基于耦合腔—玻色—爱因斯坦凝聚系统的量子效应及其操控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腔量子电动力学(腔QED)描述了物质与谐振装置中的电磁场的相干作用,是量子信息处理的理想平台。实验上,利用高品质的谐振腔实现了原子和谐振腔的强耦合。在强耦合区域,腔场光子逃逸出腔外前,该光子已和腔内原子进行了多次的相干作用。这对于量子态工程和量子信息处理是非常重要的,实现原子气体和谐振腔强耦合很困难,原因在于原子气体具有很多自由度而难以控制。幸运地是,稀薄原子气体的玻色-爱因斯坦凝聚(BEC)的实现解决了这个困难。BEC中,所有的原子都处于一个相同的量子态,这大大地减少了原子气体的自由度。BEC的运动甚至能用一个单模的物质波场描述。瑞士的Brennecke等人于2007年首次实现了BEC和一个高品质的法布里-珀罗腔光学腔的强耦合并且测量出这个耦合腔-BEC系统的能谱。从此耦合腔-BEC系统的研究成为一个热点课题。最近文献[Nature464,1301(2010)]报道了利用耦合腔-BEC系统模拟出了狄克模型中预言的狄克量子相变。本论文我们主要研究基于该耦合腔-BEC系统下的量子效应及其操控。
     第一章我们主要介绍耦合腔-BEC系统的国内外研究现状以及它的研究意义。
     第二章我们对耦合腔-BEC系统做一个简单的介绍。重点介绍基于二维耦合腔-BEC系统的狄克模型以及狄克量子相变。然后介绍一个基于一维耦合腔-BEC系统的玻色-哈伯德模型。
     第三章我们研究了一个掺杂的耦合腔-BEC系统。基于该系统,提出一个广义的狄克模型-掺杂狄克模型,进而引入一个新的相变参数-杂质比特的布居差。发现杂质比特能够诱导耦合腔-BEC系统发生狄克量子相变。通过调节杂质比特的布居差,可以有效地降低光学腔与BEC发生狄克量子相变的临界耦合强度,这为方便地观察狄克量子相变以及研究狄克量子相变相关的量子效应提供了一个技术方案。
     第四章我们研究了一个两量子比特-耦合腔-BEC复合系统。发现对于同时射入腔中且只和腔场相互作用的两个量子比特来说,耦合腔-BEC系统等效于一个可控的退相位环境。退相位的衰减因子正比于腔场光子数在狄克哈密顿量基态下的涨落。该光子数的涨落可通过泵浦光来调控。我们继而研究了两个无耦合的量子比特间的量子关联在退相位环境中的动力学行为。发现对于初始态为X-型的量子态,两个量子比特之间的量子关联在特定条件下能够随着时间的演化而稳定的放大。因此利用耦合腔-BEC系统能放大射入腔中的两量子比特间的量子关联。最后我们给出了腔场光子数涨落在腔与BEC整个耦合区域的解析表达式,发现腔场光子数涨落在量子相变点附近急剧地增大。因而调控耦合腔-BEC系统的相变参数能敏感地放大两个量子比特之间的量子关联。
     第五章我们研究了光学腔中两分量的BEC在双势阱间的隧穿动力学。发现光学腔能够诱导出一个有效的隧穿强度。当每个分量的BEC引起腔场本征频率的移动量不同时,每个分量BEC的有效隧穿强度存在差异,且这种差异可通过泵浦光来调控。我们继而研究了两分量BEC的空间分离度、混合度以及纠缠动力学。发现当两分量BEC的隧穿强度存在差异且可调控时,在隧穿动力学过程中会出现很多新奇的量子效应,如两分量BEC在双势阱中的空间分离,两原子场模间纠缠的完全转移等。控制两分量BEC在双势阱间的隧穿强度可制备任意混合度的两分量BEC。这表明如果把其中的一个分量BEC看成杂质,腔-双势阱-两分量BEC系统可看成一个量子掺杂装置。
     第六章我们对本论文做一个总结和展望。
Cavity quantum electrodynamics (Cavity QED) describes the coherent in-teraction between matter and electromagnetic field confined within a resonator structure, and is considered as a useful platform for quantum information process-ing. A strong coupling regime can be reached experimentally by using high-quality resonators. In the regime, atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in, which is very important for quantum state engineering and quantum information processing. However, the tremendous degree of freedom of atomic gases is very difficult to control. Fortu-nately, the realization of a Bose-Einstein condensate (BEC) in a dilute atomic gas makes up for this deficiency. For a BEC, all atoms occupy the same motional quan-tum state which can substantially reduce the number of degree of freedom. The BEC are even described by a single mode of a matter-wave field. Brennecke et al firstly achieved the strong coupling of a BEC to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This opens a window to simulate a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions. Re-cently, using a coupled cavity-BEC system has realized the Dick quantum phase transtion(QPT)[Nature464,1301(2010)]. In this thesis, we mainly investigate the quantum effects and their manipulation in the coupled cavity-BEC systems.
