陆地生态系统CO_2通量及其碳稳定同位素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳问题和地球息息相关,是当今科学家研究的热点。陆地生态系统碳源与碳汇研究是全球碳循环研究的核心问题之一。遥感、涡动协方差通量观测以及稳定同位素技术等的发展大大推动了陆地生态系统碳循环的研究进程。现阶段,模型是研究区域/全球陆地生态系统碳收支的重要手段之一。发展模型与通量及遥感数据融合,提高观测和模拟的精度,可以极大地加深对陆地生态系统碳循环的理解,模拟和预测。
     本文选取8个(Howland Forest, Harvard Forest, Wind River Forest, Rannells Prairie,Freeman Ranch, Chestnut Ridge, Metolius and Marys River)不同类型陆地生态系统作为研究对象,通过对对生态系统CO_2通量及其碳稳定同位素的观测和模拟,证实了大气边界层模型可以用于区域尺度碳通量的估算;发现了生态系统呼吸碳的稳定同位素与PPF、 TA和VPD正相关,与SWC负相关;警示了在利用碳同位素反演模型时,要考虑生态系统对碳稳定同位素判别A的年际变化。主要研究结果如下:
     1观测和比较了4个不同生态系统(Howland Forest, Harvard Forest, Wind RiverForest, Rannells Prairie)CO_2通量特点、年际变化、季节变化;解释了影响生态系统CO_2通量年际变化、季节变化的因素;发现了生长季的降水量是影响生态系统(除了Howland Forest)NEE年际变化的一个重要因子。
     2介绍了观测和模拟CO_2通量的方法,比较了各个通量模拟(观测)方法;分析了各个方法的不确定性影响因子。通量塔涡动协方差法的影响因子主要是:测量仪器的缺陷(比如:低波动使光谱失去能量);过度简单化理论假设(复杂下垫面的零假设);以及通量塔代表性误差(通量塔的位置是否能代表主要植被类型)。本研究所用的CBL反演模型的影响因子包括:CO_2测量误差(地表层和对流层);大气边界层高度和垂直交换速度的估算误差;以及对大气边界层的稳态假设超过了时间的范围。EC-MOD法估算NEE通量的影响因子在于:通量塔的测量结果误差;植被覆盖;模型结构;地点的代表性;以及对石化燃料的排放的忽视。
     3详细介绍了CBL模型。用CBL模型模拟了4个生态系统碳通量。发现了大气边界层高度的季节变化明显,7月最高,冬季偏低。并详细进行了CBL模型的一系列的误差分析,讨论了对于月平均尺度稳态大气边界层H2O和CO_2交换,评价了CBL模型模拟区域CO_2通量的成功和不足之处和需要注意事项。
     4评价了EC-MOD法对区域尺度碳通量的估算和分析了EC-MOD法估算的NEE通量误差。
     5分析了影响模拟值和观测值的不一致的原因。第一个不一致是CBL模型高估冬季通量(除了Wind River site),EC-MOD的模拟结果和塔的观测相似。影响CBL模型高估的原因是冬季石化燃料的排放。第二个不一致是因为尺度的不匹配,通常通量塔的测量值只代表几公里的地方特征,而模拟的NEE代表相对较大的空间面积(106km2),反演模型往往得出较小通量。6比较了8个不同生态系统(Howland Forest, Harvard Forest, Wind River Forest,Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius and Marys River fir)冠层上空大气CO_2碳稳定同位素δ(13)~C特点;发现了明显的δ(13)~C的季节变化和年际变化;分析了影响生态系统δ(13)~C年际变化、季节变化的因素。发展了生态系统冠层上空大气CO_2混合浓度及其碳稳定同位素δ(13)~C的变化关系相反,是植物光合作用对碳稳定同位素的判别的结果,反映了生物活动对大气层的作用。比较了不同生态系统大气边界层和对流层CO_2混合浓度和(13)~C的差的特点。7模拟了生态系统净碳交换的稳定同位素值(δ(13)~Cbio),比较了不同生态系统δ(13)~Cbio的特点。Rannells prairie的δ(13)~Cbio最小。对每一个生态系统,δ(13)~Cbio年际变化不大。相比之下,Harvard Forest各年一致性最强,Howland Forest年际变化较大。不同月份的δ(13)~Cbio变化也不大,Wind River Forest5-9月δ(13)~Cbio几乎一样,月变化最大的是Freeman Ranch和Rannells prairie。8观测和比较了生态系统呼吸碳的稳定同位素(δ(13)~CR)。生态系统δ(13)~CR的季节变化明显(特别是在针叶林生态系统),冬季δ(13)~CR低于生长季,出现夏季峰值。森林生态系统的δ(13)~CR值较高,介于-24‰和-30‰之间;草地生态系统δ(13)~CR值偏低,介于-12‰和-18‰之间。Freeman Ranch生态系统δ(13)~CR值变化幅度最大,介于-16‰和-30‰之间9详细分析了生态系统呼吸碳的稳定同位素和环境因子的关系。发现了生态系统冠层呼吸碳的稳定同位素与PPF、TA和VPD正相关,与SWC负相关。在周和水平的相关性高于月水平。10用通量权重法模拟了生态系统对碳稳定同位素的判别A,比较了不同方法(树木年轮晚材、叶子、keeling-plots和通量权重法)模拟的A值。并分析了A和环境因子的关系。森林生态系统的A的值介于17.3‰和20.0‰之间,平均值为18.5‰。不同方法估算的A比较结果显示了三个主要特点:1)在Wind River Forest, Keeling-plots估算的A比树木年轮碳同位素值(15-16.7‰)高1-2‰;2)Keeling-plots估算的A值与通量权重法估算的A值类似,平均值为~19‰(2002-2007at the Wind Riversite);3)叶子碳同位素值估算的A值与树木年轮碳同位素值估算的类似,但是比Keeling-plot估算的稍低。 A值与生长季可用水正相关。这主要是因为气孔对干旱胁迫的反应的结果。 A值的变化幅度18‰-20‰反映了Ci/Ca大概0.59-0.68的变化。11用不同方法估算了和比较了6个生态系统(Howland Forest, Harvard Forest, WindRiver Forest, Freeman Ranch, Metolius和Marys River)水分利用率WUE。FreemanRanch和Metolius的WUE较低。发现了生态系统的WUE与大气饱和压亏缺(VPD)负相关。Harvard Forest和Metolius Ponderosa Pine相关系数分别最高和最低。碳同位素法估算的生态系统水分利用效率与涡动协方差估算的WUE在Howland Forest, HarvardForest, Wind River Forest and Metolius Ponderosa Pine Forest高度一致。涡动协方差法低估了(与碳同位素法相比)Freeman Ranch和Marys River Fir两个生态系统水分利用效率。可能因为Freeman Ranch是一个C3和C4植物混合草地生态系统;Marys River Fir临海,受海雾信号影响。LE高估了冠层蒸散,造成EC WUE高于(13)~CR-WUE。
     12综合评价了4个生态系统。Harvard Forest净生态系统交换(NEE)和生态系统总初级生产力(GPP)保持最大。Howland forest生态系统的呼吸(R)比较大。森林生态系统的储碳能力大于草地,三个森林生态系统的储碳能力顺序是: Harvard Forestsite> Howland Forest> Wind River Forest。 Howland Forest的年净碳吸收量可以和Harvard Forest相比,与Harvard Forest不相上下。但是Howland Forest生长季长与Harvard Forest。Harvard Forest的最大吸收峰大于Howland Forest。研究中也分析了4个生态系统储碳能力都有增加的趋势和所在区石化燃料排放增加的趋势(特别是Harvard Forest)。
