基于状态反馈控制的无线网络传输控制及拓扑辨识研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线网络的发展,用户对通信质量的要求越来越高。跳频、功率控制等链路传输控制技术可以提高无线网络的通信质量,达到扩容的目的。网络拓扑辨识对于提高多媒体业务流在Ad hoc网络中的传输质量具有重要的意义。课题基于状态反馈控制方法,从控制理论的角度,为跳频传输、功率控制及网络拓扑辨识等方面提供了新的思路和方法。
     论文首先研究了基于混沌和状态反馈控制的跳频传输技术,针对混沌跳频序列在硬件实现中会产生有限精度效应的问题,基于DSP提出了一种混沌序列非周期自扰动方法以克服有限精度效应。针对混沌跳频同步,提出了一种新的非线性反馈函数和基于遗传算法的非线性反馈控制方法,实现了Logistic映射混沌序列在不同参数空间下的同步。通过实验和性能分析证明了所提出方法的有效性。
     其次,论文综合考虑实际无线CDMA系统中的闭环功率控制回路可能存在的各种干扰、噪声及路径时延的影响,提出了基于时延和扰动的状态空间(DISS)模型。在此基础上,提出了基于时延和扰动补偿的最优功率控制(OPC_TDIC)方法。按照功率控制的实际要求,提出了符合功率控制要求的二次型性能指标定义,得到了最优状态反馈控制器的设计方法。通过系统仿真实验,与其它的改进功率控制算法相比较,证明了所提出的算法具有较强的收敛性和鲁棒性。
     最后,论文基于复杂网络理论分析了无线网络的拓扑结构。说明了相比于现有的无线网络随机模型,小世界模型和无标度模型更能反映实际无线网络拓扑的特点。针对网络中实际能够测量出的只有部分状态变量或输出量这一特点,分别提出了基于降维观测器的拓扑辨识和基于输出量的拓扑辨识方法,利用部分状态变量或输出量作为反馈控制量,使得通过观测到的部分状态变量和节点输出量就能辨识网络拓扑。进一步考虑了网络中各个节点之间存在传输时延和节点动态特性不一致的情况,并从理论上证明了论文所提出方法的适用性。针对基于复杂网络建模的小型无线Ad hoc网络拓扑,通过大量仿真实验说明了本文提出的辨识方法是有效的。
With the development of wireless networks, the communication quality requirements from users are increasing. The link transmission control such as frequency hopping (FH) and power control technology can increase the network capacity and improve the performance in jamming environment. Network topology identification is significant to improve multimedia streaming transmission quality in Ad hoc network. Some new ideas and methods for FH transmission, power control and network topology identification are provided from the perspective of control theory based on state feedback control.
     Firstly, the frequency hopping technology based on chaos and state feedback control is studied. A kind of chaotic sequence non-periodic self-perturbation method is proposed on DSP in order to overcome the finite precision effect.In the chaotic FH synchronization scheme, a new nonlinear feedback function and genetic algorithm based nonlinear feedback control method are proposed. The Logistic map chaotic sequences synchronization under different parameter space are achieved. Experiments and performance analysis show the effectiveness of the proposed methods
     Secondly,The time delay and inteference based state space(TDISS) model is proposed for the closed loop power control in the DS-CDMA system. The impact of actual interference, noise and time delay are considered in the model. Additionally, The optimal power control with time delay and interference compensation(OPC_TDIC) method is proposed for the power control system. The quadratic performance is defined to meet the practical requirements of power control.Then, the optimal state feedback controller design is obtained. The strong robustness and good convergence of the proposed algorithm is demonstrated by the simulation, in comparison with some other improved power control algorithms.
     Finally, the topology of wireless network is investigated based on complex network theory. Small world model and scale-free model can reflect the actual characteristics of the wireless network better than the stochastic model. A new method based on the reduced-order observer or the output is proposed to identify complex dynamical networks, in which only some state viariables or the output as feedback can be measured. The network topology can be identified through the node output and the observed state variables. Furthermore, the network with time delay and different nodes is taken into account in this proposed simple technique.A large number of simulation results in the small wireless Ad hoc network based on complex network topology confirm the effectiveness of the methods.
