科尔沁沙地生物结皮中土壤微生物、土壤酶活性的变化及其与土壤因子的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对内蒙古科尔沁沙地奈曼旗中南部的流动沙丘、半固定沙丘和固定沙丘样地的植被及生物结皮类型进行了调查研究,发现半固定沙丘上形成了以蓝藻、绿藻为主要类群的藻结皮;而固定沙丘上除了存在藻结皮外,进而发育出以苔藓植物为主的藓结皮。形成固定沙丘藻结皮的优势种与半固定沙丘藻结皮的优势种基本相同,但其种类略有差异。通过对不同类型生物结皮及下层土壤的土壤微生物数量、土壤微生物量碳、氮、土壤酶活性、土壤因子的季节动态变化分析及各指标之间的相关性研究,表明:
     1.科尔沁沙地不同样地土壤中的微生物数量均为:细菌>自生固氮菌>放线菌>霉菌。不同深度土层的微生物数量略有差异:流动沙丘的表层下层土壤的微生物数最多,而半固定、固定沙丘的表层土壤的微生物数均最多,并随着土壤深度的增加而逐渐减少。土壤微生物总数因季节而异:夏季>秋季>春季>冬季,且同一样区各土层的四大类群土壤微生物数量的年季动态变化也不尽相同:细菌和自生固氮菌夏、秋两季最多,而放线菌和霉菌秋、夏两季最多,但四大类群土壤微生物冬季均最少。
     2.土壤微生物生物量碳(MBC)、土壤微生物生物量氮(MBN)与土壤微生物数量呈正相关,即:GX>GZ>GW>BZ>BW>L;不同深度土层的MBC、MBN含量略有差异,除流动沙丘样区外,其它样区的表层土壤中的MBC、MBN含量最高,并随着土壤深度的增加而急剧降低。流动沙丘没有明显的季节性差异,而其它样区的MBC、MBN都有显著甚至极显著的季节性差异,即秋季土壤的MBC、MBN含量最高,夏季、春季,冬季依次降低。
     3.不同类型样地中的三大类土壤水解酶(脲酶、蛋白酶和转化酶)具有显著差异(P<0.05),即:GX>GZ>BZ>GW>BW>L。除了流动沙丘,其它样区的土壤水解酶都随着土壤深度的增加而减少,且表层土壤中水解酶活性与3cm以下土层相比存在显著或极显著差异。同时,三大类土壤水解酶也存在季节差异。
     与水解酶不同,不同类型样地中的土壤多酚氧化酶活性为:GX>GZ>GW>BZ>BW>L;但多酚氧化酶活性与水解酶都随着土壤深度的增加而减少,且存在季节性差异。
     4.不同样地的土壤水分和pH值差异不显著。随着流动沙丘向半固定、固定沙丘发展,沙土中的粗砂粒含量逐渐降低,细砂含量逐渐升高;特别是当有生物结皮出现时,土壤中出现了粉砂。从剖面结构上分析,生物结皮对表层土壤中粒径的改善作用要远远大于其它土层。除全钾外,土壤有机碳、有机质、全氮、全磷等土壤养分均随着沙丘的固定,生物结皮的出现、发展而大量增加,即生物结皮的出现增加了土壤养分,改善了土壤肥力。各种土壤养分含量随季节变化差异显著。
     5.细菌、微生物总数和MBC、MBN具有显著的相关性,自生固氮菌、放线菌、霉菌与MBC、MBN则达到极显著水平,土壤微生物数量与土壤酶活性之间呈正相关,表层土壤有机质、有机碳、全氮以及全磷与土壤微生物、土壤酶以及土壤颗粒都具有不同程度的相关性。进而表明土壤微生物、土壤酶与土壤各因子之间是相互影响、互相依存的。
This paper was conducted to study on the kinds of vegetation plots and biological soil crusts in moving dunes, semi-fixed dunes and fixed dune on southeastern Naiman in Horqin sand land, Inner Mongolia. It was found that there were algal crusts with blue-green algae and green algae, as the main taxa, in semi-fixed sand dune. Besides algal crust, there were moss crusts, most of which were bryophytes, in the fixed sand dune, However, the formation of the algal crust dominant species are almost the same in fixed sand dunes and semi-fixed sand dunes , but the species are slightly different. We have studied the seasonal dynamics of the different stages of biological soil crusts and soil microbe quantity、soil microbial biomass carbon, nitrogen, soil enzyme activities and soil factors of the lower layers, and the relativity among them. The results are:
     1.Microbe quantities in different kinds of plots in Horqin sand land all show that bacteria >azotobacter >actinomyceto> fungi. Microbe quantities of different soil layers are slightly different. The microbe quantities of the moving dunes are the most plentiful in the lower floor of top layer, and that the top layer soil microbe quantities of the fixed and semi-fixed sand dunes are the most , and reduces gradually with increase of the soil depth. Microbe quantities of the different seasons are different, that is Summer >Autumn > spring > winter. And the four kinds of soil microbe quantities dynamic change differently each season in the respective soil layer of each plots, the bacteria and azotobacter quantities are the most in summer and autumn, whereas actinomyceto and fungi quantities are the most in autumn and summer, and the four kinds of microbial quantities are the least in winter .
