IL-17A在放射性肺损伤中的表达及其作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及意义
     放射性肺损伤(radiation-induced lung injury, RILI)是胸部肿瘤放疗后、骨髓移植预处理及战时核辐射常见的并发症。数据表明,临床上大约有30%的肺癌病人及10-15%其它胸部肿瘤病人放疗后可出现明显临床症状的放射性肺损伤。即便应用目前最为先进的适形调强放疗,也难以避免其发生。由于对于放射性肺损伤发生机制认识的局限性,数十年来有关放射性肺损伤的治疗一直没有突破性进展。临床上通过尽可能的缩小照射野或降低靶区剂量,来降低放射性肺损伤发生的可能。然而,肿瘤靶区剂量的限制,势必会影响肿瘤局控率。近年来,随着对放射性肺损伤的深入研究,人们逐渐认识到放射性肺损伤是由多种细胞因子介导的多细胞间的相互作用并维持着放射性肺损伤的全过程。已有研究证实,IL-1、IL-6、TGF-β、INF-α等多种细胞因子参与了放射性肺损伤的过程,并发挥重要作用,而以IL-6、TGF-β、TNF-α为靶点的治疗,可以减轻肺损伤的程度。然而,以单一细胞因子为靶点的实验性治疗,效果有限。这似乎说明可能还存在其它重要相关的细胞因子在放射性肺损伤过程中发挥重要作用。IL-17A是新近发现的一种前炎症因子,高表达于各组纤维化相关疾病的组织器官中。动物实验证实,IL-17A在博来霉素或二氧化硅诱发的小鼠肺损伤过程中发挥重要作用,并且通过IL-17A拮抗剂减轻了这种性质的肺损伤程度。Wilson等通过敲除小鼠IL-17A基因,发现IL-17A (-/-)小鼠化学性肺炎及纤维化程度明显弱于IL-17A野生型。基于以上研究,我们推测IL-17A在放射性肺损伤过程中,可能也发挥有重要作用。文献检索鲜见IL-17A在放射性肺损伤方面的研究。本课题研究IL-17A在放射性肺损伤不同阶段的表达,目的是为了证实IL-17A参与并在放射性肺损伤过程中发挥有重要作用,从而为防治放射性肺损伤提供一有效靶点。以IL-17A为靶点的放射性肺损伤治疗,可能是一个新的有效的临床途径。本研究分为三个部分进行阐述。
     第一部分
     研究目的:建立快捷、稳定的小鼠放射性肺损伤动物模型,并对其进行有效评价,为研究放射性肺损伤提供一可靠的平台。
     研究方法:近交系雄性C57BL/6小鼠90只,按照随机数目表法随机分为3组:(1)假照射组(n=20只),佯装照射,简称为Sham组;(2)单纯照射A组(n=35只),非麻醉状态,全胸一次性大剂量照射15Gy,简称为RT-A组;(3)单纯照射B组(n=35只),非麻醉状态,照射20Gy,简称为RT-B组。直线加速器照射小鼠后于第1、4、8、16周处死,分别取照射A、B组及假照射组小鼠肺组织,采用H&E、Masson染色法显微镜下观察肺组织病理学变化和胶原沉积,并按照Szapiel方法对放射性肺泡炎及肺纤维化的严重程度进行量化。通过碱水解法测定羟脯氨酸含量,用于评估肺组织胶原沉积情况。在生存期方面,将50只C57BL/6小鼠随机分为3组:(1)Sham组:n=10只;(2)RT-A组:n=20只;(3)RT-B组:n=20只。观察小鼠16周生存期,生存期分析应用Kaplan-Meier法及log-ranktest法。
     研究结果:小鼠全胸经照射后,肺组织经过一系列病理变化,包括:渗出期、增生期及纤维化期。HE染色切片显示照射8周内,肺组织主要是肺泡炎的表现:肺泡壁增厚、肺泡腔充血、肺间质水肿及毛细血管扩张、炎性细胞浸润等,且随时间延长肺泡炎程度逐渐加重。Masson染色显示8周开始出现灶状纤维组织增生,16周时纤维化病灶更为明显。按照Szapiel分级法,统计学分析显示肺泡炎程度:RT-A、B组均较Sham组严重,且RT-B组肺泡炎重于RT-A组。纤维化程度:RT-A、B组重于Sham组,且RT-B组纤维化程度较RT-A组严重。通过对各组小鼠肺组织中羟脯氨酸含量测定,发现RT-A、B组小鼠照射后,羟脯氨酸含量均随时间延长逐渐升高,且在病理学上出现灶状纤维化的第8周及第16周,羟脯氨酸升高趋势尤为明显。在该时间点上RT-B明显高于RT-A组,差异具有显著统计学意义(P<0.01)。小鼠生存时间方面,假照射组小鼠观察时间内无死亡。RT-A组小鼠16周存活率为80%。RT-B组小鼠16周存活率仅为40%。且照射B组小鼠死亡时间明显早于照射A组。两组小鼠存活率差异具有显著统计学意义(P=0.0241<0.05)。
     研究结论:直线加速器15Gy照射C57BL/6小鼠全胸,可以成功构建放射性肺损伤模型,为放射性肺损伤的分子机制的研究及防治靶点的筛选提供基础。
     第二部分
     研究目的:IL-17A作为新近发现的前炎症因子,在炎症或增殖性疾病中发挥重要作用。本部分研究旨在对IL-17A在放射性肺损伤不同阶段(肺炎及肺纤维化)的表达情况及可能发挥的作用进行探讨。
     研究方法:将61只C57BL/6小鼠随机分为两组:(1)假照射组,简称Sham组(n=25);(2)照射组,简称RT组(n=36);各组小鼠分别在观察时间点1周、4周、8周、16周处死,并进行性病理组织学及分子生物学检测。实验通过Real time-PCR方法,检测各组肺组织IL-17A mRNA的表达情况,用2△△Ct法进行相对定量分析。并通过Western bolt印记和免疫组化的方法,检测转录后各组肺组织中IL-17A蛋白表达的情况。
     研究结果:免疫组化结果显示:小鼠全肺经15Gy射线照射后,肺组织IL-17A在不同阶段,呈现出不同程度的高表达。IL-17A阳性颗粒显示在肺泡巨噬细胞、上皮细胞、淋巴细胞及支气管上皮细胞等细胞胞浆内。real-time PCR结果显示:照射后小鼠肺组织IL-17A mRNA均有不同程度的表达增强,4周时表达最为显著(观察时间内),8周开始下降,16周继续下降,但仍高于基线水平。结合组织学切片染色结果,8周内放射性肺泡炎程度随时间的延长逐渐加重,而IL-17表达量却在8周时开始下降,提示IL-17A可能在早期放射性肺损伤中作用更为重要。Western blot半定量检测显示IL-17A蛋白表达量在肺照射1周后便开始抬高,4周最高,此后表达量开始下降。IL-17A蛋白表达情况,与mRNA结果基本一致。
     研究结论:小鼠全胸照射后,肺组织IL-17A mRNA及蛋白表达均出现不同程度的升高,与肺泡炎和纤维化形成的时间基本一致,考虑IL-17A在放射性肺泡炎及肺纤维化过程中发挥一定作用。
     第三部分
     研究目的:阻断IL-17A信号途径可明显改善多种炎症性疾病的转归。本部分研究旨在探讨IL-17A中和抗体对放射性肺损伤小鼠的保护作用。
     研究方法:我们采用直线加速器一次性15Gy剂量照射C57BL/6小鼠全胸,构建小鼠肺损伤模型。将135只小鼠随机分为四组:①假照射组(Sham,n=30);②照射对照组(RC group,n=35);③治疗组(Treatment group, n=35);④安慰剂组(placebo group, n=35)。后二组分别于照射后每月第1,3,7,14天,分别静脉给予IL-17A中和抗体或同型对照IgG抗体4μg/鼠。通过H&E和Masson染色来评估小鼠肺组织炎症改变及胶原沉积情况。按照Aschcroft评分标准对肺泡炎、肺纤维化程度进行定量分析。支气管肺泡灌洗液中IL-17A,TGF-β1和IL-6含量采用ELISA的方法测定。羟脯氨酸含量采用碱水解法测定。另外,我们采用Kaplan-Meier方法进行小鼠的生存期分析。
     研究结果:照射后16周,照射对照组(RC组)和安慰剂组(Placebo组)小鼠肺组织表现为明显的炎性细胞浸润和间质胶原沉积现象,而治疗组(Treatment组)小鼠这些病理学改变则相对较轻。Treatment组小鼠Ⅱ-Ⅲ度肺泡炎发生率(16%)明显低于RC组(72%)或Placebo组(64%)。纤维化程度方面,各组Aschcroft评分分别为Treatment组2.8、RC组5.2、Placebo组4.8。Treatment组小鼠的Aschcroft评分明显低于RC组(P<0.001)或Placebo组(P<0.001)。Treatment组小鼠支气管灌洗液中IL-17A,TGF-p和IL-6含量明显低于RC组及Placebo组(P<0.01)。小鼠180天死亡率方面,Treatment组小鼠明显低于RC组(16.7%vs75.0%)。
     研究结论:IL-17A中和抗体的应用,明显减轻了放射性肺炎及其后的肺纤维化程度,提高了照射小鼠的生存期,对照射小鼠产生了明显的保护作用。以IL-17A为靶点或许为治疗放射性肺损伤的另一有效途径。
Radiation-induced lung injury (radiation-induced lung injury, RILI) is a common complication after thoracic radiotherapy, bone marrow transplantation pretreatment and wartime nuclear radiation. Clinically significant radiation lung injury occurs in up to30%of patients irradiated for lung cancer and in about10-15%of other thoracic tumor patients. Even the most advanced application of Conformal IMRT, it is still difficult to prevent its occurrence. Due to the limitation of understanding the mechanism, there have been no strategic advances in RILI treatment over the past decades. Currently, the only way available to decrease the risk of developing severe radiation pneumonitis is to minimize the dose of radiation or the areas of lungs that are exposed to the radiation.The disadvantage is that tumor target dose must be limited definitely, which will inevitably reduce the tumor control rate. In recent years, it is increasingly recognized that radiation-induced lung injury is associated with a variety of multi-cytokine mediated interactions between cells. Several studies showed that IL-6, TGF-β, IL-1, and TNF-α are the key cytokines involved in the pathogenesis of radiation-induced lung injury, and simultaneous inhibition of IL-6, TGF-β, as well as TNF-α attenuates the degree of radiation-induced lung injury. However, targeting a single cytokine has limited effect on lung injury prevention. It seems that there might be other important related cytokines playing important roles in radiation-induced lung injury. IL-17A is a newly discovered pro-inflammatory cytokines, which is expressed in fibrosis-related diseases. IL-17A antagonist reduced the degree of pneumonitis and pulmonary fibrosis in bleomycin-or silica-induced lung injury in mice.