引文
[1]Ahlin L, Zander J, and Slimane B. Principles of wireless communications [M]. Studentlitteratur,1998.
    [2]Rodoplu V and Meng T H. Minimum energy mobile wireless networks [J]. Selected Areas in Communications, IEEE Journal on,1999,17 (8):1333-1344.
    [3]Perkins C E and Royer E M. Ad-hoc on-demand distance vector routing [C]. Mobile Computing Systems and Applications,1999. Proceedings. WMCSA'99. Second IEEE Workshop on.1999:90-100.
    [4]Pahlavan K and Krishnamurthy P. Principles of wireless networks [M]. Prentice Hall PTR New Jersey, 2002.
    [5]Zheng W, Sadjadpour H R, and Garcia-Luna-Aceves J J. A unifying perspective on the capacity of wireless ad hoc networks [C]. INFOCOM 2008. The 27th Conference on Computer Communications. IEEE.2008: 211-215.
    [6]Remondo D and Niemegeers I. Ad hoc networking in future wireless communications [J]. Computer Communications,2003,26 (1):36-40.
    [7]Glisic S and Vu eti B. Spread spectrum cdma systems for wireless communications [M]. Artech house publishers,1997.
    [8]Simon M, Omura J, Scholtz R, et al. Spread spectrum communications handbook, electronic edition [M]. McGraw-Hill Professional Publishing,2001.
    [9]Fitton M P, Nix A R, and Beach M A. Frequency hopping cdma for flexible third generation wireless networks [C]. Global Telecommunications Conference,1997. GLOBECOM'97., IEEE.1997:1504-1508 vol.3.
    [10]梅文华,杨义先.跳频通信地址编码理论[M].北京:国防工业出版社,1996.
    [11]Zander J. Performance of optimum transmitter power control in cellular radiosystems [J]. IEEE Transactions on Vehicular Technology,1992,41 (1):57-62.
    [12]Catrein D, Imhof L, and Mathar R. Power control, capacity, and duality of uplink and downlink in cellular cdma systems [J]. IEEE Transactions on Communications,2004,52 (10):1777-1785.
    [13]Bhatt M, Chokshi R, Desai S, et al. Impact of mobility on the performance of ad hoc wireless networks [C]. Vehicular Technology Conference,2003. VTC 2003-Fall.2003 IEEE 58th.2003:3025-3029 Vol.5.
    [14]Zhao S, Seskar I, and Raychaudhuri D. Performance and scalability of self-organizing hierarchical ad hoc wireless networks [C]. Wireless Communications and Networking Conference,2004. WCNC.2004 IEEE.2004: 132-137 Vol.1.
    [15]Wei F and Elmirghani J M H. Energy efficiency in the cluster-based linear ad-hoc wireless networks [C]. Next Generation Mobile Applications, Services and Technologies,2009. NGMAST'09. Third International Conference on.2009:395-400.
    [16]Aeron S and Saligrama V. Wireless ad hoc networks:Strategies and scaling laws for the fixed snr regime [J]. IEEE Transactions on information theory,2007,53 (6):2044-2059.
    [17]Li X, Hui B, Liu H, et al. Research and analysis of topology control in ns-2 for ad-hoc wireless network [C]. Complex, Intelligent and Software Intensive Systems,2008. CISIS 2008. International Conference on. 2008:461-465.
    [18]Jawhar I and Wu J. Quality of service routing in mobile ad hoc networks [J]. Resource Management in Wireless Networking,2005:365-400.
    [19]李云,赵为粮,隆克平,et al无线ad hoc网络支持qos的研究进展与展望[J]. networks,2004,15 (12):1885-1893.
    [20]Putman C A, Rappaport S S, and Schilling D L. Comparison of strategies for serial acquisition of frequency-hopped spread-spectrum signals [J]. Communications, Radar and Signal Processing, IEE Proceedings F,1986,133(2):129-137.
    [21]Sheen W, Tseng C, and Wang H. Multiple-dwell and sequential code acquisition with diversity forffh/mfsk spread-spectrum systems under band multitone jamming [J]. IEEE Transactions on Communications,2000,48 (5):841-851.