     2. MBC, MBN and microbe quantities are positive correlation, that is GX>GZ>GW>BZ>BW>L. The MBC and MBN content of the different depth is different. Except the moving dunes, the content of MBC、MBN is the highest in the of top layer in the other kinds of plots, and reduce sharply with the increase of the soil depth. The MBC and MBN content of the moving dunes is nearly the same each season, but there are prominent and even extremely prominent seasonal differences in the other plots. MBC, MBN content is most high in autumn, secondly is summer, spring, the content is the lowest in winter.
     3.The three soil hydrolases (urease, protease and invertase) have a prominent difference (P<0.05) in different kinds of plots, that is GX>GZ>BZ>GW>BW>L. Except moving dunes, in the other kinds of plots, soil hydrolase activity is reduced with the increase of the soil depth, and compared with under 3cm soil layers, the top layer is the prominent or extremely prominent difference. At the same time, three soil hydrolases are also different each season.
     As to hydrolase, the polyphenol oxidase activities in different kinds of plots are that GX>GZ>GW>BZ>BW>L. The oxidase activities,which are much similar to hydrolase, are reduced with the increase of the soil depth, and there are the seasonal differences at the same time.
     4. Soil moisture and pH are different in the different kind of plots, but not obvious. As the moving dunes evolved towards the semi-fixed sand dunes, fixed sand dune, the biological soil crusts emerged. In the process of development, the coarse sand content decreased gradually, fine sand content gradually increased, and when there were biological soil crusts, the silt emerged. From section plane of the structure, biological soil crusts should better improve soil particle on the top layer than below the soil surface.
     With the sand dune fixed and biological soil crusts emerged and developed, except total potassium, the soil organic carbon, organic matter, total nitrogen, total phosphorus and other soil nutrients substantially increased. Biological soil crust increased soil nutrients, improved soil fertility. And the range of soil nutrient content with the seasonal changes were obvious differences.
     5. Bacteria and the total number of soil microbes have correlation significantly with MBC、MBN, the rest up to very significantly. The soil microbe quantities have a positive correlation with soil enzyme activity. The surface soil organic matters, organic carbons, total nitrogens as well as total phosphorus have different degrees of relevance with soil microbes,soil enzymes activity and soil particles. The results show that soil microbes, soil enzymes and the various soil factors are interdependent and affect each other.
引文
[1] Singer M.Physical properties of arid region soils. In: Skujins J.ed. Semiarid lands and deserts: soils resource and reclamation[J], New York: Marcel Dekker,1991.81-109.
    [2] Harper, K. T. & J. R. Marble. A role for non-vascular plants in management of arid and semi-arid rangelands[A].In Tueller, P. T. (ed). Application of plant sciences to Rangeland Management and Inventory[C]. Amsterdam: Martinus Nijhoff / W. Junk. 1998,135-169.
    [3] Eldridge D J, Greene R S B. Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia [J].Australia Journal of Soil Research,1994, 32:389-415.