     Based on these studies, we hypothesized that IL-17A may also play an important role in the process of radiation-induced lung injury. Literature search was rarely found research about the roles of IL-17A in radiation-induced lung injury.
     The purpose of the research is to confirm that IL-17A plays an important role in the pathogenesis of radiation-induced lung injury, thereby providing a reliable target for prevention and treatment of radiation-induced lung injury. Targeting at IL-17A may be a new and effective clinical approach for radiation-induced lung injury. The study is divided into three parts to elaborate.
     Part1
     Objective:The purpose of the study is to establish mice model of radiation-induced lung injury quickly and efficiently, evaluate for the method and provide a reliable platform for the field of radiation-induced lung injury.
     Methods:A total of90mice (C57BL/6, Inbred male) were randomly divided into three groups:(1) Sham irradiation group (n=20), abbreviated as Sham group;(2) Radiation group A (n=35), non-anesthesia, one-time high-dose chest irradiation15Gy, abbreviated as RT-A group.(3) Radiation group B (n=35), non-anesthesia, irradiation20Gy, abbreviated as RT-B group. Mice were sacrificed after1,4,8,16week post-irradiation by linear accelerator. Lung tissues were taken out from mice of RT-A, B and sham group. Pathological changes and collagen deposition in lung tissue were observed under the microscope by the methods of H&E and Masson. The severity of alveolitis and pulmonary fibrosis was quantified according to Szapiel scales. Hydroxyproline content was measured by alkaline hydrolysis to evaluate collagen deposition in the lung tissue. In terms of survival,50mice were randomly divided into three groups:(1) Sham group (n=10);(2) RT-A group (n=20).(3) RT-B group (n=20). Survival rates were observed in16weeks, and Kaplan-Meier method and log-rank test were used to perform survival analysis.
     Results:After the mice were irradiated, a series of pathological changes occurred in the lung tissue. General speaking, there are three stages in the process:exudative, proliferative and fibrosis stage. Within8weeks, lung tissue H&E stained showed mainly alveolitis performance:alveolar wall thickening, alveolar congestion, interstitial pulmonary edema and telangiectasia, inflammatory cell infiltration. And alveolitis gradually worsened with the time passed. In the8th week, lung sections Masson stained appeared spotty fibrosis and fibrotic lesions is more obvious at16weeks. According to Szapiel grading criterion and statistical analysis, alveolitis of group RT-A and B were more serious than group Sham, and group RT-B more severe than group RT-A. In terms of fibrosis, group RT-A and B were more severe than Sham group, and group RT-B more serious than group RT-A. The study found that hydroxyproline levels of lung tissues from irradiated mice were gradually increased with time, and hydroxyproline increasing trend was particularly evident in the8th and16th week which was consistent with the occurrence of spotty fibers in pathology. On both the time points, hydroxyproline content of group RT-B was significantly higher than that of group RT-A, and the difference was statistically significant (P<0.01). Terms of survival time, no sham irradiated mice died within the observation time.16weeks survival rate of mice of group RT-A was80%, and that of mice of group RT-B was40%. And mice of group RT-B died significantly earlier than group RT-A. There is a statistically significant difference between the two groups in survival (P=0.0241<0.05).
     Conclusion:The whole chest of C57BL/6mice were irradiated by15Gy dose of linear accelerator, which can successfully build radiation-induced lung injury model. The model provides the basis for research on the mechanisms and targeting drug to radiation-induced lung injury.
     Part2
     Objective:IL-17A, as a pro-inflammatory factor, play an important role in many diseases related to inflammation or proliferation. The objective is to investigate the expressions and roles of IL-17A in the process of radiation induced lung injury (puhnonitis or lung fibrosis).
     Method:A total of61C57BL/6mice were included in this study. They were radomly divided into two groups:1) Sham group, n=25;2) RT group, n=36. Mice were sacrificed for histological examination or molecular biology at the observed time (1st week,4th week,8th week, and16th week). Mice of RT group underwent15Gy total thoracic radiation, and Sham goup not irradiated. The expression of IL-17A mRNA was quantitatively detected by real-time RT-PCR, and2-△△Ct was used for Relative quantitative analysis. In addition, IL-17A protein levels in lung tissue were detected by Western blot and immunohistochemistry staining.
     Results:After receiving15Gy irradiation, IL-17A in lung tissue of mice shows varying degrees of over-expression at different stages by immunohistochemistry analysis. IL-17A positive particles located in the cytoplasm of alveolar macrophages, alveolar epithelial cells, lymphocytes and bronchial epithelial cells of lung tissue. Stained histological sections showed alveolitis gradually aggravated within8weeks, while the expression of IL-17A peak at4weeks, which suggested that IL-17A may participate in the process of the early radiation-induced lung injury. According to real-time PCR results, IL-17A mRNA expression were increased in varying degrees within the observation time, started at1week, peaked at4weeks, and began to decline at8weeks. IL-17A mRNA continued to decline at16weeks, but still higher than the baseline level. Semi-quantitative Western blot analysis showed that IL-17A protein expression in lung began to rise post-irradiation after one week, four weeks peaked, then the expression level began to decline. These results show that the expression of IL-17A protein is consistent with the mRNA results.
     Conclusion:IL-17A expression significantly elevated after irradiation to the whole chest of mice, which was consistent with the occurrence time of alveolitis and fibrosis. Thus, IL-17Amay participate in radiation induced lung injury.
     Part3
     Objective:Blocking IL-17A signaling pathway improved outcomes variety of inflammatory diseases significantly. The study is to investigate the effect of interleukin-17A (IL-17A) antibodies on radiation-induced lung injuries in mice.
     Method:The thoraces of C57BL/6mice were irradiated with15Gy dose only once, which established mice model of RILL The total of135mice were divided into Sham (n=30), radiation control (n=35), treatment (n=35, IL-17A-neutralizing antibody,4μg/mouse, IV,4days per month for4months) and placebo group (n=35) before a single dose irradiation (15Gy) to the thorax. Inflammation and collagen contents in the lung tissues were examined by H&E and Massion staining method, and the concentration of IL-17A, TGF-β1, and IL-6in broncho alveolar lavage fluid (BALF) were measured by ELISA method. The degree of alveolitis and fibrosis was judged according to an established grading scale. Hydroxyproline content was measured using the alkaline solution. In another50animals,180-day survival rate following the irradiation and treatment was calculated by Kaplan-Meier method.
     Results:Sixteen weeks after the irradiation and treatment, there was significant inflammatory cell infiltration and interstitial collagen depositions in the radiation control and placebo groups, whereas these changes were relatively mild in the treatment group. The percentage of grade II and III alveolitis in the treatment group (16%, P<0.05) was lower than in the radiation control (72%) or placebo group (64%). The mean Aschcroft fibrosis scores were2.8(treatment group),5.2(radiation control) and4.8(placebo group) respectively. The scores of treatment group was lower than that of radiation control (P<0.001) or placebo group (P<0.001). The IL-17A, TGF-β and IL-6concentrations in the treatment group were lower than in the radiation control and placebo group (P<0.01) following the irradiation. The180-day mortality rate in the treatment group was lower than in the radiation control group16.7%vs75.0%(P<0.05).
     Conclusion:IL-17A antibody treatment alleviates radiation-induced pneumonitis and subsequent fibrosis, and improvise post-irradiation survival. IL-17A neutraulizing antibody play an protective effect on mice undergoing thoracic radiation. Targeting at IL-17A maybe is an effective way for the treatment of radiation-induced lung injury.