     In chapter1, we introduce background materials about present subject under our consideration as well as the significance of the cavity-BEC systems.
     In chapter2, we give a brief introduction about cavity-BEC systems. We put emphasis on introducing a Dicke model and its corresponding Dicke QPT, which based on a two-dimensional cavity-BEC systems. Then we have introduced a self- consistent Bose-Habbard model, which described a one-dimensional cavity-BEC systems.
     In chapter3, we have investigated an impurity-doped cavity-BEC system. We have presented a new generalized Dicke model, an impurity-doped Dicke model to describe the system. It is shown that the impurity atom can induce Dicke QPT from the normalphase to superradiant phase at a critic value of the impurity population. It is revealed that the impurity-induced Dicke QPT can happen in an arbitrary coupling regime of the cavity field and atoms while the Dicke QPT in the standard Dicke model occurs only in the strong coupling regime of the cavity field and atoms. This opens the door to observing the Dicke QPT and studying new physics related to the Dicke QPT in new parameter regimes of the field-atom coupling.
     In chapter4, we investigate a two qubits-coupled cavity-BEC system. For the two qubits that enter the cavity at the same time and only interact with the cavity filed, the coupled cavity-BEC system is equivalent to a controlled dephasing environment. The dephasing factor is proportional to the photon number fluctu-ation under the ground state of Dick Hamiltonian, which can be adjusted by the pump field. Then we have studied analytically the dynamic behaviors of quantum correlation measured by quantum discord between two uncoupled qubits, which are immersed in the dephasing environment. We show that the quantum discord of the two honinteracting qubits can be greatly amplified for certain initially pre-pared X-type states in the time evolution. Therefore, the coupled cavity-BEC can amplify the the quantum correlation of the two qubits. Finally, we obtain the an-alytical expression of the cavity photon number fluctuation in the full cavity-BEC coupling area. It is found that the cavity photon number fluctuation near the QPT point increases dramatically, which is the physical mechanism of the sensitive QD amplification.
     In chapter5, we study tunneling dynamics of a two-component BEC coupled with an optical cavity, which are trapped in a dowble-well. We found the optical cavity can induce an effective tunneling strength. When the cavity frequency shifts induced by each component BEC are different, The difference of the effective tunneling strengths between the two-component BEC can be adjusted by the pump field. Then we studied the dynamics of the space separating degree, mixing degree and entanglement about the two-component BEC. It is found the difference of the effective tunneling strengths can induce a lot of novel quantum effects in the tunneling dynamics process, Such as space separation of the two-component BEC, completely transfer of the entanglement between the atomic field modes, etc. Arbitrary mixing degree of two component BEC can be prepared in the tunneling dynamics. This suggests that if one component BEC are considered as impurities, the cavity-double well-two-component BEC system can be used as a quantum impurity-doped device.
     In chapter6, we present a summary and outlook.
引文
[1]M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 1995,269:198.
    [2]K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett.,1995,75:3969.
    [3]F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.,1999,71:463.
    [4]C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich, Squeezed States in a Bose-Einstein Condensate. Science,2001,291:2386.
    [5]C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler, Nonlinear atom interferometer surpasses classical precision limit. Nature(London),2010,464: 1165.
    [6]M. F. Riedel, P. Bohi, Y. Li, T. W. Hansch, A. Sinatra, and P. Atom-chip-based generation of entanglement for quantum metrology. Nature(London),2010,464: 1170.
    [7]M. Kitagawa, and M. Ueda, Sgueezed spin states. Phys. Rev. A,1993,47:5138.