    [4] West, N. E. Structure and function of microphytic soil crusts in wildland ecosystems of arid and semi-arid regions[J]. Advances in Ecological Research,1990,20:179-223.
    [5] Williams, J. D., J. P. Dobrowolski & N. E. West. Microbiotic crust influence on unsaturated hydraulic conductivity[J]. Arid Soil Research and Rehabilitation,1999,13:145-154.
    [6]徐杰,白学良,田桂泉,等.干旱半干旱地区生物结皮藓类植物氨基酸和营养物质组成特征及适应性分析.生态学报,2005a,25(6):1247-1255.
    [7]徐杰,白学良,杨持,等.固定沙丘结皮层藓类植物多样性及固沙作用研究.植物生态学报,2003.27:545-551.
    [8] USDI.Biological Soil Crusts:Ecology and Management[M]. USDI Bureau of land Management, Denver CO.,2001,6Pp.
    [9]邵玉琴,赵吉.库布齐固定沙丘土壤微生物数量与土壤生态因子的研究[J].内蒙古大学学报(自然科学版),1997,28(5):715-719.
    [10]刘丽燕,吾尔妮莎·沙衣丁,阿不都拉·阿巴斯.荒漠化地区生物结皮的研究进展[J],菌物研究2005,3(4):26-29.
    [11]吴楠,潘伯荣,张元明.土壤微生物在生物结皮形成中的作用及生态学意义[J].干旱区研究,2004,21(4):444-450.
    [12]王秀云,王林霞.Distribution and ecological environment of microorganism In Shanshan sand hill[J].旱区研究.1991,8(4) :30-32
    [13] Greene RSB, ChanresCJ.The effect of fire on the soil of cla degraded semiarid woodland.ICrypiogam cover and physic Microphological properties[J]. Australian J Soil Res,1990:755-777
    [14] Lynch J M , Bragg E. Microorganisms and soil aggregate stability[J].A dvances in Soil Science,1985,(2):133-171.
    [15]张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报,2005,50(1): 42-47.
    [16]陈祝春,李定淑.科尔沁沙地奈曼旗固沙林地土壤微生物区系动态[J].中国沙漠,1992, 12 (3):18-21.
    [17]周智彬,李培军,徐新文,等塔里木沙漠公路防护林土壤微生物的生态分布特征[J].水土保持学报,2002,16(3):47-59.
    [18]吴楠,潘伯荣,张元明,等.古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征[J].应用于环境生物学报,2005,11(3):249-353.
    [19]邵玉琴,赵吉,包青海,等.沙坡头固定沙丘结皮层的微生物区系动态[J].中国沙漠,2002,22(1):298-303.
    [20]邵玉琴,赵吉.草原沙地微生物结皮与固沙作用的研究[J],农业环境科学学报,2004,23(1): 94-97.
    [21] Venkatesward B,Rao AV. Distribution of microorganism in stabilized and unstabilized sand dunes of the India desert[J].Journal of Arid Environment,1981(4):1302-1311.
    [22] Hwakes C.V.,Flechnier.VR.Biological soil crusts in a Xeric Florida Shrublnad: CmoPostiion Abundnace,and Spatial Heetrogeneytiy of crust with different disurbrance histories[J].Microbial Ecology,2002,43:l-12.
    [23]吴楠,张元明,王红玲,等.古尔班通古特沙漠生物结皮固氮活性[J].生态学报.2007,27(9): 3785-3793.
    [24]康金花,关桂兰,郭沛新,等.陆生固氮蓝藻对土壤环境的影响[J].干旱区研究,1998,15(3): 30-33.
    [25] Evans R.D.,Ehleringer J.R.A break in the nitrogen cycle in arid lands.Evidence fromδ15N of soils[J].Oecologia,1993,94:314-317.
    [26] Evans R.D.,Belnap J.Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem[J].Ecology,1999,80:150-160.
    [27] Belnap J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts[M]. In: Belnap J, Lange OL (eds) Biological Soil Crusts: Structure, Function, and Management, vol 150. Springer-Verlag,Berlin,2001pp 241-261.