引文
[1]Yoshikawa, N., Inomata, T., Okada, Y, Shimbo, T., Takahashi, M., Akita, K., Uesugi, Y, and Narumi, Y, "Sivelestat sodium hydrate reduces radiation-induced lung injury in mice by inhibiting neutrophil elastase," Molecular medicine reports, vol.7, no.4, pp.1091-1095,2013.
    [2]Mahmood, J., Jelveh, S., Zaidi, A., Doctrow, S.R., and Hill, R.P., "Mitigation of radiation-induced lung injury with EUK-207 and genistein:effects in adolescent rats," Radiation research, vol.179, no.2, pp.125-134,2013.
    [3]Du, Z.Z., Ren, H., Song, J.F., Zhang, L.F., Lin, F., and Wang, H.Y, "Rabbit model of radiation-induced lung injury," Asian Pacific journal of tropical medicine, vol.6, no. 3, pp.237-241,2013.
    [4]Herrmann, T., Baumann, M., Voigtmann, L., and Knorr, A., "Effect of irradiated volume on lung damage in pigs," Radiotherapy and oncology:journal of the European Society for Therapeutic Radiology and Oncology, vol.44, no.1, pp.35-40, 1997.
    [5]Fleming, W.H., Szakacs, J.E., and King, E.R., "The effect of gamma radiation on the fibrinolytic system of dog lung and its modification by certain drugs:relationship to radiation pneumonits and hyaline membrane formation in lung," Journal of nuclear medicine:official publication, Society of Nuclear Medicine, vol.3, pp.341-351, 1962.
    [6]Fox, J., Bergeron, M.E., and Haston, C.K., "Genetic deficiency in complement component 4b does not alter radiation-induced lung disease in mice," Radiation research, vol.179, no.2, pp.146-150,2013.
    [7]Szapiel, S.V., Elson, N.A., Fulmer, J.D., Hunninghake, G.W., and Crystal, R.G., "Bleomycin-induced interstitial pulmonary disease in the nude, athymic mouse," The American review of respiratory disease, vol. 120, no.4, pp.893-899,1979.
    [8]Mathew, B., Huang, Y, Jacobson, J.R., Berdyshev, E., Gerhold, L.M., Wang, T., Moreno-Vinasco, L., Lang, G., Zhao, Y, Chen, C.T., LaRiviere, P.J., Mauceri, H., Sammani, S., Husain, A.N., Dudek, S.M., Natarajan, V., Lussier, Y.A., Weichselbaum, R.R., and Garcia, J.G., "Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression," American journal of respiratory cell and molecular biology, voL 44, no.3, pp.415-422,2011.
    [9]Beck, J.A., Lloyd, S., Hafezparast, M., Lennon-Pierce, M., Eppig, J.T., Festing, M.F., and Fisher, E.M., "Genealogies of mouse inbred strains," Nature genetics, vol. 24, no.1, pp.23-25,2000.
    [10]Hunter, N.R., Valdecanas, D., Liao, Z., Milas, L., Thames, H.D., and Mason, K.A., "Mitigation and treatment of radiation-induced thoracic injury with a cyclooxygenase-2 inhibitor, celecoxib," International journal of radiation oncology, biology, physics, vol. 85, no.2, pp.472-476,2013.
    [11]Down, J.D., Medhora, M., Jackson, I.L., Cline, J.M., and Vujaskovic, Z.,'Do variations in mast cell hyperplasia account for differences in radiation-induced lung injury among different mouse strains, rats and nonhuman primates?," Radiation research, vol. 180, no.2, pp.216-221,2013.
    [12]Iwata, K., Yamada, Y., Nakata, A., Oghiso, Y, Tani, S., Doi, K., Morioka, T., Blyth, B.J., Nishimura, M., Kakinuma, S., and Shimada, Y, "Co-operative effects of thoracic X-ray irradiation and N-nitrosobis(2-hydroxypropyI) amine administration on lung tumorigenesis in neonatal, juvenile and adult Wistar rats," Toxicology and applied pharmacology, vol. 267, no.3, pp.266-275,2013.
    [13]Almeida, C., Nagarajan, D., Tian, J., Leal, S.W., Wheeler, K., Munley, M., Blackstock, W., and Zhao, W.,'The role of alveolar epithelium in radiation-induced lung injury," PloS one, vol. 8, no. 1,pp. e53628,2013.
    [14]Geara, F.B., Komaki, R., Tucker, S.L., Travis, E.L., and Cox, J.D., "Factors influencing the development of lung fibrosis after chemoradiation for small cell carcinoma of the lung:evidence for inherent interindividual variation," International journal of radiation oncology, biology, physics, vol 41, no.2, pp.279-286,1998.
    [15]Haston, C.K., "Mouse genetic approaches applied to the normal tissue radiation response," Frontiers in oncology, vol.2, pp.94,2012.
    [16]Franko, A.J., Sharplin, J., Ward, W.F., and Hinz, J.M., "The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung," Radiation research, voL 126, no.3, pp.349-356,1991.
    [17]Chiang, C.S., Liu, W.C., Jung, S.M., Chen, F.H., Wu, C.R., McBride, W.H., Lee, C.C., and Hong, J.H., "Compartmental responses after thoracic irradiation of mice: strain differences," International journal of radiation oncology, biology, physics, vol. 62, no.3, pp.862-871,2005.
    [18]Dileto, C.L., and Travis, E.L., "Fibroblast radiosensitivity in vitro and lung fibrosis in vivo:comparison between a fibrosis-prone and fibrosis-resistant mouse strain," Radiation research, vol. 146, no.1, pp.61-67,1996.
    [19]张洁旻,张纬建,黄春芳,等.放射性肺损伤小鼠动物模型的建立与鉴定[J].中华肿瘤防治杂志,2009,16(019):1455-1457.
    [20]Rube, C.E., Uthe, D., Schmid, K.W., Richter, K.D., Wessel, J., Schuck, A., Willich, N., and Rube, C., "Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation," International journal of radiation oncology, biology, physics, vol. 47, no.4, pp.1033-1042,2000.
    [21]Rube, C.E., Wilfert, F., Uthe, D., Schmid, K.W., Knoop, R., Willich, N., Schuck, A., and Rube, C., "Modulation of radiation-induced tumour necrosis factor alpha (TNF-alpha) expression in the lung tissue by pentoxifylline," Radiotherapy and oncology:journal of the European Society for Therapeutic Radiology and Oncology, vol. 64, no.2, pp.177-187,2002.
    [22]Wang, J., Xu, H.W., Li, B.S., Zhang, J., and Cheng, J.,'Preliminary study of protective effects of flavonoids against radiation-induced lung injury in mice," Asian Pacific journal of cancer prevention:APJCP, vol. 13, no.12, pp.6441-6446,2012.
    [23]Wang, H., Yang, Y.F., Zhao, L., Xiao, F.J., Zhang, Q.W., Wen, M.L., Wu, C.T.,
    Peng, R.Y., and Wang, L.S., "Hepatocyte growth factor gene-modified mesenchymal stem cells reduce radiation-induced lung injury," Human gene therapy, vol.24, no.3, pp.343-353,2013.
    [24]Hillman, G.G., Singh-Gupta, V., Runyan, L., Yunker, C.K., Rakowski, J.T., Sarkar, F.H., Miller, S., Gadgeel, S.M., Sethi, S., Joiner, M.C., and Konski, A.A., "Soy isoflavones radio sensitize lung cancer while mitigating normal tissue injury," Radiotherapy and oncology:journal of the European Society for Therapeutic Radiology and Oncology, vol. 101, no.2, pp.329-336,2011.
    [25]Lee, J.C., Kinniry, P.A., Arguiri, E., Serota, M., Kanterakis, S., Chatterjee, S., Solomides, C.C., Javvadi, P., Koumenis, C, Cengel, K.A., and Christofidou-Solomidou, M., "Dietary curcumin increases antioxidant defenses in lung, ameliorates radiation-induced pulmonary fibrosis, and improves survival in mice," Radiation research, vol. 173, no.5, pp.590-601,2010.
    [26]Mathew, B., Jacobson, J.R., Siegler, J.H., Moitra, J., Blasco, M., Xie, L., Unzueta, C., Zhou, T., Evenoski, C., Al-Sakka, M., Sharma, R., Huey, B., Bulent, A., Smith, B., Jayaraman, S., Reddy, N.M., Reddy, S.P., Fingerle-Rowson, G., Bucala, R., Dudek, S.M., Natarajan, V, Weichselbaum, R.R., and Garcia, J.G., "Role of migratory inhibition factor in age-related susceptibility to radiation lung injury via NF-E2-related factor-2 and antioxidant regulation," American journal of respiratory cell and molecular biology, vol. 49, no.2, pp.269-278,2013.
    [27]Ogata, T., Yamazaki, H., Teshima, T., Kihara, A., Suzumoto, Y., Inoue, T., Nishimoto, N., and Matsuura, N., "Early administration of IL-6RA does not prevent radiation-induced lung injury in mice," Radiation oncology, vol. 5, pp.26,2010.