    [8]D. J. Vhneland, J. J. Bollinger, W. M. Itano, and D.J. Heinzen, Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A,1994,50:67.
    [9]A. S(?)rensen, L. M. Duan, J. I. Cirac, and P. Zoller, Many-particle entanglement with Bose-Einstein condensates. Nature (London),2001,409:63.
    [10]K. Helmerson, and L. You, Creating Massive Entanglement of Bose-Einstein Con-densed Atoms. Phys. Rev. Lett.,2001,87:170402.
    [11]G. R. Jin, and S. W. Kim, Storage of Spin Squeezing in a Two-Component Bose-Einstein Condensate. Phys. Rev. Lett.,2007,99:170405.
    [12]J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, Squeezing and entanglement in a Bose-Einstein condensate. Nature(London),2008,455: 1216.
    [13]J. Ma, X. G. Wang, C. P. Sun, F. Nori, Quantum spin squeezing. Phy. Rep., 2011,509:89.
    [14]C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Steffen, J. M. Fink, S. Filipp, and A. Wallraff, Observation of Two-Mode Squeezing in the Microwave Frequency Domain. Phys. Rev. Lett,2011,107:113601.
    [15]M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature(London),2002,415:39.
    [16]M. Albiez, R. Gati, J. Foiling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett.,2005,95:010402.
    [17]G. J. Milburn, J. Corney, Cold, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A, 1997,55:4138.
    [18]A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates. Phys. Rev. Lett., 1997,79:4950.
    [19]S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations be-tween two weakly coupled Bose-Einstein condensates:Josephson effects, π oscil-lations, and macroscopic quantum self-trapping. Phys. Rev. Lett.,1999,59:
    [20]L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza and A. Smerzi, Dynamics of a Tunable Superfluid Junction. Phys. Rev. Lett.,2011,106:025302.
    [21]T. Betz, S. Manz, R. Buucker, T. Berrada, C. Koller, G. Kazakov, I. E. Mazets, H. P. Stimming, A. Perrin, T. Schumm, and J. Schmiedmayer, Two-Point Phase Cor-relations of a One-Dimensional Bosonic Josephson Junction. Phys. Rev. Lett., 2011,106:020407.
    [22]G. F. Wang, L. B. Fu, and J. Liu, Periodic modulation effect on self-trapping of two weakly coupled Bose-Einstein condensates. Phys. Rev. A,2006,73:013619.
    [23]B. B. Wang, P. M. Fu, J. Liu, and B. Wu, Self-trapping of Bose-Einstein conden-sates in optical lattices. Phys. Rev. A,2006,74:063610.
    [24]L. Fu and J. Liu, Quantum entanglement manifestation of transition to nonlinear self-trapping for Bose-Einstein condensates in a symmetric double well. Phys. Rev. A,2006,74:063614.
    [25]L. M. Kuang, and Z. W. Ouyang, Macroscopic quantum self-trapping and atomic tunneling in two-species Bose-Einstein condensates. Phys. Rev. A,2000,61: 023604.
    [26]B. B. Hu, and L. M. Kuang, Tunneling dynamics of Bose-Einstein condensates with Feshbach resonances. Phys. Rev. A,2000,62:023610.
    [27]S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose-Einstein condensate. Nature(London),2007,449:579.
    [28]C. Zipkes, S. Palzer, C. Sias, and M. Kohl, A trapped single ion inside a Bose-Einstein condensate. Nature(London),2010,464:388.
    [29]S. Schmid, A. Harter, and J. H. Denschlag, Dynamics of a Cold Trapped Ion in a Bose-Einstein Condensate. Phys. Rev. Lett.,2010,105:133202.
    [30]Y. J. Lin, K. Jimenez-Garcfa, and I. B. Spielman, Spin-orbit-coupled Bose-Einstein condensates. Nature(London),2011,471:83.
    [31]X. J. Liu, M. F. Borunda, X. Liu, and J. Sinova, Effect of Induced Spin-Orbit Coupling for Atoms via Laser Fields. Phys. Rev. Lett.,2009,102:046402.
    [32]C. J. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin-Orbit Coupled Spinor Bose-Einstein Condensates. Phys. Rev. Lett.,2010,105:160403.
    [33]C. M. Jian, and H. Zhai, Paired superfluidity and fractionalized vortices in systems of spin-orbit coupled bosons. Phys. Rev. B,2011,84:060508.