    [22]梅文华,杨义先.跳频序列设计理论的研究进展[J].通信学报,2003,24(002):92-101.
    [23]Weidong L, Jing W, and Yan Y. Synchronization design of frequency-hopping communication system [C]. 1998:115-119.
    [24]米良,朱中梁.一种基于logistic映射的混沌跳频序列[J].电波科学学报,2004,19(003):333-337.
    [25]骆文,甘良才.一种组合映射产生混沌跳频序列的方法[J].电波科学学报,2001,16(()03):375-378.
    [26]罗启彬,张健.一种新的混沌伪随机序列生成方式[J].电子与信息学报,2006,28(007):1262-1265.
    [27]李文化,王智顺.用于跳频多址通信的混沌跳频码[J].通信学报,1996,17(006):17-21.
    [28]Volkovskii A, Tsimring L, Rulkov N, et al. Spread spectrum communication system with chaotic frequency modulation [J]. Chaos:An Interdisciplinary Journal of Nonlinear Science,2005,15:033101.
    [29]Cong L and Songgeng S. Chaotic frequency hopping sequences [J]. IEEE Transactions on Communications,1998,46(11):1433-1437.
    [30]Liang M and Gang T. Design of frequency-hopping sequences based on chaotic map [J]. Journal of China Institute of communications,2005:12.
    [31]Cernak J. Digital generators of chaos [J]. Phys. Lett. A,1996,214:151-160.
    [32]Cong L and Xiaofu W. Design and realization of an fpga-based generator for chaotic frequency hopping sequences [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—Ⅰ:FUNDAMENTAL THEORY AND APPLICATIONS,2001,48 (5):521.
    [33]Stojanovski T, Pihl J, and Kocarev L. Chaos-based random number generators. Part ⅱ:Practical realization [J]. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,2001,48 (3):382-385.
    [34]Manji S and Zhuang W. Power control and capacity analysis for a packetized indoormultimedia ds-cdma network [J]. IEEE Transactions on Vehicular Technology,2000,49 (3):911-935.
    [35]Cozzo C and Wang Y P E. Capacity improvement with interference cancellation in the wcdma enhanced uplink [C]. Personal, Indoor and Mobile Radio Communications,2006 IEEE 17th International Symposium on. 2006:1-5.
    [36]Young-Long C, Jyu-Wei W, and Jyh-Hong W. Stability analysis of fixed-step power control for cellular mobile systems [C]. Personal, Indoor and Mobile Radio Communications,2003. PIMRC 2003.14th IEEE Proceedings on.2003:1747-1751 vol.2.
    [37]Zhang H, Chen C, and Wong W. Distributed power control for time varying systems:Performance and convergence analysis [J]. IEEE Transactions on Vehicular Technology,2005,54 (5):1896-1904.
    [38]Liu N and Ulukus S. Capacity region and optimum power control strategies for fading gaussian multiple access channels with common data [J]. IEEE Transactions on Communications,2006,54 (10):1815-1826.
    [39]Yiping X and Chandramouli R. Distributed discrete power control for bursty transmissions over wireless data networks [C]. Communications,2004 IEEE International Conference on.2004:139-143 Vol.1.
    [40]Kim J, Lee S, Kim Y, et al. Performance of single-bit adaptive step-size closed-loop power control scheme in ds-cdma systems [J]. IEICE Transactions on Communications,1998,81 (7):1548-1552.
    [41]Suda H, Kawai H, and Adachi F. A fast transmit power control based on markov transition for ds-cdma mobile radio [J]. IEICE TRANSACTIONS ON COMMUNICATIONS E SERIES B,1999,82:1353-1362.
    [42]Castro R M, Coates M J, and Nowak R D. Likelihood based hierarchical clustering [J]. Signal Processing, IEEE Transactions on,2004,52 (8):2308-2321.
    [43]Chan D S M, Khim Shiong C, Leckie C, et al. Visualisation of power-law network topologies [C]. Networks,2003. ICON2003. The 11th IEEE International Conference on.2003:69-74.