    [28]Jackson, I.L., Xu, P.T., Nguyen, G., Down, J.D., Johnson, C.S., Katz, B.P., Hadley, C.C., and Vujaskovic, Z., "Characterization of the dose response relationship for lung injury following acute radiation exposure in three well-established murine strains: developing an interspecies bridge to link animal models with human lung," Health physics, vol. 106, no.1, pp.48-55,2014.
    [29]Iwakawa, M., Noda, S., Ohta, T., Oohira, C., Tanaka, H., Tsuji, A., Ishikawa, A., and Imai, X., "Strain dependent differences in a histological study of CD44 and collagen fibers with an expression analysis of inflammatory response-related genes in irradiated murine lung," J Radiat Res, vol. 45, no.3, pp.423-433,2004.
    [30]Tsuji, C., Shioya, S., Hirota, Y, Fukuyama, N., Kurita, D., Tanigaki, T., Ohta, Y, and Nakazawa, H., "Increased production of nitrotyrosine in lung tissue of rats with radiation-induced acute lung injury," American journal of physiology. Lung cellular and molecular physiology, vol. 278, no.4, pp. L719-725,2000.
    [31]丁文,刘佰弘,李鑫欣.放射性肺损伤大白兔模型的构建及多层螺旋CT的评价[J].医学综述,2008,14(22):3503-3506.
    [32]韩光,周云峰,彭敏,等.小鼠放射性肺损伤模型的建立与鉴定[J].中华放射医学与防护杂志,2006,26(5):442-445.
    [33]杜雪梅,柳晓兰,崔玉芳,等.放射性肺损伤小鼠动物模型的建立及其病变规律[J].中国体视学与图像分析,2003,8(4):203-206.
    [34]冯勤付.阿米福汀对放射性肺损伤保护作用的实验研究[J].中华放射肿瘤学杂志,2001,1 0(4):250-254.
    [35]孟玲玲,冯林春,石怀银,等.苦参碱防治放射性肺损伤的实验观察[J].军医进修学院学报,2008,29(2):134-136.
    [1]Rubin, P., Johnston, C.J., Williams, J.P., McDonald, S., and Finkelstein, J.N., "A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis," International journal of radiation oncology, biology, physics, vol.33, no.1, pp.99-109, 1995.
    [2]Mehta, V., "Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer:pulmonary function, prediction, and prevention," International journal of radiation oncology, biology, physics, vol. 63, no.1, pp.5-24,2005.
    [3]Chen, Y, Williams, J., Ding, I., Hernady, E., Liu, W., Smudzin, T., Finkelstein, J.N., Rubin, P., and Okunieff, P., "Radiation pneumonitis and early circulatory cytokine markers," Seminars in radiation oncology, vol. 12, no.1 Suppl 1, pp.26-33, 2002.
    [4]Chen, Y, Hyrien, O., Williams, J., Okunieff; P., Smudzin, T., and Rubin, P., 'Interleukin (IL)-1A and IL-6:applications to the predictive diagnostic testing of radiation pneumonitis," International journal of radiation oncology, biology, physics, voL 62, no. 1,pp.260-266,2005.
    [5]Chen, Y, Rubin, P., Williams, J., Hernady, E, Smudzin, T., and Okunieff, P., "Circulating IL-6 as a predictor of radiation pneumonitis," International journal of radiation oncology, biology, physics, vol. 49, no.3, pp.641-648,2001.
    [6]Johnston, C.J., Williams, J.P., Okunieff, P., and Finkelstein, J.N., "Radiation-induced pulmonary fibrosis:examination of chemokine and chemokine receptor families," Radiation research, voL 157, no.3, pp.256-265,2002.
    [7]Barthelemy-Brichant, N., Bosquee, L., Cataldo, D., Corhay, J.-L., Gustin, M., Seidel, L., Thiry, A., Ghaye, B.,Nizet, M., Albert, A., Deneufbourg, J.-M., Bartsch, P., and Nusgens, B.,'Increased IL-6 and TGF-β1 concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy," International Journal of Radiation Oncology*Biology*Physics, voL 58, no.3, pp.758-767,2004.
    [8]Anscher, M.S., Kong, F.M., Marks, L.B., Bentel, G.C., and Jirtle, R.L., "Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis," International journal of radiation oncology, biology, physics, vol. 37, no.2, pp.253-258,1997.
    [9]Anscher, M.S., Marks, L.B., Shafman, T.D., Clough, R., Huang, H., Tisch, A., Munley, M., Herndon, J.E.,2nd, Garst, J., Crawford, J., and Jirtle, R.L., "Using plasma transforming growth factor beta-1 during radiotherapy to select patients for dose escalation," Journal of clinical oncology:official journal of the American Society of Clinical Oncology, vol. 19, no.17, pp.3758-3765,2001.
    [10]Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V.K., "IL-17 and Thl7 Cells," Annual review of immunology, vol. 27, pp.485-517,2009.
    [11]Tsoutsou, P.G., and Koukourakis, M.I., "Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research," International journal of radiation oncology, biology, physics, vol. 66, no.5, pp.1281-1293,2006.
    [12]Moseley, T.A., Haudenschild, D.R., Rose, L., and Reddi, A.H.,"Interleukin-17 family and IL-17 receptors," Cytokine & growth factor reviews, voL 14, no.2, pp. 155-174,2003.
    [13]Molet, S., Hamid, Q.,Davoine, F.,Nutku, E., Taha, R., Page, N., Olivenstein, R., Elias, J., and Chakir, J., "IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines," The Journal of allergy and clinical immunology, vol. 108, no.3, pp.430-438,2001.
    [14]Wilson, M.S., Madala, S.K., Ramalingam, T.R., Gochuico, B.R., Rosas, I.O., Cheever, A.W., and Wynn, T.A., "Bleomycin and IL-1 beta-mediated pulmonary fibrosis is IL-17A dependent," The Journal of experimental medicine, vol. 207, no.3, pp.535-552,2010.
    [15]Mi, S., Li, Z., Yang, H.Z., Liu, H., Wang, J.P., Ma, Y.G., Wang, X.X., Liu, H.Z., Sun, W., and Hu, Z.W., "Blocking IL-17 A promotes the resolution of pulmonary inflammation and fibrosis via TGF-betal-dependent and-independent mechanisms," Journal of immunology, vol. 187, no.6, pp.3003-3014,2011.
    [16]Cortez, D.M., Feldman, M.D., Mummidi, S.,Valente, A.J., Steffensen, B., Vincenti, M., Barnes, J.L., and Chandrasekar, B.,"IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK-and ERK1/2-dependent C/EBP-beta, NF-kappaB, and AP-1 activation," American journal of physiology. Heart and circulatory physiology, vol. 293, no.6, pp. H3356-3365,2007.
    [17]Patel, D.N., King, C.A., Bailey, S.R, Holt, J.W., Venkatachalam, K.,Agrawal, A., Valente, A.J., and Chandrasekar, B., "Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation," The Journal of biological chemistry, vol. 282, no.37, pp.27229-27238,2007.
    [18]Shen, F., and Gaffen, S.L., "Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy," Cytokine, vol. 41, no.2, pp.92-104, 2008.
    [19]Ruddy, M.J., Wong, G.C., Liu, X.K., Yamamoto, H., Kasayama, S., Kirkwood, K.L., and Gaffen, S.L., "Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members," The Journal of biological chemistry, vol. 279, no.4, pp.2559-2567,2004.
    [20]Yang, T.T., and Chow, C.W.,"Transcription cooperation by NFAT.C/EBP composite enhancer complex," The Journal of biological chemistry, vol. 278, no.18, pp.15874-15885,2003.
    [21]Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A., and Eisenhaber, F., "The STIR-domain superfamily in signal transduction, development and immunity," Trends in biochemical sciences, vol 28, no.5, pp.226-229,2003.
    [22]Li, X., Commane, M., Nie, H., Hua, X., Chatterjee-Kishore, M., Wald, D., Haag, M., and Stark, G.R, "Actl, an NF-kappa B-activating protein," Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no.19, pp. 10489-10493,2000.
    [23]Leonardi, A., Chariot, A., Claudio, E., Cunningham, K., and Siebenlist, U., "CIKS, a connection to Ikappa B kinase and stress-activated protein kinase," Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no.19, pp.10494-10499,2000.
    [24]Chang, S.H., Park, H., and Dong, C., "Actl adaptor protein is an immediate and essential signaling component of interleukin-17 receptor," Journal of biological chemistry, vol. 281, no.47, pp.35603-35607,2006.
    [25]Qian, Y, Liu, C., Hartupee, J., Altuntas, C.Z., Gulen, M.F., Jane-wit, D., Xiao,J., Lu, Y, Giltiay, N., and Liu, J., "The adaptor Actl is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease," Nature immunology, vol. 8, no.3, pp.247-256,2007.
    [26]Liu, C., Qian, W., Qian, Y, Giltiay, N.V., Lu, Y, Swaidani, S., Misra, S., Deng, L. Chen, Z.J., and Li, X., "Actl, a U-box E3 ubiquitin ligase for IL-17 signaling," Science signaling, vol. 2, no.92, pp. ra63,2009.