    [34]T. L. Ho, and S. Z. Zhang, Bose-Einstein Condensates with Spin-Orbit Interaction. Phys. Rev. Lett.,2011,107:150403.
    [35]X. F. Zhou, J. Zhou, and C. J. Wu, Vortex structures of rotating spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2011,84:063624.
    [36]Z. F. Xu, R. Lu, and L. You, Emergent patterns in a spin-orbit-coupled spin-2 Bose-Einstein condensate. Phys. Rev. A,2011,83:053602.
    [37]P. J. Wang, Z. Q.Yu, Z. K. Fu, J. Miao, L. H. Huang, S. J. Chai, H. Zhai, and J. Zhang, Spin-Orbit Coupled Degenerate Fermi Gases. Phys. Rev. Lett.,2012, 109:095301.
    [38]Z. K. Fu, P. J. Wang, S. J. Chai, L. H. Huang, and J. Zhang, Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers. Phys. Rev. A,2011,84:043609.
    [39]D. W. Zhang, Z. Y. Xue, H. Yan, Z. D. Wang, and S. L. Zhu, Macroscopic Klein tunneling in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2012, 85:013628.
    [40]D. W. Zhang, L. B. Fu, Z. D. Wang, and S. L. Zhu, Josephson dynamics of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential. Phys. Rev. A,2012,85:043609.
    [41]T. Kawakami, T. Mizushima, and K. Machida, Textures of F=2 spinor Bose-Einstein condensates with spin-orbit coupling. Phys. Rev. A,2011,84:011607.
    [42]Y. P. Zhang, L. Mao, and C. W. Zhang, Mean-Field Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates. Phys. Rev. Lett.,2012,108:035302.
    [43]L. Y. He, and X. G. Huang, BCS-BEC Crossover in 2D Fermi Gases with Rashba Spin-Orbit Coupling. Phys. Rev. Lett.,2012,108:145302.
    [44]S. Gopalakrishnan, A. Lamacraft, and P. M. Goldbart, Universal phase structure of dilute Bose gases with Rashba spin-orbit coupling. Phys. Rev. A,2011,84: 061604.
    [45]S. Sinha, R. Nath, and L. Santos, Trapped Two-Dimensional Condensates with Synthetic Spin-Orbit Coupling. Phys. Rev. Lett.,2011,107:270401.
    [46]H. Hu, B. Ramachandhran, H. Pu, and X. J. Liu, Spin-Orbit Coupled Weakly Interacting Bose-Einstein Condensates in Harmonic Traps. Phys. Rev. Lett., 2012,108:010402.
    [47]X. Q. Xu and J. H. Han, Spin-Orbit Coupled Bose-Einstein Condensate Under Rotation. Phys. Rev. Lett.,2011,107:200401.
    [48]J. Radic, T. A. Sedrakyan, I. B. Spielman, and V. Galitsk, Vortices in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A,2011,84:063604.
    [49]Y. Deng, J. Cheng, H. Jing, C. P. Sun, and S. Yi, Spin-Orbit-Coupled Dipolar Bose-Einstein Condensates. Phys. Rev. Lett.,2012,108:125301.
    [50]P. S. He, R. Y. Liao, and W. M. Liu, Feynman relation of Bose-Einstein conden-sates with spin-orbit coupling. Phys. Rev. A,2012,86:043632.
    [51]C, F. Liu, and W. M. Liu, Spin-orbit-coupling-induced half-skyrmion excitations in rotating and rapidly quenched spin-1 Bose-Einstein condensates. Phys. Rev. A,2012,86:033602.
    [52]R. Y. Liao, Y. Y. Xiang, and W. M. Liu, Tuning the Tricritical Point with Spin-Orbit Coupling in Polarized Fermionic Condensates. Phys. Rev. Lett.,2012, 108:080406.
    [53]S. Slama, S. Bux, G. Krenz, C. Zimmermann, and P. W. Courteille, Superradiant Rayleigh Scattering and Collective Atomic Recoil Lasing in a Ring Cavity. Phys. Rev. Lett.,2007,98:053603.
    [54]X. Xu, X. J. Zhou, and X. Z. Chen, Spectroscopy of superradiant scattering from an array of Bose-Einstein condensates. Phys. Rev. A,2009,79:033609.