    [44]Coates M, Castro R, Nowak R, et al. Maximum likelihood network topology identification from edge-based unicast measurements [J]. ACM SIGMETRICS Performance Evaluation Review,2002,30 (1): 11-20.
    [45]Duffield N, Horowitz J, Presti F, et al. Multicast topology inference from measured end-to-end loss [J]. IEEE Transactions on information theory,2002,48 (1):26-45.
    [46]Duffield N, Horowitz J, Presti F, et al. Multicast topology inference from end-to-end measurements [J]. Advances in Performance Analysis,2000,3:207-226.
    [47]Tian H and Shen H. Multicast-based inference for topology and network-internal loss performance from end-to-end measurements [J]. Computer Communications,2006,29 (11):1936-1947.
    [48]Duffield N, Horowitz J, and Presti F. Adaptive multicast topology inference [C].2001:1636-1645.
    [49]Ge G, Miao Y, and Yao Z. Optimal frequency hopping sequences:Auto-and cross-correlation properties [J]. IEEE Transactions on information theory,2009,55 (2):867-879.
    [50]Peterson R, Ziemer R, and Borth D. Introduction to spread-spectrum communications [M]. Prentice Hall, 1995.
    [51]赫伯林.从抛物线谈起——混沌动力学引论[M].上海:上海科技教育出版社,1993.
    [52]周红,凌燮亭.有限精度混沌系统的m序列扰动实现[J].电子学报,1997,25(007):95-97.
    [53]党建亮,夏江华,张家树.一种扰动混沌跳频码的新方法[J].系统仿真学报,2008,20(017):4672-4675.
    [54]Kumar P. Frequency-hopping code sequence designs having large linear span [J]. IEEE Transactions on information theory,1988,34 (1):146-151.
    [55]Massey J. Shift-register synthesis and bch decoding [J]. Information Theory, IEEE Transactions on,1969, 15(1):122-127.
    [56]Kohda T and Tsuneda A. Statistics of chaotic binary sequences [J]. IEEE Transactions on information theory,1997,43(1):104-112.
    [57]Defly K, Wang X, Wu G, et al. Synchronization in fh-mfsk spread spectrum systems [C]. Vehicular Technology Conference,1988, IEEE 38th.1988:385-389.
    [58]Kocarev L and Parlitz U. General approach for chaotic synchronization with applications to communication [J]. Physical review letters,1995,74 (25):5028-5031.
    [59]Parlitz U, Chua L, Kocarev L, et al. Transmission of digital signals by chaotic synchronization [J]. Int. J. Bifurcation and Chaos,1992,2 (4):973-977.
    [60]Pyragas K. On-off intermittency at the threshold of weak synchronization of chaos [J]. Chaos, Solitons& Fractals,1998,9 (1-2):337-342.
    [61]孟溶,宋薇.基于m型非线性反馈控制的logistic映射同步的研究[J].电路与系统学报,2006,11(004):82-84.
    [62]季兵,高怀.双参数logistic映射的同步方法[J].通信学报,2003,24(9):103-108.
    [63]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [64]Rashid-Farrokhi F, Liu K, and Tassiulas L. Transmit beamforming and power control for cellular wirelesssystems [J]. IEEE Journal on Selected Areas in Communications,1998,16 (8):1437-1450.
    [65]Hanly S and Tse D. Power control and capacity of spread spectrum wireless networks [J]. Automatica-Kidlington,1999,35 (12):1987-2012.
    [66]Aein J. Power balancing in systems employing frequency reuse [J]. COMSAT Technical Review,1973,3 (2):277-300.
    [67]Ariyavisitakul S. Sir-based power control in a cdma system [C]. Global Telecommunications Conference, 1992. Conference Record., GLOBECOM'92. Communication for Global Users., IEEE.1992:868-873 vol.2.
    [68]Seo S, Dohi T, and Adachi F. Sir-based transmit power control of reverse link for coherent ds-cdma mobile radio [J]. IEICE Transactions on Communications,1998,81 (7):1508-1516.
    [69]Schwartz M. Mobile wireless communications [M]. Cambridge Univ Pr,2005.