    [27]Roussel, L., Houle, F.,Chan, C., Yao, Y, Berube, J., Olivenstein, R., Martin, J.G., Huot, J., Hamid, Q.,Ferri, L., and Rousseau, S.,"IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation," Journal of immunology, vol.184, no.8, pp.4531-4537,2010.
    [28]Hata, K., Andoh, A., Shimada, M., Fujino, S., Bamba, S., Araki, Y, Okuno, T., Fujiyama, Y, and Bamba, T.,"IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts," American journal of physiology. Gastrointestinal and liver physiology, vol. 282, no.6, pp. G1035-1044,2002.
    [29]Bamba, S., Andoh, A., Yasui, H., Araki, Y, Bamba, T, and Fujiyama, Y, "Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibrob lasts:role of interleukin-17," Journal of gastroenterology, vol. 38, no.6, pp.548-554,2003.
    [30]Vittal, R., Fan, L., Greenspan, D.S., Mickler, E.A., Gopalakrishnan, B., Gu, H., Benson, H.L., Zhang, C., Burlingham, W., Cummings, O.W., and Wilkes, D.S., "IL-17 induces type Ⅴ collagen overexpression and EMT via TGF-beta-dependent pathways in obliterative bronchiolitis," American journal of physiology. Lung cellular and molecular physiology, vol.304, no.6, pp. L401-414,2013.
    [31]Zelante, T., Iannitti, R.G., De Luca, A., Arroyo, J., Blanco, N., Servillo, G., Sanglard, D., Reichard, U., Palmer, G.E., and Latge, J.-P, "Sensing of mammalian IL-17A regulates fungal adaptation and virulence," Nature communications, vol.3, pp. 683,2012.
    [32]Wynn, T.A., "Cellular and molecular mechanisms of fibrosis," The Journal of pathology, vol.214, no.2, pp.199-210,2008.
    [1]Kelly, P., Balter, P.A., Rebueno, N., Sharp, H.J., Liao, Z., Komaki, R., and Chang, J.Y., "Stereotactic body radiation therapy for patients with lung cancer previously treated with thoracic radiation," Int J Radiat Oncol Biol Phys, vol.78, no.5, pp.1387-1393,2010.
    [2]Lee, J.C., Kinniry, P.A., Arguiri, E., Serota, M., Kanterakis, S., Chatterjee, S., Solomides, C.C., Javvadi, P., Koumenis, C., Cengel, K.A., and Christofidou-Solomidou, M., "Dietary curcumin increases antioxidant defenses in lung, ameliorates radiation-induced pulmonary fibrosis, and improves survival in mice," Radiat Res, vol. 173, no.5, pp.590-601,2010.
    [3]Anscher, M.S., and Vujaskovic, Z., "Mechanisms and potential targets for prevention and treatment of normal tissue injury after radiation therapy," Semin Oncol, vol.32, no.2 Suppl 3, pp. S86-91,2005.
    [4]Madani, I., De Ruyck, K., Goeminne, H., De Neve, W., Thierens, H., and Van Meerbeeck, J., "Predicting risk of radiation-induced lung injury," J Thorac Oncol, vol. 2, no.9, pp.864-874,2007.
    [5]Kim, J.Y., Kim, Y.S., Kim, Y.K., Park, H.J., Kim, S.J., Kang, J.H., Wang, Y.P., Jang, H.S., Lee, S.N., and Yoon, S.C., "The TGF-betal dynamics during radiation therapy and its correlation to symptomatic radiation pneumonitis in lung cancer patients," Radiation oncology, vol.4, pp.59,2009.
    [6]Mehta, V., "Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer:pulmonary function, prediction, and prevention," International journal of radiation oncology, biology, physics, vol.63, no.1, pp.5-24,2005.
    [7]Flechsig, P., Dadrich, M., Bickelhaupt, S., Jenne, J., Hauser, K., Timke, C. Peschke, P., Hahn, E.W., Grone, H.J., Yingling, J., Lahn, M., Wirkner, U., and Huber, P.E., "LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated pro inflammatory and proangiogenic signals," Clin Cancer Res, vol. 18, no.13, pp.3616-3627,2012.
    [8]Chen, Y, Williams, J., Ding, I., Hernady, E., Liu, W., Smudzin, T., Finkelstein, J.N., Rubin, P., and Okunieff P., "Radiation pneumonitis and early circulatory cytokine markers," Seminars in radiation oncology, vol. 12, no.1 Suppl 1, pp.26-33, 2002.
    [9]Chen, Y, Hyrien, O., Williams, J., Okunieff, P., Smudzin, T., and Rubin, P., "Interleukin (IL)-1A and IL-6:applications to the predictive diagnostic testing of radiation pneumonitis," International journal of radiation oncology, biology, physics, voL 62, no. 1,pp.260-266,2005.
    [10]Arpin, D., Perol, D., Blay, J.Y., Falchero, L., Claude, L., Vuillermoz-Blas, S., Martel-Lafay, I., Ginestet, C., Alberti, L., Nosov, D., Etienne-Mastroianni, B., Cottin, V., Perol, M., Guerin, J.C., Cordier, J.F., and Carrie, C.,'Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis," J Clin Oncol, vol.23, no.34, pp.8748-8756, 2005.
    [11]Johnston, C.J., Williams, J.P., Okunieff, P., and Finkelstein, J.N., "Radiation-induced pulmonary fibrosis:examination of chemokine and chemokine receptor families," Radiation research, vol. 157, no.3, pp.256-265,2002.
    [12]Stenmark, M.H., Cai, X.W., Shedden, K., Hayman, J.A., Yuan, S., Ritter, T., Ten Haken, R.K., Lawrence, T.S., and Kong, F.M., "Combining physical and biologic parameters to predict radiation-induced lung toxicity in patients with non-small-cell lung cancer treated with definitive radiation therapy," Int J Radiat Oncol Biol Phys, vol. 84, no.2, pp. e217-222,2012.
    [13]Wang, L., and Bi, N., "TGF-betal gene polymorphisms for anticipating radiation-induced pneumonitis in non-small-cell lung cancer:different ethnic association," J Clin Oncol, vol.28, no.30, pp. e621-622,2010.
    [14]Anscher, M.S., "Targeting the TGF-betal pathway to prevent normal tissue injury after cancer therapy," Oncologist, vol. 15, no.4, pp.350-359,2010.
    [15]Sakai, M., Iwakawa, M., Iwakura, Y., Ohta, T, Tsujii, H., and Imai, T., "CD44 and Bak expression in IL-6 or TNF-alpha gene knockout mice after whole lung irradiation," J Radiat Res, vol. 49, no.4, pp.409-416,2008.
    [16]Zhang, M., Qian, J., Xing, X., Kong, F.M., Zhao, L., Chen, M., and Lawrence, T.S.,'Inhibition of the tumor necrosis factor-alpha pathway is radioprotective for the lung," Clin Cancer Res, vol. 14, no.6, pp.1868-1876,2008.
    [17]Puthawala, K., Hadjiangelis, N., Jacoby, S.C., Bayongan, E., Zhao, Z., Yang, Z., Devitt, M.L., Horan, G.S., Weinreb, P.H., Lukashev, M.E., Violette, S.M., Grant, K.S., Colarossi, C., Formenti, S.C., and Munger, J.S.,'Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis," American journal of respiratory and critical care medicine, vol.177, no.1, pp.82-90,2008.
    [18]Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V.K., "IL-17 and Thl7 Cells," Annual review of immunology, vol. 27, pp.485-517,2009.
    [19]Wilson, M.S., Madala, S.K., Ramalingam, T.R., Gochuico, B.R, Rosas, I.O., Cheever, A.W., and Wynn, T.A., "Bleomycin and IL-1 beta-mediated pulmonary fibrosis is IL-17A dependent," J Exp Med, vol. 207, no.3, pp.535-552,2010.
    [20]Mi, S., Li, Z., Yang, H.Z., Liu, H., Wang, J.P., Ma, Y.G., Wang, X.X., Liu, H.Z., Sun, W., and Hu, Z.W., "Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-betal-dependent and-independent mechanisms," Journal of immunology, vol. 187, no.6, pp.3003-3014,2011.
    [21]Schnyder-Candrian, S., Togbe, D., Couillin, I., Mercier, I., Brombacher, F., Quesniaux, V., Fossiez, F., Ryffel, B., and Schnyder, B., "Interleukin-17 is a negative regulator of established allergic asthma," J Exp Med, vol.203, no.12, pp.2715-2725, 2006.
    [22]Haston, C.K., Begin, M., Dorion, G., and Cory, S.M., "Distinct loci influence radiation-induced alveolitis from fibrosing alveolitis in the mouse," Cancer Res, voL 67, no.22, pp.10796-10803,2007.
    [23]Ashcroft, T., Simpson, J.M., and Timbrell, V., "Simple method of estimating severity of pulmonary fibrosis on a numerical scale," J Clin Pathol, vol. 41, no.4, pp. 467-470,1988.
    [24]Yavas, G., Yavas, C., Acar, H., Toy, H., Yuce, D., and Ata, O., "Comparison of the effects of aromatase inhibitors and tamoxifen on radiation-induced lung toxbity: results of an experimental study," Support Care Cancer, vol. 21, no.3, pp.811-817, 2013.