    [28] Harper K T. The influence of biological soil crusts on mineral uptake by assobiated vascular plants[J].Journal of Arid Enivironment,2001,47:347-357.
    [29] Shields L.M.,Durrell L.W.Algae in relation to soil fertility[J]. Botanical Review, 1964, 30:92-128.
    [30] Rogers S L,Burns R G.Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum[J]. Biology and Fertility of Soils,1994,18:209-215.
    [31] DeFalco L.A. Influence of cryptobiotic crusts on winter annuals and foraging movements of the desert tortoise.In:Department of Biology[J].Colorado State University,Fort Collins, CO,1995,p 48.
    [32] Belnap J., Prasse R.,Harper K.T. Influence of biological soil crusts on soil environments and vascular plants[M].In: Belnap J, Lange OL (eds) Biological Soil Crusts: Structure, Function, and Management, vol 150. Springer-Verlag, Berlin, 2001pp 281-300.
    [33] Myalnad H.F.MclntoshT.H.,Availbaility of biologically fixed at mospheric nitrogen 15 to higher Planst[J].Nature,1996,209:421-422.
    [34] BeymerR.J.,KloPaetk.J.M..Potential contribution of carbon by micorphytic crusts in pinyonjuniper woodlnads[J].Ardisoil res.rehab,1991,5:187-198.
    [35] Helm R F, et al. Structural characterization of the released polysaccharide of desiccation-tolerant Nostocco renzuue DRH-1[J].J Bacteriol,2000,182:974.
    [36]陈兰周,刘永定,宋立荣.微鞘藻胞外多糖在沙漠土壤成土中的作用[J],水生生物学报,2002,26(2):156-159.
    [37]胡春香,刘永定,张德禄,等.荒漠藻结皮的胶结机理闭[J].科学通报,2002,47(12):931-937.
    [38]胡春香,张德禄,刘永定.干旱区微小生物结皮中在类研究的新进展[J].自然科学通报,2003,13(8):791-795.
    [39]王伟波,杨翠云,唐东山,等.实验室条件下沙埋对人工藻结皮生物量、光合活性和胞外多糖的影响[J],中国科学,2007,37(2):241-245.
    [40] BowkerM A, Belnap J. Predictive modeling of biological soil crusts can be used as a tool for better range management[C].Ecological Society of America Annual Meeting Abstracts,2004,89:58.
    [41]胡春香,刘永定,宋立荣,等.半荒漠藻结皮中藻类的种类组成和分布[J].应用生态学报,2000, 11(1):61-65.
    [42]胡春香,刘永定.土壤藻生物量及其在荒漠结皮的影响因子[J].生态学报.2003,23 (2) :284-291.
    [43]周志刚,程子俊,刘志礼.沙漠结皮中藻类生态的研究[J].生态学报.1995,15(4):385-391.
    [44]张丙昌,张元明,赵建成.古尔班通古特沙漠生物结皮藻类的组成和生态分布研究[J].西北植物学报.2005,25(10):2048-2055.
    [45]赵建成,张丙昌,张元明.新疆古尔班通古特沙漠生物结皮绿藻研究[J].干旱区研究.2006, (2):189-194.
    [46]张丙昌,张元明,赵建成,等.古尔班通古特沙漠生物结皮不同发育阶段中藻类的变化[J].生态学报.2009,29(1):9-17.
    [47]吴玉环,黄国宏,高谦.苔藓植物对环境变化的响应及适应性研究进展[J],应用生态学报,2001,12(6):943-946.
    [48]陈邦杰主编.中国藓类植物属志[M].北京:科学出版社,1963.27-30.
    [49]田桂泉,白学良,徐杰,等.固定沙丘生物结皮层藓类植物形态结构及其适应性研究[J].中国沙漠,2005,25(2):249-255.
    [50]张元明,曹同,潘伯荣.旱与半干旱地区苔藓植物生态学研究综述[J],生态学报,2002,22(7):1129-1134.
    [51]吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998.23-148.
    [52]石庆辉,刘家琼.中国科学院兰州沙漠研究所沙波头沙漠试验研究站[M].沙漠生态系统研究.兰州:甘肃科学与技术出版社.1995,105-115.
