007,3:38-41.
    [86]于文吉,江泽慧,叶克林.竹材特性研究及其进展[J].世界林业研究,2002,15(2):50-55.
    [87]张齐生.中国竹材工业化利用[M].北京:中国林业出版社,1995:26-41.
    [88]张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化[J].南京林业大学学报(自然科学版),2002,26(2):7-10.
    [89]成俊卿.木材学[M].北京:中国林业出版社,1985:202.
    [90]Scurlocka J M O, Dayton D C, Hames B. Bamboo:an overlooked biomass resource?[J]. Biomass and Bioenergy,2000,19:229-244.
    [91]王娟.竹子深加工产品的应用[J].资源保护与利用,2008,6(2):72-73.
    [92]吴丹丹.浙江省竹产业发展与优化分析研究[D].广西大学,2008.
    [93]陈佩蓉,屈维均,陈有庆等.制浆造纸实验.中国工业出版社,1997.
    [94]王忠厚.制浆造纸化验与物检.中国轻工业出版社,1995.
    [95]广州轻工业学校,湖南轻工业学校编.制浆造纸分析与检验.轻工业出版社,1983.
    [96]北京造纸研究所编.造纸工业化学化析,轻工业出版社,1975.
    [97]上海化工学院.分析化学(上,下).人民教育出版社,1983.
    [98]王彩芝等.制浆造纸分析与检验.湖南省造纸科技情报站,1991.
    [99]中华人民共和国国家技术监督局.GB/T2677.2,造纸原料水分的测定.中国标准出版社,1994,09,24.
    [100]中华人民共和国国家技术监督局.GB/64838.92.中国标准出版社,1994,09,24.
    [101]Zhao Wei, Zong Zhimin, Lin Juan, et al. Dewaxing from Stalks with Petroleum EtherbyDifferent Methods[J]. Energy & Fuels,2007,21(2):1165-1168.
    [102]Anvar U, Buranov G, Mazza. Lignin in straw ofherbaceous crops[J]. Industrial crops and products,2008,28(3):237-259.
    [103]古文涛,麦秸秆的-亚/超临界醇解产物分析[M].武汉:武汉科技大学,2009.
    [104]Minam I E, Saka S. Comparison of the decomposition behaviors of hardwood and softwood in supercriticalmethanol[J]. The Japan Wood Research Society, 2003,49(1):73-78.
    [105]Kabyemela B M, Adschiri T. Kinetics of glucose epimerization and decomposition in subcritical andsupercritical water[J]. Industrial & Engineering Chemistry Research,1997,36(5):179-182.
    [106]Kabyemela B M, Adschiri T, Degradation kinetics of dihydroxyacetone and glyceradehyde in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research,1997,36(6):224-228.
    [107]Adschiri T, Hirose S, Malaluan R M. Uncatalytic conversion of cellulose in subcritical and supercritical water[J]. Journal of Chemical Engineering of Japan, 1993,26(06):144-149.
    [108]Holgate H R, Meyer J C, Tearer J W. Glucose hydrolysis and oxidation in supercritical J].1997(5):77-81.
    [109]金辉,赵亚平,王大璞.纤维素超临界水解反应技术[J].现代化工,2001(12):45-49.
    [110]何涛,陈鸣才,胡红旗,刘红波,吕社辉.超临界流体技术在纤维素中的应 用[J].纤维素科学与技术,2003(3):135-138.
    [111]廖艳芬,骆仲泱,王树荣,余春江,岑可法.纤维素快速热裂解机理试验研究I.试验研究[J]燃料化学学报,2003(2):78-82.
    [112]王树荣,廖艳芬,谭洪,骆仲泱,岑可法.纤维素快速热裂解机理试验研究II.机理分析[J]燃料化学学报,2003(4):66-71.
    [113]高洁,汤烈贵.纤维素科学.科学出版社,1999.
    [114]陈学武,苗芳,侯建革,张桂,李俊英.玉米秸秆半纤维素的水解研究[J].河北科技大学学报,1999,15(2):124-129.
    [115]张厚瑞,何成新,梁小燕,曾健智,唐峰.半纤维素水解物生物转化生产木糖醇[J].生物工程学报,2000,12(3):305-307.
    [116]田心健,王川.半纤维素水解产物的分离研究[J].四川轻化工学院学报,2001,26(2):63-65.
    [117]Lin L, Yao Y, Yoshioka M. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts.I.Structure characterization of the reaction products[J]. Holzforschung,1997,51(4):318-324.
    [118]Lin L, Yao Y, Yoshioka M. Liquefaction mechanism of lignin in the presence of phenol at elevatedtemperature without catalysts. II.Reaction pathway, Holzforschung,1997,51(4):325-332.