    [25]Knapp, S., Florquin, S., Golenbock, D.T., and van der Poll, T.,"Pulmonary lipopolysaccharide (LPS)-binding protein inhibits the LPS-induced lung inflammation in vivo," Journal of immunology, vol. 176, no.5, pp.3189-3195,2006.
    [26]Edwards, C.A., and O'Brien, W.D., Jr., "Modified assay for determination of hydroxyproline in a tissue hydrolyzate," Clin Chim Acta, vol. 104, no.2, pp.161-167, 1980.
    [27]Yang, H.Z., Cui, B., Liu, H.Z., Chen, Z.R., Yan, H.M., Hua, F., and Hu, Z.W., "Targeting TLR2 attenuates pulmonary inflammation and fibrosis by reversion of suppressive immune microenvironment," J Immunol, vol. 182, no.1, pp.692-702, 2009.
    [28]Yoshizaki, A., Yanaba, K., Iwata, Y., Komura, K., Ogawa, A., Akiyama, Y, Muroi, E., Hara, T., Ogawa, E., Takenaka, M., Shimizu, K., Hasegawa, M., Fujimoto, M., Tedder, T.F., and Sato, S., "Cell adhesion molecules regulate fibrotie process via Thl/Th2/Th17 cell balance in a bleomycin-induced scleroderma model," Journal of immunology, vol. 185, no.4, pp.2502-2515,2010.
    [29]Baldeviano, G.C., Barin, J.G., Talor, M.V., Srinivasan, S., Bedja, D., Zheng, D., Gabrielson, K., Iwakura, Y, Rose, N.R., and Cihakova, D., "Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy," Circ Res, vol. 106, no.10, pp.1646-1655,2010.
    [30]Smith, E., Prasad, K.M., Butcher, M., Dobrian, A., Kolls, J.K., Ley, K., and Galkina, E., "Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice," Circulation, vol. 121, no.15, pp.1746-1755,2010.
    [31]Genovese, M.C., Van den Bosch, F., Roberson, S.A., Bojin, S., Biagini, I.M., Ryan, R, and Sloan-Lancaster, J., "LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis:A phase I randomized, double-blind, placebo-controlled, proof-of-concept study," Arthritis Rheum, vol. 62, no.4, pp.929-939,2010.
    [32]Lubberts, E., Koenders, M.I., Oppers-Walgreen, B., van den Bersselaar, L., Coenen-de Roo, C.J., Joosten, L.A., and van den Berg, W.B., "Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion," Arthritis Rheum, vol.50, no.2, pp.650-659,2004.
    [33]Miossec, P., and Kolls, J.K., "Targeting IL-17 and TH17 cells in chronic inflammation," Nat Rev Drug Discov, vol.11, no.10, pp.763-776,2012.
    [34]Mathew, B., Huang, Y, Jacobson, J.R, Berdyshev, E., Gerhold, L.M., Wang, T, Moreno-Vinasco, L., Lang, G., Zhao, Y, Chen, C.T., LaRiviere, P.J., Mauceri, H., Sammani, S., Husain, A.N., Dudek, S.M., Natarajan, V., Lussier, Y.A., Weichselbaum, R.R., and Garcia, J.G., "Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression," Am J Respir Cell Mol Biol, vol.44, no.3, pp. 415-422,2011.
    [35]Eldh, T, Heinzelmann, F., Velalakan, A., Budach, W., Belka, C., and Jendrossek, V., "Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time-and dose-dependent," Strahlenther Onkol, vol. 188, no.3, pp.274-281,2012.
    [36]Szabo, S., Ghosh, S.N., Fish, B.L., Bodiga, S., Tomic, R., Kumar, G., Morrow, N.V., Moulder, J.E., Jacobs, E.R., and Medhora, M., "Cellular inflammatory infiltrate in pneumonitis induced by a single moderate dose of thoracic x radiation in rats," Radiat Res, vol. 173, no.4, pp.545-556,2010.
    [37]Rube, C.E., Wilfert, F., Palm, J., Konig, J., Burdak-Rothkamm, S., Liu, L., Schuck, A., Willich, N., and Rube, C., "Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung," Strahlenther Onkol, vol. 180, no.7, pp.442-448,2004.
    [38]Yao, Z., Painter, S.L., Fanslow, W.C., Ulrich, D., Macduff, B.M., Spriggs, M.K., and Armitage, R.J., "Human IL-17:a novel cytokine derived from T cells," Journal of immunology, voL 155, no.12, pp.5483-5486,1995.
    [39]Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., Maat, C., Pin, J.J., Garrone, P., Garcia, E., Saeland, S., Blanchard, D., Gaillard, C., Das Mahapatra, B., Rouvier, E., Golstein, P., Banchereau, J., and Lebecque, S., "T cell interleukin-17 induces stromal cells to produce pro inflammatory and hematopoietic cytokines," The Journal of experimental medicine, vol.183, no.6, pp.2593-2603, 1996.
    [40]Chen, Y, Rubin, P., Williams, J., Hernady, E., Smudzin, T., and Okunieff, P., "Circulating IL-6 as a predictor of radiation pneumonitis," International journal of radiation oncology, biology, physics, vol. 49, no.3, pp.641-648,2001.
    [41]Rube, C.E., Uthe, D., Wilfert, F., Ludwig, D., Yang, K., Konig, J., Palm, J., Schuck, A., Willich, N., Remberger, K., and Rube, C., "The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation," International journal of radiation oncology, biology, physics, vol. 61, no.5, pp.1482-1492,2005.
    [42]Ahmed, K.M., and Li, J.J.,"NF-kappa B-mediated adaptive resistance to ionizing radiation," Free radical biology & medicine, vol. 44, no. 1,pp.1-13,2008.
    [43]Satoh, H., Yamashita, Y.T., Ohtsuka, M., and Sekizawa, K., "Radiation-induced pneumonitis outside the radiation field," Mayo Clinic proceedings. Mayo Clinic, vol. 74, no.7, pp.743-744,1999.
    [44]Balli, D., Ustiyan, V, Zhang, Y, Wang, I.C., Masino, A.J., Ren, X., Whitsett, J. A, Kalinichenko, V.V., and Kalin, T.V., "Foxml transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition," The EMBO journal, voL 32, no.2, pp.231-244,2013.
    [45]Vittal, R., Fan, L., Greenspan, D.S., Mickler, E.A., Gopalakrishnan, B., Gu, H., Benson, H.L., Zhang, C., Burlingham, W., Cummings, O.W., and Wilkes, D.S.,"IL-17 induces type V collagen overexpression and EMT via TGF-beta-dependent pathways in obliterative bronchiolitis," American journal of physiology. Lung cellular and molecular physiology, vol. 304, no.6, pp. L401-414,2013.
    [46]Burger, A., Loffler, H., Bamberg, M., and Rodemann, H.P., "Molecular and cellular basis of radiation fibrosis," International journal of radiation biology, vol.73, no.4, pp.401-408,1998.
    [1]Yao, Z., Fanslow, W.C., Seldin, M.F., Rousseau, A.M., Painter, S.L., Comeau, M.R., Cohen, J.I., and Spriggs, M.K., "Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor," Immunity, vol. 3, no.6, pp.811-821, 1995.
    [2]Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M., and Weaver, C.T., "Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages, "Nature immunology, vol. 6, no.11, pp.1123-1132,2005.
    [3]Reynolds, J.M., Angkasekwinai, P., and Dong, C., "IL-17 family member cytokines:regulation and function in innate immunity," Cytokine & growth factor reviews, vol.21, no.6, pp.413-423,2010.
    [4]Yoshizaki, A., Yanaba, K., Iwata, Y., Komura, K., Ogawa, A., Akiyama, Y., Muroi, E., Hara, T., Ogawa, F., Takenaka, M., Shimizu, K., Hasegawa, M., Fujimoto, M., Tedder, T.F., and Sato, S., "Cell adhesion molecules regulate fibrotic process via Thl/Th2/Thl7 cell balance in a bleomycin-induced scleroderma model," Journal of immunology, vol.185, no.4, pp.2502-2515,2010.
    [5]Baldeviano, G.C., Barin, J.G., Talor, M.V., Srinivasan, S., Bedja, D., Zheng, D., Gabrielson, K., Iwakura, Y., Rose, N.R, and Cihakova, D.,"Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy," Circulation research, vol. 106, no.10, pp.1646-1655,2010.
    [6]Chakir, J., Shannon, J., Molet, S., Fukakusa, M., Elias, J., Laviolette, M., Boulet, L.P., and Hamid, Q., "Airway remodeling-associated mediators in moderate to severe asthma:effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression," The Journal of allergy and clinical immunology, vol. 111, no.6, pp. 1293-1298,2003.
    [7]Smith, E., Prasad, K.-M.R., Butcher, M., Dobrian, A., Kolls, J.K., Ley, K., and Galkina, E., "Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice," Circulation, voL 121, no.15, pp.1746-1755,2010.
    [8]Ogura, H., Murakami, M., Okuyama, Y., Tsuruoka, M., Kitabayashi, C., Kanamoto, M., Nishihara, M., Iwakura, Y., and Hirano, T., "Interleukin-17 promotes auto immunity by triggering a positive-feedback loop via interleukin-6 induction," Immunity, vol. 29, no.4, pp.628-636,2008.