    [55]X. J. Zhou, F. Yang, X. G. Yue, T. Vogt, and X. Z. Chen, Imprinting light phase on matter-wave gratings in superradiance scattering. Phys. Rev. A,2010,81: 013615.
    [56]Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, Holographic Storage of Multi-ple Coherence Gratings in a Bose-Einstein Condensate. Phys. Rev. Lett.,2007, 99:220407.
    [57]F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, Cavity QED with a Bose-Einstein condensate. Nature(London),2007,450:268.
    [58]Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature(London),2007,450:272.
    [59]L. Zhou, H. Pu, H. Y. Ling, and W. P. Zhang, Cavity-Mediated Strong Matter Wave Bistability in a Spin-1 Condensate. Phys. Rev. Lett.,2009,103:160403.
    [60]S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kur, Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion. Phys. Rev. Lett.,2007,99:213601.
    [61]F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Cavity Optomechanics with a Bose-Einstein Condensate.Science,2008,322:235.
    [62]H. Jing, D. S. Goldbaum, L. Buchmann, and P. Meystre, Quantum Optomechanic of a Bose-Einstein Antiferromagnet. Phys. Rev. Lett.,2011,106:223601.
    [63]K. Y. Zhang, P. Meystre, and W. P. Zhang, Role Reversal in a Bose-Condensed Optomechanical System. Phys. Rev. Lett.,2012,108:240405.
    [64]B. Chen, C. Jiang, J. J. Li, and K. D. Zhu, All-optical transistor based on a cavity optomechanical system with a Bose-Einstein condensate. Phys. Rev. A,2011, 84:055802.
    [65]K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature(London),2010,464: 1301.
    [66]S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Emergent crystallinity and frustration with Bose-Einstein condensates in multimode cavities. Nature, phys., 2009,5:845.
    [67]S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions. Phys. Rev. Lett.,2011,107: 277201.
    [68]S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Atom-light crystallization of Bose-Einstein condensates in multimode cavities:Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration. Phys. Rev. A,2010,82:043612.
    [69]J. B. Yuan, and L. M. Kuang, Quantum-discord amplification induced by a quan-tum phase transition via a cavity-Bose-Einstein-condensate system. Phys. Rev. A,2013,87:024101.
    [70]S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph.W. Courteille, Superradiant Rayleigh Scattering and Collective Atomic Recoil Lasing in a Ring Cavity. Phys. Rev. Lett.,2007,98:053603.
    [71]T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn,. Tunable Cavity Optomechanics with Ultracold Atoms. Phys. Rev. Lett.,2010,105:133602.
    [72]H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys.,2013,85:553.
    [73]J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Bose-Einstein condensation of photons in an optical microcavity. Nature(London),2010,468:545.
    [74]A. C. Ji, Q. Sun, X. C. Xie, and W. M. Liu, Josephson Effect for Photons in TwoWeakly Linked Microcavities. Phys. Rev. Lett.,2009,102:023602.
    [75]G. Chen, X. G. Wang, D. L. Zhou, J. Q. Liang, and Z. D. Wang, Exotic quantum phase transitions in a Bose-Einstein condensate coupled to an optical cavity. Phys. Rev. A,2008,78:023634.
    [76]G. Chen, J. Q. Liang, and S. T. Jia, Interaction-induced Lipkin-Meshkov-Glick model in a Bose-Einstein condensate inside an optical cavity. Optics Express, 2009,17:19682.
    [77]I. B. Mekhov, C. Maschler, and H. Ritsch, Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity quantum electrodynam-ics. Nature physics,2007,3:319.
    [78]I. B. Mekhov, C. Maschler, and H. Ritsch, Cavity-Enhanced Light Scattering in Optical Lattices to Probe Atomic Quantum Statistics. Phys. Rev. Lett.,2007, 98:100402.
    [79]I. B. Mekhov, C. Maschler, and H. Ritsch, Light scattering from ultracold atoms in optical lattices as an optical probe of quantum statistics. Phys. Rev. A,2007, 76:053618.
    [80]I. B. Mekhov, and H. Ritsch, Quantum Nondemolition Measurements and State Preparation in Quantum Gases by Light Detection. Phys. Rev. Lett.,2009,102: 020403.