    [119]Lin L, Yoshioka M, Yao Y. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts.Ⅲ.Multi condensation, Holzforschung,1997,51(4):333-337.
    [120]张求慧,赵广杰.木材的苯酚及多羟基醇液化[J].北京林业大学学报,2003(6):71-76.
    [121]谢涛,谌凡更,詹怀宇.木材液化及其在高分子材料中的应用[J].纤维素科学与技术,2004,12(2):47-53.
    [122]Yanik J, Kommayer C, Saglam M, et al. Fast pyrolysis of agricultural wastes:Characterization ofpyrolysis products[J]. Fuel Processing Technology, 2007,88(10):942-947.
    [123]Ate F, Piitiin E, Ptitiin A E. Fast pyrolysis of sesame stalk:yields and structural analysis of bio-oil[J]. Journal ofanalytical and Applied Pyrolysis,2004,71(2): 779-790.
    [124]Boocock D.G.B., Sherman K.M. Further Aspects Powdered Poplar Wood Liquefaction By Agucous Pyrolysis[J], The Canadian Journal of Chemical Engineering,1985:627-633.
    [125]Mitsuru Sasaki, Bernard Kabyemela, Cellulose hydrolysis in subcritical and supercritical water[J] Department of Chemical Engineering, Tohoku University, Japan:980-77.
    [126]Haar L, Gallaher J S, Kell G S, NBS/NRC Stem Tables:Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units, Hemisphere, Washington,1984.
    [127]Yu.E. Gorbaty, Bondarenko G.V., The physical state of supercritical fluids[J], The journal of supercritical fluids,1998,14:1-8.
    [128]Orlandi M, Canevali CJRindone B, et al. Biomimetic approach to lignin degradation:A mechanistic study of metallosalen catalysed oxidation of lignin and lignin model compounds [C].7th European Workshop on Lignocellulosics and Pulp,2002:369-373.
    [129]孙蕊,陈静,郭微,韩梅,王锦堂.MCM-41中孔分子筛研究进展.精细石油化工进展,2005,6(6):32-36.
    [130]陈静,韩梅,孙蕊,王锦堂.苄基磺酸接枝MCM-41介孔分子筛的合成与表征.无机化学学报,2006,22(9):1568-1572.
    [131]Beck J S, Vartuli J C, Roth W J. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Am.Chem.Soe,1992,114: 10834-10843.
    [132]Huo Q S, Margolese D I, Cisla C. Generalized synthesis of periodic surfacatant composite materials[J]. Nature,1994(368):317-321.
    [133]Monnier A, Schuth F, Huo Q S. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science,1993,261: 1299-1303.
    [134]Corma A, Navarro M T, Pariente J P. Synthesis of an Ultralarge Pore Titanium Silicate lsomorphous to MCM-41 and Its Application as a Catalyst for Selective Oxidation of Hydrocarbous[J]. Journal of the Chemical Society Chemical Communications,1994, (13):147-148.
    [135]Beck J S, Vartuli J C, Roth WJ. A New Family of Mesoporous Molecular Sieves Prepared with Liquid-crystal Template Mechanism [J]. Jounal of the American Chemical Society,1992,114:10834-10843.
    [136]Peng Jun, Chen Ping, Lou Hui, Zheng Xiaoming. Catalytic upgrading of bio-oil by HZS-5 in sub-and super-critical ethanol[J.]Bioresource Technology,2009, 100:3415-3418.
    [137]Mailin Misson, Roslin dawati Haron, Mohd Fadhzir Ahmad Kamaroddin, Nor Aishah Saidina Amin.Pretreatment of empty palm fruit bunch for productionof chemicals via catalytic pyrolysis[J]. Bioresource Technology,2009,100: 2867-2876.
    [138]Lede J, Panagopoulos J, Li H Z, et al. Fast pyrolysis of wood:direct measure-ment and study of ablation rate[J]. Fuel,1985,64:1514-1520.
    [139]Lede J, Li H Z, Villermaux J, Soltes J, Milne T.A. Pyrolysis oils from biomass. Producing, analyzing and upgrading[M]. ACS Symposium Series,376, American Chemical Society, Washington DC,1988.
    [140]Lede J, Li H Z, Villermaux J. Fusion-like behaviour of wood pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,1987,10:291-308.
    [141]Lede J, Li H Z, Villermaux J, Moyne C, Degiovanni A. Ablative melting of a solid cylinder perpendicularly pressed against a heated wall[J]. International Journal of Heat and Mass Transfer,1986,29(9):1407-1415.
    [142]Peacocke G. Ablative pyrolysis of biomass[D]. Birmingham(UK):Aston University,1994.
    [143]Baumlin S, Broust F, Bachi F B, et al. Production of hydrogen by lignins fast pyrolysis[J]. International Journal of Hydrogen Energy,2006,31:2179-2192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700