    [9]Wilson, M.S., Madala, S.K., Ramalingam, T.R., Gochuico, B.R., Rosas, I.O., Cheever, A.W., and Wynn, T.A., "Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent," The Journal of experimental medicine, vol.207, no.3, pp.535-552,2010.
    [10]Steinman, L., "A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage," Nature medicine, vol.13, no.1, pp. 139-145,2007.
    [11]Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., and Stockinger, B., "TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells," Immunity, vol.24, no.2, pp.179-189, 2006.
    [12]Nurieva, R, Yang, X.O., Martinez, G., Zhang, Y., Panopoulos, A.D., Ma, L., Schluns, K., Tian, Q., Watowich, S.S., and Jetten, A.M., "Essential autocrine regulation by IL-21 in the generation of inflammatory T cells," Nature, vol. 448, no. 7152, pp.480-483,2007.
    [13]Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., Sudo, K., and Iwakura, Y., "IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis," The Journal of Immunology, vol.177, no.1, pp.566-573,2006.
    [14]Chang, S.H., and Dong, C.,"IL-17F:regulation, signaling and function in inflammation," Cytokine, vol. 46, no.1, pp.7-11,2009.
    [15]Moseley, T.A., Haudenschild, D.R., Rose, L., and Reddi, A.H., "Interleukin-17 family and IL-17 receptors," Cytokine & growth factor reviews, vol.14, no.2, pp. 155-174,2003.
    [16]Rouvier, E., Luciani, M., Mattei, M., Denizot, F., and Golstein, P., "CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability
    sequences, and homologous to a herpesvirus saimiri gene," The Journal of Immunology, vol. 150, no.12, pp.5445-5456,1993.
    [17]Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., Maat,C., Pin, J.J., Garrone, P., Garcia, E., Saeland, S., Blanchard, D., Gaillard, C., Das Mahapatra, B., Rouvier, E., Golstein, P., Banchereau, J., and Lebecque, S., "T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines," The Journal of experimental medicine, vol.183, no.6, pp.2593-2603, 1996.
    [18]Miossec, P., and Kolls, J.K., "Targeting IL-17 and TH17 cells in chronic inflammation," Nature reviews. Drug discovery, vol. 11, no.10, pp.763-776,2012.
    [19]Chabaud, M., Durand, J.M., Buchs, N., Fossiez, F., Page, G., Frappart, L., and Miossec, P., "Human interleukin-17," Arthritis and rheumatism, vol. 42, pp.963-970, 1999.
    [20]Papp, K.A., Leonardi, C., Menter, A., Ortonne, J.-P., Krueger, J.G., Kricorian, G., Aras, G., Li, J., Russell, C.B., and Thompson, E.H., "Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis," New England Journal of Medicine, vol. 366, no.13, pp.1181-1189,2012.
    [21]Hueber, W., Patel, D.D., Dryja, T., Wright, A.M., Koroleva, I., Bruin, G., Antoni, C., Draelos, Z., Gold, M.H., and Durez, P., "Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis," Science translational medicine, vol. 2, no.52, pp.52ra72-52ra72,2010.
    [22]Cortez, D.M., Feldman, M.D., Mummidi, S., Valente, A.J., Steffensen, B., Vincenti, M., Barnes, J.L., and Chandrasekar, B., "IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK-and ERK1/2-dependent C/EBP-beta, NF-kappaB, and AP-1 activation," American journal of physiology. Heart and circulatory physiology, vol. 293, no.6, pp. H3356-3365,2007.
    [23]Patel, D.N., King, C.A., Bailey, S.R., Holt, J.W., Venkatachalam, K., Agrawal, A., Valente, A.J., and Chandrasekar, B., "Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation," The Journal of biological chemistry, vol. 282, no.37, pp.27229-27238,2007.
    [24]Shen, F., and Gaffen, S.L., "Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy," Cytokine, vol.41, no.2, pp.92-104, 2008.
    [25]Ruddy, M.J., Wong, G.C., Liu, X.K., Yamamoto, H., Kasayama, S., Kirkwood, K.L., and Gaffen, S.L., "Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members," The Journal of biological chemistry, vol. 279, no.4, pp.2559-2567,2004.
    [26]Mi, S., Li, Z., Yang, H.Z., Liu, H., Wang, J.P., Ma, Y.G., Wang, X.X., Liu, H.Z., Sun, W., and Hu, Z.W., "Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-betal-dependent and-independent mechanisms," Journal of immunology, vol. 187, no.6, pp.3003-3014,2011.
    [27]Yang, T.T., and Chow, C.W., "Transcription cooperation by NFAT.C/EBP composite enhancer complex," The Journal of biological chemistry, vol. 278, no.18, pp.15874-15885,2003.
    [28]Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A., and Eisenhaber, F., "The STIR-domain superfamily in signal transduction, development and immunity," Trends in biochemical sciences, vol. 28, no.5, pp.226-229,2003.
    [29]Li, X., Commane, M., Nie, H., Hua, X., Chatterjee-Kishore, M., Wald, D., Haag, M., and Stark, G.R., "Actl, an NF-kappa B-activating protein," Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no.19, pp. 10489-10493,2000.
    [30]Leonardi, A., Chariot, A., Claudio, E., Cunningham, K., and Siebenlist, U., "CIKS, a connection to Ikappa B kinase and stress-activated protein kinase," Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no.19, pp.10494-10499,2000.
    [31]Chang, S.H., Park, H., and Dong, C., "Actl adaptor protein is an immediate and essential signaling component of interleukin-17 receptor," Journal of biological chemistry, vol. 281, no.47, pp.35603-35607,2006.
    [32]Qian, Y., Liu, C., Hartupee, J., Altuntas, C.Z., Gulen, M.F., Jane-wit, D., Xiao, J., Lu, Y., Giltiay, N., and Liu, J., "The adaptor Actl is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease," Nature immunology, vol. 8, no.3, pp.247-256,2007.
    [33]Liu, C., Qian, W., Qian, Y., Giltiay, N.V., Lu, Y., Swaidani, S., Misra, S., Deng, L., Chen, Z.J., and Li, X., "Actl, a U-box E3 ubiquitin ligase for IL-17 signaling," Science signaling, vol. 2, no.92, pp. ra63,2009.
    [34]Roussel, L., Houle, F., Chan, C., Yao, Y., Berube, J., Olivenstein, R., Martin, J.G., Huot, J., Hamid, Q., Ferri, L., and Rousseau, S., "IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation," Journal of immunology, vol. 184, no.8, pp.4531-4537,2010.
    [35]McAllister, F., Henry, A, Kreindler, J.L., Dubin, P.J., Ulrich, L., Steele, C., Finder, J.D., Pilewski, J.M., Carreno, B.M., Goldman, S.J., Pirhonen, J., and Kolls, J.K., "Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis," Journal of immunology, vol. 175, no.1, pp.404-412,2005.
    [36]Decraene, A., Willems-Widyastuti, A., Kasran, A., De Boeck, K., Bullens, D.M., and Dupont, L.J., "Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable Cystic Fibrosis patients," Respiratory research, vol.11, pp.177, 2010.
    [37]Gasse, P., Riteau, N., Vacher, R, Michel, M.L., Fautrel, A., di Padova, F., Fick, L., Charron, S., Lagente, V., Eberl, G., Le Bert, M., Quesniaux, V.F., Huaux, F., Leite-de-Moraes, M., Ryffel, B., and Couillin, I., "IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis," PloS one, vol.6, no.8, pp. e23185,2011.
    [38]Hasan, S.A., Eksteen, B., Reid, D., Paine, H.V., Alansary, A., Johannson, K., Gwozd, C., Goring, K.A., Vo, T., Proud, D., and Kelly, M.M., "Role of IL-17A and neutrophils in fibrosis in experimental hypersensitivity pneumonitis," The Journal of allergy and clinical immunology, vol. 131, no.6, pp.1663-1673,2013.
    [39]Simonian, P.L., Roark, C.L., Wehrmann, F., Lanham, A.M., Born, W.K., O'Brien, R.L., and Fontenot, A.P., "IL-17A-expressing T cells are essential for bacterial clearance in a murine model of hypersensitivity pneumonitis," Journal of immunology, vol. 182, no.10, pp.6540-6549,2009.
    [40]Lo Re, S., Dumoutier, L., Couillin, I., Van Vyve, C., Yakoub, Y., Uwambayinema, F., Marien, B., van den Brule, S., Van Snick, J., Uyttenhove, C., Ryffel, B., Renauld, J.C., Lison, D., and Huaux, F., "IL-17A-producing gammadelta T and Th17 lymphocytes mediate lung inflammation but not fibrosis in experimental sicosis," Journal of immunology, vol. 184, no.11, pp.6367-6377,2010.
    [41]Brightling, C.E., "Clinical applications of induced sputum," Chest, vol.129, no.5, pp.1344-1348,2006.
    [42]Nembrini, C., Marsland, B.J., and Kopf, M., "IL-17-producing T cells in lung immunity and inflammation," Journal of Allergy and Clinical Immunology, vol. 123, no.5, pp.986-994,2009.