    [70]Lee B, Chen Y, and Chen B. Power control of cellular radio systems via robust smith prediction filter [J]. IEEE Transactions on Wireless Communications,2004,3 (5):1822-1831.
    [71]Patzold M. Mobile fading channels [M]. John Wiley & Sons, Inc. New York, NY, USA,2003.
    [72]Sklar B. Rayleigh fading channels in mobile digital communication systems. Ⅰ. Characterization [J]. IEEE Communications Magazine,1997,35 (7):90-100.
    [73]Gunnarsson F, Gustafsson F, and Blom J. Dynamical effects of time delays and time delay compensation inpower controlled ds-cdma [J]. IEEE Journal on Selected Areas in Communications,2001,19(1):141-151.
    [74]Gunnarsson F and Gustafsson F. Power control in wireless communications networks-from a control theory perspective [C].2002.
    [75]Manji S and Weihua Z. Reverse link power control for packetized ds-cdma in a slowly rayleigh fading environment [C]. Communications,1997. ICC 97 Montreal,'Towards the Knowledge Millennium'.1997 IEEE International Conference on.1997:101-105 vol.1.
    [76]Kawadia V and Kumar P. Principles and protocols for power control in wireless ad hoc networks [J]. IEEE Journal on Selected Areas in Communications,2005,23 (1):76-88.
    [77]Li D and Prabhu V. Effects of the bs power and soft handoff on the outage and capacity in the forward link of an sir-based power-controlled cdma system [J]. IEEE Transactions on Wireless Communications,2006,5 (8): 1987-1992.
    [78]Kirousis L, Kranakis E, Krizanc D, et al. Power consumption in packet radio networks [J]. Theoretical Computer Science,2000,243 (1-2):289-305.
    [79]Hsuan-Jung S and Geraniotis E. Adaptive closed-loop power control with quantized feedback and loop filtering [J]. Wireless Communications, IEEE Transactions on,2002,1 (1):76-86.
    [80]Chen B, Lee B, and Chen S. Adaptive power control of cellular cdma systems via the optimal predictive model [J]. IEEE Transactions on Wireless Communications,2005,4 (4):1914-1927.
    [81]Sim M, Gunawan E, Soh C, et al. Characteristics of closed loop power control algorithms for acellular ds/cdma system [J]. IEE Proceedings-Communications,1998,145 (5):355-362.
    [82]Hargrave P J. A tutorial introduction to kalman filtering [C]. Kalman Filters:Introduction, Applications and Future Developments, IEE Colloquium on.1989:1/1-1/6.
    [83]Stengel R. Optimal control and estimation [M]. Dover Pubns,1994.
    [84]奚宏生.确保状态估计性能的离散时间鲁棒kalman滤波器[J].自动化学报,1996,22(006):731-735.
    [85]Ba ar T and Olsder G. Dynamic noncooperative game theory [M]. Society for Industrial Mathematics, 1999.
    [86]Fridman E and Shaked U. A new h∞ filter design for linear time delaysystems [J]. IEEE Transactions on Signal Processing,2001,49 (11):2839-2843.
    [87]Shen X and Deng L. Game theory approach to discrete h-filter design [J]. IEEE Transactions on Signal Processing,1997,45 (4):1093.
    [88]Watts D and Strogatz S. Collective dynamics of 'small-world' networks [J]. Nature,1998,393 (6684): 440-442.
    [89]Barabasi A and Albert R. Emergence of scaling in random networks [J]. Science,1999,286 (5439):509.
    [90]Guidoni D L, Mini R A F, and Loureiro A A F. Creating small-world models in wireless sensor networks [C]. Personal, Indoor and Mobile Radio Communications,2008. PIMRC 2008. IEEE 19th International Symposium on.2008:1-6.
    [91]Sharma G and Mazumdar R. Hybrid sensor networks:A small world [C]. Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing.2005:366-377.
    [92]Helmy A. Small worlds in wireless networks [J]. IEEE Communications Letters,2003,7 (10):490-492.