    [53] Eldridge, D. J. Cryptogams, Vascular plants, and soil hydrological relations: some preliminary results from the semiarid woodlands of eastern Australia[J].Great Basin Naturalist,1993.53(1),: 48-58.
    [54] Moore C J. Factors determining the spatial distribution of some coastal sand dune mosses[M]. Ph.D. dissertation,Monash University, Melbourne,1980.
    [55] Kidron G J. Microclimate control upon sand microbiotic crusts, Western Negev Desert, Israel [J].Geomorp.,2000,36(1-2):1-15.
    [56]李新荣,贾玉奎,龙立群,等干旱半干旱地区土壤微生物结皮的生态学意义及若干进展[J].中国沙漠,2001,21(1):4-10.
    [57]段争虎,刘新民,屈建军.沙坡头地区土壤结皮形成机理的研究[J],干旱区研究,1996,13(2): 31-36.
    [58] Fearnehough W., Fullen M.A., Mitchell DJ,et al. Aeolian deposit ion and its effects on soil and vegetation changes on stabilized desert dunes in northern China [J].Geomorphology, 1998,23:171-182.
    [59]齐雁冰,常庆瑞,惠泱河.高寒地区人工植被恢复过程中沙表生物结皮特性研究[J].干旱地区农业研究,2006,24(6):98-102
    [60]李守中,郑怀舟,李守丽,等.沙坡头植被固沙区生物结皮的发育特征[J].生态学杂志.2008,27(10):1675-1679.
    [61]肖波,赵允格,邵明安.陕北水蚀风蚀交错区两种生物结皮对土壤理化性质的影响[J].生态学报,2007,27(11):4662-4670.
    [62]方海燕,屈建军,俎瑞平,等.防沙工程的结皮效应研究[J].水土保持学报,2005, 19(2):17-20.
    [63]吕贻忠,杨佩国.荒漠结皮对土壤水分状况的影响[J].干旱区资源与环境,2004, 18(2):76-79.
    [64] Belnap, J.Recovery rates of cryptobiotic crusts: inoculant use and assessment methods[J].Great Basin Naturalist,1993.53:89-95.
    [65]李守中,肖洪浪,宋耀选,等.腾格里沙漠人工固沙植被区微生物结皮对降水的拦截作用[J].中国沙漠,2002,22(6):612-616.
    [66] EldridgeDJ,Tozer M.E, SlangenS. Soil hydrology is in dependent ofmicrophytic crust cover: further evidence from a wooded semiarid Australian rangeland [J].Arid Soil Research and Rehabilitation,1997,11:113-126.
    [67] Belnap J, Lange O L (Eds.). Biological Soil Crusts: Structure, Function and Management[M]. Heidelberg: Springer,2003.371.
    [68] Brotherson JD, Rushforth SR. Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument [J].GreatBasin Naturalist,1983,43:73-78.
    [69] Williams J D, Dobrowolski J P, West N E and Gillette D A. Microphytic crust influences on wind erosion.Transactions of the American Society of Agricultural Engineers,1995,38(1):131-137.
    [70] Leys J F. Cover levels to control soil and nutrient loss from wind erosion on sandplain country in central N. S.W.[A].Proc.7th Biennial Conference of the Aust. Rangel. Soc.[C].Cobar.Oct.1992. 84-91
    [71] Kinnell P I A, Chartres C J, Wastson C L. The effect of fire on the soil in a degraded semiarid wooodland. II. Susceptibility of the soil to erosion by shallow rain-impact flow[J].Australian J. Soil Res.,1990,28:779-794.
    [72] Kleiner EF, Harper KT. Soil properties in relation to cry ptogamic ground cover in Canyonlands National Park [J].J.RangeManage.,1977,30:203-205.
    [73] Beymer R.J.and Klopatek J.M. Potential contribution of carbon by microphytic crusts in Pinyon-Juniper wood-lands[J].Arid Soil Research and Rehabilitation,1991,5:187-198.