    [81]J. M. Zhang, S. Cui, H. Jing, D. L. Zhou, and W. M. Liu, Probing the quantum ground state of a spin-1 Bose-Einstein condensate with cavity transmission spectra. Phys. Rev. A,2009,80:043623.
    [82]M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the superfluid-insulator transition. Phys. Rev. B,1989,40:546.
    [83]M. Greiner, O. Mandel, T. Esslinger, T. W. Haensch and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature(London),2002,415:39.
    [84]R. H. Dicke, Coherence in Spontaneous Radiation Processes. Phys. Rev.,1954, 93:99.
    [85]K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, Exploring Symmetry Breaking at the Dicke Quantum Phase Transition. Phys. Rev. Lett.,2011,107: 140402.
    [86]D. Nagy, G. Konya, G. Szirmai, and P. Domokos, Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity. Phys. Rev. Lett.,2010,104:130401.
    [87]M. J. Bhaseen, J. Mayoh, B. D. Simons, and J. Keeling, Dynamics of nonequilib-rium Dicke models. Phys. Rev. A,2012,85:013817.
    [88]N. Liu, J. L. Lian, J. Ma, L. T. Xiao, G. Chen, J. Q. Liang, and S. T. Jia, Light-shift-induced quantum phase transitions of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A,2011,83:033601.
    [89]J. Larson, S. F. Vidal, G. Morigi and M. Lewenstein, Quantum stability of Mott-insulator states of ultracold atoms in optical resonators. New Journal of Physics,2008,10:045002.
    [90]D. Nagy, G. Szirmaia, and P. Domokos, Self-organization of a Bose-Einstein con-densate in an optical cavity. Eur. Phys. J. D,2008,48:127.
    [91]A. P. Chikkatur, A. Glitz, D. M. Stamper-Kurn, S. Inouye, S. Gupta, and W. Ketterle, Suppression and Enhancement of Impurity Scattering in a Bose-Einstein Condensate. Phys. Rev. Lett.,2000,85:483.
    [92]S. Will, T. Best, S. Braun, U. Schneider, and I. Bloch, Coherent Interaction of a Single Fermion with a Small Bosonic Field. Phys. Rev. Lett.,2011,106:115305.
    [93]N. Spethmann, F. Kindermann, S. John, C. Weber, D. Meschede, and A. Widera, Dynamics of Single Neutral Impurity Atoms Immersed in an Ultracold Gas. Phys. Rev. Lett.,2012,109:235301.
    [94]A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, Single Atom Transistor in a ID Optical Lattice. Phys. Rev. Lett.,2004,93:140408.
    [95]S. Palzer, C. Zipkes, C. Sias, and M. Kohl, Quantum Transport through a Tonks-Girardeau Gas. Phys. Rev. Lett.,2009,103:150601.
    [96]A. Schirotzek, C. H. Wu, A. Sommer, and M. W. Zwierlein, Observation of Fermi Polarons in a Tunable Fermi Liquid of Ultracold Atoms. Phys. Rev. Lett.,2009, 102:230402.
    [97]H. T. Ng, and S. Bose, Single-atom-aided probe of the decoherence of a Bose-Einstein condensate. Phys. Rev. A,2008,78:023610.
    [98]A. J. Daley, P. O. Fedichev, and P. Zoller, Single-atom cooling by superfluid immersion:A nondestructive method for qubits. Phys. Rev. A,2004,69:022306.
    [99]A. Griessner, A. J. Daley, S. R. Clark, D. Jaksch, and P. Zoller, Dark-State Cooling of Atoms by Superfluid Immersion. Phys. Rev. Lett.,2006,97:220403.
    [100]A. Klein, and M. Fleischhauer, Interaction of impurity atoms in Bose-Einstein condensates. Phys. Rev. A,2005,71:033605.
    [101]J.B. Yuan, L.M. Kuang, and J.Q. Liao, Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B.,2010,43:165503.
    [102]M. A. Nielsen, and I. L. Chuang, QuantumComputation and Quantum Informa-tion. Cambridge:Gambridge University Press,2000.
    [103]L. Henderson, and V. Vedral, Classical, quantum and total correlations. J. Phys. A:Math. Gen.,2001,34:6899.
    [104]H. Ollivier, and W. H. Zurek, Quantum discord:A Measure of the Quantumness of Correlations. Phys. Rev. Lett.,2001,88:017901.