    [93]M.Tam W, C. F, and Lau. M. Complex-network modeling of a call network [J]. IEEE Transactions on circuits and systems-I:REGULAR PAPERS,2009,56 (2):416-429.
    [94]Sunho L, Chansu Y, and Das C R. Clustered mobility model for scale-free wireless networks [C]. Local Computer Networks, Proceedings 2006 31st IEEE Conference on.2006:231-238.
    [95]Balazinska M and Castro P. Characterizing mobility and network usage in a corporate wireless local-area network [C]. Proceedings of the The First International Conference on Mobile Systems, Applications, and Services. San Francisco, CA, USA 2003:303-316.
    [96]Aiello W, Chung F, and Lu L. A random graph model for power law graphs [J]. Experimental Mathematics, 2001,10(1):53-66.
    [97]Aiello W, Fan C, and Linyuan L. Random evolution in massive graphs [C]. Foundations of Computer Science,2001. Proceedings.42nd IEEE Symposium on.2001:510-519.
    [98]Harary F. The determinant of the adjacency matrix of a graph [J]. Siam Review,1962,4 (3):202-210.
    [99]Milgram S. The small world problem [J]. Psychology today,1967,2 (1):60-67.
    [100]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [101]F W X and G C. Complex networks:Small-world, scale-free and beyond [J]. IEEE Circuits and Systems Magazine,2003,3(1):6-20.
    [102]Erd s P and Renyi A. On the evolution of random graphs [J]. Publ. Math. Inst. Hung. Acad. Sci,1960,5: 17-61.
    [103]Newman M and Watts D. Renormalization group analysis of the small-world network model [J]. Physics Letters A,1999,263 (4-6):341-346.
    [104]Barrat A and Weigt M. On the properties of small-world network models [J]. The European Physical Journal B-Condensed Matter and Complex Systems,2000,13 (3):547-560.
    [105]Newman M. The structure and function of networks [J]. Computer Physics Communications,2002,147: 40-45.
    [106]Barabasi A and Bonabeau E. Scale-free networks [J]. Scientific American,2003,288 (5):50-59.
    [107]Cohen R and Havlin S. Scale-free networks are ultrasmall [J]. Physical review letters,2003,90 (5):58701.
    [108]Fronczak A, Fronczak P, and Ho yst J. Mean-field theory for clustering coefficients in barabasi-albert networks [J]. Physical Review E,2003,68 (4):46126.
    [109]Dorogovtsev S, Mendes J, and Samukhin A. Structure of growing networks with preferential linking [J]. Physical review letters,2000,85 (21):4633-4636.
    [110]Ramanathan R and Rosales-Hain R. Topology control of multihop wireless networks using transmit power adjustment [C]. INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE.2000:404-413 vol.2.
    [111]Sharma S and Mazumdar R. A case for hybrid sensor networks [J]. IEEE/ACM Transactions on Networking,2008,16(5):1121-1132.
    [112]Cavalcanti D, Agrawal D, Kelner J, et al. Exploiting the small-world effect to increase connectivity in wireless ad hoc networks [C].11th IEEE International Conference on Telecommunications 2004:388-393.
    [113]Bettstetter C, Resta G, and Santi P. The node distribution of the random waypoint mobility model for wireless ad hoc networks [J]. IEEE Transactions on mobile computing,2003,2 (3):257-269.
    [114]Macdonald P, Almaas E, and Barabasi A. Minimum spanning trees of weighted scale-free networks [J]. EPL (Europhysics Letters),2005,72:308-314.
    [115]Enachescu M, Goel A, Govindan R, et al. Scale-free aggregation in sensor networks [J]. Theoretical Computer Science,2005,344 (1):15-29.
    [116]Lim S, Yu C, and Das C. Clustered mobility model for scale-free wireless networks [C].2006:231-238.
    [117]AH W, Mondragon R, and Alavi F. Classification of topological patterns using neural networks:Towards the improvement of routing mechanisms in ad-hoc networks ieee [J].2003.
    [118]Musolesi M, Hailes S, and Mascolo C. An ad hoc mobility model founded on social network theory [C]. Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems.2004:20-24.