    [43]Yang, X.O., Chang, S.H., Park, H., Nurieva, R, Shah, B., Acero, L., Wang, Y.-H., Schluns, K.S., Broaddus, RR, and Zhu, Z., "Regulation of inflammatory responses by IL-17F," The Journal of experimental medicine, vol.205, no.5, pp.1063-1075, 2008.
    [44]Nakajima, H., and Hirose, K., "Role of IL-23 and Thl7 cells in airway inflammation in asthma," Immune network, vol.10, no.1,pp.1-4,2010.
    [45]Eustace, A., Smyth, L.J., Mitchell, L., Williamson, K., Plumb, J., and Singh, D., "Identification of cells expressing IL-17A and IL-17F in the lungs of patients with COPD," CHEST Journal, vol. 139, no.5, pp.1089-1100,2011.
    [46]Kudo, M., Melton, A.C., Chen, C., Engler, M.B., Huang, K.E., Ren, X., Wang, Y., Bernstein, X., Li, J.T., and Atabai, K.,"IL-17A produced by [alpha] [beta] T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction," Nature medicine, vol. 18, no.4, pp.547-554,2012.
    [47]Zhao, J., Lloyd, C, and Noble, A., "Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling," Mucosal immunology, vol. 6, no.2, pp.335-346,2013.
    [48]Murdoch, J.R., and Lloyd, C.M., "Resolution of Allergic Airway Inflammation and Airway Hyperreactivity Is Mediated by IL-17-producing γδT Cells," American journal of respiratory and critical care medicine, voL 182, no.4, pp.464,2010.
    [49]Newcomb, D.C., Boswell, M.G., Reiss, S., Zhou, W., Goleniewska, K., Toki, S., Harintho, M.T., Lukacs, N.W., Kolls, J.K., and Peebles, R.S., "IL-17A inhibits airway reactivity induced by respiratory syncytial virus infection during allergic airway inflammation," Thorax, vol. 68, no.8, pp.717-723,2013.
    [50]Yang, Z., Sharma, A.K., Linden, J., Kron, I.L., and Laubach, V.E., "CD4< sup>+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury," The Journal of thoracic and cardiovascular surgery, vol.137, no.3, pp.695-702,2009.
    [51]Yang, Z., Sharma, A.K., Marshall, M., Kron, I.L., and Laubach, V.E.,'NADPH Oxidase in Bone Marrow-Derived Cells Mediates Pulmonary Ischemia-Reperfusion Injury," American journal ofrespiratory cell and molecular biology, vol.40, no.3, pp. 375,2009.
    [52]Shichita, T., Sugiyama, Y., Ooboshi, H., Sugimori, H., Nakagawa, R., Takada, I., Iwaki, T., Okada, Y., Iida, M., and Cua, D.J.,'Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury," Nature medicine, vol. 15, no.8, pp.946-950,2009.
    [53]Caldwell, C.C., Okaya, T., Martignoni, A., Husted, T., Schuster, R, and Lentsch, A.B., "Divergent functions of CD4+ T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion," American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 289, no.5, pp. G969-G976,2005.
    [54]Min, S.I., Ha, J., Park, C.-G., Won, J.K., Park, Y.J., Min, S.-K., and Kim, S.J., "Sequential evolution of IL-17 responses in the early period of allograft rejection," Experimental & molecular medicine, vol. 41, no.10, pp.707-716,2009.
    [55]Sharma, A.K., LaPar, D.J., Zhao, Y., Li, L., Lau, C.L., Kron, I.L., Iwakura, Y., Okusa, M.D., and Laubach, V.E.,'Natural killer T cell-derived IL-17 mediates lung ischemia-reperfusion injury," American journal of respiratory and critical care medicine, vol. 183, no.11, pp.1539-1549,2011.
    [56]Burlingham, W.J., Love, R.B., Jankowska-Gan, E., Haynes, L.D., Xu, Q., Bobadilla, J.L., Meyer, K.C., Hayney, M.S., Braun, R.K., and Greenspan, D.S., "IL-17-dependent cellular immunity to collagen type V predisposes to oblterative bronchiolitis in human lung transplants," Journal of Clinical Investigation, vol.117, no.11, pp.3498-3506,2007.
    [57]Yoshida, S., Haque, A., Mizobuchi, T., Iwata, T., Chiyo, M., Webb, T., Baldridge, L., Heidler, K., Cummings, O., and Fujisawa, T., "Anti-Type V Collagen Lymphocytes that Express IL-17 and IL-23 Induce Rejection Pathology in Fresh and Well-Healed Lung Transplants," American journal of transplantation, vol. 6, no. 4, pp.724-735,2006.
    [58]Vittal, R., Fan, L., Greenspan, D.S., Mickler, E.A., Gopalakrishnan, B., Gu, H., Benson, H.L., Zhang, C., Burlingham, W., and Cummings, O.W.,"IL-17 induces type V collagen overexpression and EMT via TGF-β-dependent pathways in obliterative bronchiolitis," American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 304, no.6, pp. L401-L414,2013.
    [59]Vanaudenaerde, B., Dupont, L., Wuyts, W., Verbeken, E., Meyts, I., Bullens, D., Dilissen, E., Luyts, L., Van Raemdonck, D., and Verleden, G., "The role of interleukin-17 during acute rejection after lung transplantation," European Respiratory Journal, vol. 27, no.4, pp.779-787,2006.
    [60]Snell, G.I., Levvey, B.J., Zheng, L., Bailey, M., Orsida, B., Williams, T.J., and Kotsimbos, T.C., "Interleukin-17 and airway inflammation:a longitudinal airway biopsy study after lung transplantation," The Journal of heart and lung transplantation, vol. 26, no.7, pp.669-674,2007.
    [61]Ye, P., Rodriguez, F.H., Kanaly, S., Stocking, K.L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., and Zhang, J., "Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense," The Journal of experimental medicine, vol. 194, no.4, pp.519-528,2001.
    [62]Happel, K.I., Dubin, P.J., Zheng, M., Ghilardi, N., Lockhart, C., Quinton, L.J., Odden, A.R., Shellito, J.E., Bagby, G.J., and Nelson, S., "Divergent roles ofIL-23 and IL-12 in host defense against Klebsiella pneumoniae," The Journal of experimental medicine, vol. 202, no.6, pp.761-769,2005.
    [63]Khader, S.A., Pearl, J.E., Sakamoto, K., Gilmartin, L., Bell, G.K., Jelley-Gibbs, D.M., Ghilardi, N., and Cooper, A.M., "IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-y responses if IL-12p70 is available," The Journal of Immunology, vol. 175, no.2, pp.788-795,2005.
    [64]Scriba, T.J., Kalsdorf, B., Abrahams, D.-A., Isaacs, F., Hofineister, J., Black, G., Hassan, H.Y., Wilkinson, R.J., Walzl, G., and Gelderbloem, S.J., "Distinct, specific IL-17-and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response," The Journal of Immunology, vol.180, no.3, pp. 1962-1970,2008.
    [65]Khader, S.A., Bell, G.K., Pearl, J.E., Fountain, J.J., Rangel-Moreno, J., Cilley, G.E., Shen, F., Eaton, S.M., Gaffen, S.L., and Swain, S.L., "IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge," Nature immunology, vol.8, no.4, pp. 369-377,2007.
    [66]Lockhart, E., Green, A.M., and Flynn, J.L., "IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection," The Journal of Immunology, vol.177, no.7, pp.4662-4669,2006.
    [67]Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K., "Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells," Nature, vol.441, no.7090, pp.235-238,2006.
    [68]Hata, K., Andoh, A., Shimada, M., Fujino, S., Bamba, S., Araki, Y., Okuno, T., Fujiyama, Y., and Bamba, T., "IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts," American journal of physiology. Gastrointestinal and liver physiology, vol.282, no.6, pp. G1035-1044,2002.
    [69]Bamba, S., Andoh, A., Yasui, H., Araki, Y., Bamba, T., and Fujiyama, Y., "Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibrob lasts:role of interleukin-17," Journal of gastroenterology, vol.38, no.6, pp. 548-554,2003.
    [70]Zelante, T., Iannitti, R.G., De Luca, A., Arroyo, J., Blanco, N., Servillo, G., Sanglard, D., Reichard, U., Palmer, G.E., and Latge, J.-P., "Sensing of mammalian IL-17A regulates fungal adaptation and virulence," Nature communications, vol. 3, pp. 683,2012.
    [71]Wynn, T.A., "Cellular and molecular mechanisms of fibrosis," The Journal of pathology, vol. 214, no.2, pp.199-210,2008.
    [72]Vittal, R., Fan, L., Greenspan, D.S., Mickler, E.A., Gopalakrishnan, B., Gu, H., Benson, H.L., Zhang, C., Burlingham, W., Cummings, O.W., and Wilkes, D.S., "IL-
    17 induces type Ⅴ collagen overexpression and EMT via TGF-beta-dependent pathways in obliterative bronchiolitis," American journal of physiology. Lung cellular and molecular physiology, vol. 304, no.6, pp. L401-414,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700