    [74]闫德仁,薛英英,赵春光.沙漠地区生物土壤结皮层腐殖质特征[J].生态学杂志,2007, 26(12):2017-2020.
    [75] Tabatabai M A.Enzymes [M].In: Weaver R W, Augle S,Bottomly P J,et al.(Eds.), Methods of soil analysis·Part 2·Microbiological and biochemical properties, No·5·Soil Science Society of America, Madison,1994,775-833.
    [76]陈祝春.沙丘结皮层形成过程的土壤微生物和土壤酶活性[J].环境科学,1991,12(1):19- 23.
    [77]唐东山,王伟波,李敦海,等.人工藻结皮对库布齐沙地土壤酶活性的影响[J].水生生物学报,2007,31(3):339-344.
    [78]闫德仁.库布齐沙漠生物结皮层的肥岛特征研究[D].呼和浩特:内蒙古农业大学,2008:
    [79]王红,周大迈.土壤肥力分级的酶活性指标的研究进展[J].河北农业大学学报,2002, 25:60-62.
    [80]周礼恺.土壤酶学[M].北京:中国农业科技出版社,1987:167-208.
    [81]陈永胜.沙漠化土地治理中土壤微生物对生物结皮作用的研究[D].呼和浩特:内蒙古师范大学,2007.
    [82]Townshend J R G and Justice C O[M].Analysis of dynamics of African vegetation using the normalized difference vegetation index.Int.J.of Remote Sensing, 1986,12:1224-1242.
    [83] Belnap J, Harper K T and Warren S D. Surface disturbance of cryptobiotic soil crusts[M]: Nitrogenase activity, chlorophyll content, and chlorophyll degradation.Arid Soil Research and Rehabilitation,1994,8:1-8.
    [84]魏江春.沙漠生物地毯工程—干旱沙漠治理的新途径[J].干旱区研究,2005,22(3): 287-288.
    [85]姜凤岐,朱教君.浅谈沙区资源开发利用的生态观[M].生态学志,1993,12(3):44-46.
    [86]关文彬,谢春华,孙保平,等.荒漠化危害预警指标体系框架研究[J].北京林业大学学报,2001,23(1):44-47.
    [87]董光荣,吴波,慈龙骏,等.我国荒漠化现状、成因与防治对策[J]中国沙漠,1999,19(4):318-332.
    [88] CCICCD.China Country Paper to Combat Desertification[M].Beijing:China Forestry Publishing House,1996.18-31.
    [89]曹建军,魏洁,李小兰.内蒙古荒漠化现状与防治对策[J].内蒙古林业科技,2001增刊
    [90]赵哈林,赵学勇,张铜会,等.科尔沁沙地沙漠化过程及其恢复机理[M].北京:海军出版社,2003.
    [91]苏永中,赵哈林,张铜会,等.不同强度放牧后自然恢复的沙质草地土壤形状特征[J].中国沙漠,2002,22(4):333-338.
    [92]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,1999,49-45.
    [93]鲁如坤.土壤农业化学分析[M].北京:中国农业科技出版社,1999:1-247.
    [94]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [95]朱浩然编.中国淡水藻类[M],北京:科学出版社,1991.
    [96] Brostoff WN,Sharifi MR and Rundel PW. Photosynthesis of cryptobiotic crusts in a seasonally inundated system of pans and dunes at Edwards Air Force Base, Western Majare Desert[J], California:Laboratory studies,Flora,2002,197:143-151.
    [97]赵先丽,程海涛,吕国红,等.土壤微生物生物量研究进展[J],气象与环境学报,2006,22(4):68-72.
    [98]李新爱,肖和艾,吴金水等.喀斯特地区不同土地利用方式对土壤有机碳、全氮以及微生物生物量碳和氮的影响[J],应用生态学报,2006,17(10):1827-1831.
    [99] Lavrie A.T,Marty A A,Ruth D Y,et al.Forest floor microbiobiomass across a northern hardwaed successional sequence[J].Soil Biol Biochem,1998,31:431-439.
    [100]张其水,俞新妥.杉木连栽林地混交林土壤酶的分布特性的研究[J],福建林学院学报,1989,9(3):263-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700