    [119]Saito N and Kitagawa K. Overview of peer-to-peer universal computing consortium (pucc):Background, current status and future plan [C]. Consumer Communications and Networking Conference,2007. CCNC 2007. 4th IEEE.2007:783-787.
    [120]Jovanovi M, Annexstein F, and Berman K, "Modeling peer-to-peer network topologies through "small-world" models and power laws," in Ix Telecommunications Forum Telfor 2001:Citeseer,2001, pp.1-5.
    [121]Zhang H, Goel A, and Govindan R. Using the small-world model to improve freenet performance [J]. Computer Networks,2004,46 (4):555-574.
    [122]Hui K, Lui J, and Yau D. Small-world overlay p2p networks:Construction, management and handling of dynamic flash crowds [J]. Computer Networks,2006,50 (15):2727-2746.
    [123]李勇,李伟.考虑小世界特性的ad hoc网络拥塞控制[J].计算机工程,2005,31(021):112-114.
    [124]Li X and Chen G. Synchronization and desynchronization of complex dynamical networks:An engineering viewpoint [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2003,50(11):1381-1390.
    [125]Lu X, Wang X, Li X, et al. Synchronization in weighted complex networks:Heterogeneity and synchronizability [J]. Physica A:Statistical Mechanics and its Applications,2006,370 (2):381-389.
    [126]Jiang G, Tang W, and Chen G. A state-observer-based approach for synchronization in complex dynamical networks [J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2006,53 (12):2739-2745.
    [127]Lu J and Chen G. A time-varying complex dynamical network model and its controlled synchronization criteria [J]. IEEE Transactions on Automatic Control,2005,50 (6):841-846.
    [128]Wu J and Jiao L. Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers [J]. Physica A:Statistical Mechanics and its Applications,2008,387 (8-9): 2111-2119.
    [129]Zhou J and Lu J. Topology identification of weighted complex dynamical networks [J]. Physica A: Statistical Mechanics and its Applications,2007,386 (1):481-491.
    [130]Wu X. Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay [J]. Physica A:Statistical Mechanics and its Applications,2008,387 (4): 997-1008.
    [131]Chen L, Lu J, and Tse C. Synchronization:An obstacle to identification of network topology [J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2009,56 (4):310-314.
    [132]Tang W, Yu M, and Kocarev L. Identification and monitoring of biological neural network [C]. IEEE International Synposium on Circuits and Systems.2007:2646-2649.
    [133]Hao L, Guo-Ping J, and Chun-Xia F. State-observer-based approach for identification and monitoring of complex dynamical networks [C]. Circuits and Systems,2008. APCCAS 2008. IEEE Asia Pacific Conference on.2008:1212-1215.
    [134]Wang X and Chen G. Synchronization in scale-free dynamical networks:Robustness and fragility [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49 (1):54-62.
    [135]Wang X and Chen G. Synchronization in small-world dynamical networks [J]. International Journal of Bifurcation and chaos,2002,12 (1):187-192.
    [136]LaSalle J. The extent of asymptotic stability [J]. Proceedings of the National Academy of Sciences of the United States of America,1960,46 (3):363-365.
    [137]Lu J and Cao J. Synchronization-based approach for parameters identification in delayed chaotic neural networks [J]. Physica A:Statistical Mechanics and its Applications,2007,382 (2):672-682.
    [138]关新平,范正平.混沌控制及其在保密通信中的应用[M].北京:北京:国防工业出版社,2002.
    [139]Boccaletti S, Grebogi C, Lai Y, et al. The control of chaos:Theory and applications [J]. Physics Reports, 2000,329 (3):103.
    [140]Hayes S, Grebogi C, Ott E, et al. Experimental control of chaos for communication [J]. Physical review letters,1994,73 (13):1781-1784.
    [141]郑大钟.线性系统理论[M].北京:清华大学出版社,1990.
    [142]Brogan W. Modern control theory [M]. Prentice-Hall Eglewood Cliffs,1985.
    [143]黄琳.稳定性与鲁棒性的理论基础[M].北京:科学出版社,2003.
    [144]Green M and Limebeer D. Linear robust control [M].1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700