    [105]B. Dakic, V. Vedral, and C. Brukner, Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett.,2010,105:190502.
    [106]B. Groisman, S. Popescu, and A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A,2005,72:032317.
    [107]S. Luo, Quantum discord for two-qubit systems. Phys. Rev. A,2008,77:042303.
    [108]M. Ali, A.R.P. Rau, and G. Alber, Quantum discord for two-qubit X states. Phys. Rev. A,2010,81:042105.
    [109]A. Datta, A. Shaji, and C. M. Caves, Quantum discord and the Power of One Qubit, Phys. Rev. Lett.,2008,100:050502.
    [110]B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, Experimental Quan-tum Computing without Entanglement. Phys. Rev. Lett.,2008,101:200501.
    [111]Z. Merali, Quantum computing:The power of discord. Nature (London),2011, 474:24.
    [112]M. Piani, P. Horodecki, and R. Horodecki, No-Local-Broadcasting Theorem for Multipartite Quantum Correlations. Phys. Rev. Lett.,2008,100:090502.
    [113]L. Roa, J. C. Retamal, and M. Alid-Vaccarezza, Dissonance is Required for As-sisted Optimal State Discrimination. Phys. Rev. Lett.,2011,107:080401.
    [114]T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, Robustness of quantum discord to sudden death.Phys. Rev. A,2009,80:024103.
    [115]B. Wang, Z.Y. Xu, Z.Q. Chen, M. Feng, Non-Markovian effect on the quantum discord. Phys. Rev. A,2010,81:014101.
    [116]J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A,2009,80:044102.
    [117]J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A,2010, 81:022116.
    [118]L. Mazzola, J. Piilo, and S. Maniscalco, Sudden Transition between Classical and Quantum Decoherence. Phys. Rev. Lett.,2010,104:200401.
    [119]L.C. Celeri, A.G.S. Landulfo, R.M. Serra, and G.E.A. Matsas, Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A,2010, 81,062130.
    [120]J.S. Xu, X.Y. Xu, C.F. Li, C.J. Zhang, X.B. Zou, and G.C. Guo, Experimen-tal investigation of classical and quantum correlations under decoherence.Nat. Commun.,2010,1:7.
    [121]R. Dillenschneider, Quantum discord and quantum phase transition in spin chains. Phys. Rev. B,2008,78:224413.
    [122]M. S. Sarandy, Classical correlation and quantum discord in critical systems. Phys. Rev. A,2009,80:022108.
    [123]T. Yu, and J.H. Eberly. Sudden Death of Entanglement. Science,2009,323:598.
    [124]L.M. Kuang, Z.Y. Tong, Z.W. Ouyang, and H.S. Zeng, Decoherence in two Bose-Einstein condensates.Phys. Rev. A,1999,61:013608.
    [125]X. Q. Xu, L. H. Lu, and Y. Q. Li, Stability and dynamical property for two-species ultracold atoms in double wells. Phys. Rev. A,2008,78:043609.
    [126]B. Sun, and M. S. Pindzola, Dynamics of a two-species Bose-Einstein condensate in a double well. Phys. Rev. A,2009,80:033616.
    [127]P. T. Qi and W. S. Duan, Tunneling dynamics and phase transition of a Bose-Fermi mixture in a double well. Phys. Rev. A,2011,84:033627.
    [128]D. W. Zhang, L. B. Fu, Z. D. Wang, and S. L. Zhu, Josephson dynamics of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential. Phys. Rev. A,2012,85:043609.
    [129]J. M. Zhang, W. M. Liu, and D. L. Zhou, Cavity QED with cold atoms trapped in a double-well potential. Phys. Rev. A,2008,77:033620.
    [130]J. M. Zhang, W. M. Liu, and D. L. Zhou, Mean-field dynamics of a Bose Josephson junction in an optical cavity. Phys. Rev. A,2008,78:043618.
    [131]W. Chen and P. Meystre, Cavity QED characterization of many-body atomic states in double-well potentials:Role of dissipation. Phys. Rev. A,2009,79: 043801.
    [132]J. Larson, and J. P. Martikainen, Ultracold atoms in a cavity-mediated double-well system. Phys. Rev. A,2010,82:033606.
    [133]H. T. Ng, and S. I. Chu, Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator. Phys. Rev. A, 2011,84:023629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700