Carbon problem is a hot topic recently which seems to hit the scientific creationists thehardest, also has interesting implications for today’s earth. Research on carbon sink/source ofterrestrial ecosystem is one of the main issues of global carbon cycle. The rapid developmentof remote sensing, eddy covariance technology flux measurement and stable isotopetechnology have greatly improved the progress of research on terrestrial ecosystem carboncycle. Currently, modeling is one of the tools to study regional/global terrestrial ecosystemcarbon cycle. Developing of fusion approach (flux data, remote sensing data and model),increasing the precision of measurement and modeling could greatly improve ourunderstanding/modeling/predicting of terrestrial ecosystem carbon cycle.
     This study carefully selected8different terrestrial ecosystems (Howland Forest, HarvardForest, Wind River Forest, Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius andMarys River). By measure and model the ecosystem CO_2flux and its Carbon stable isotope,we suggest that the equilibrium boundary layer budget method can serve as a routine,diagnostic analysis to interpret long-term NEE observations in flux networks, providing anintermediate-level analysis to complement aircraft/MODIS based integration efforts forestimates of continental carbon budget. We find that the carbon isotope composition ofecosystem respired CO_2is positive to PPF, TA and VPD, negative e to SWC. We noted theimportance of the variation of annual ecosystem(13)~C discrimination when using inversionmodel. The important results list as follows:
     1Measured and compared different ecosystem (Howland Forest, Harvard Forest, WindRiver Forest, Rannells Prairie) CO_2flux, interannual and seasonal variation. By understoodthe factors which affect the variation, we found out that the growing season precipitation wasthe main factor which could affect ecosystem interannual NEE variation.
     2Introduced and compared the approaches of study ecosystem CO_2flux. Also weanalyzed the factors that contribute to the uncertainty of each approach. The uncertainty intower eddy CO_2fluxes include but are not limited to: instrument deficiency (e.g. loss ofspectrum energy under low turbulence), oversimplification in theory (e.g. zero divergence incomplex terrain) and representative errors (e.g. tower locations not representative of dominant vegetation types). Uncertainties associated with the inverse modeling approach employed hereinclude: errors in the CO_2mixing ratio measurements (both near the surface and in the freetroposphere), unreliable estimates of boundary layer heights and vertical transport across thetop of the atmospheric boundary layer, and the assumption of an equilibrium boundary layerover time periods longer than synoptic scales. There are several sources of uncertaintyassociated with EC-MOD flux estimates, including uncertainties in the: eddy fluxmeasurements, land cover, model structural, representativeness of the AmeriFlux sitelocations (Xiao et al.2008,2001), and finally, the negligence of fossil CO_2fluxes.
     3Introduced the CBL model. We found the seasonal variation of BLH, highest at July,lower at winter. We conducted a series uncertainty analysis of CBL model and discussedtoward equilibrium H2O and CO_2exchange in the ABL at monthly time scales. We evaluatedthe contribution and limitation of CBL model.
     4We evaluated the EC-MOD approach, and discussed the uncertainty of estimating NEE.
     5We analyzed the factors which attributes to the difference in the model and tower NEE.The first type of systematic differences was found in the wintertime fluxes, in which CBLmodel fluxes were consistently larger than tower NEE at all but Wind River site. The EC-MOD approach consistently predicted wintertime fluxes closer to the tower measurementsthan the CBL model, irrespective of EC-MOD spatial scale. The factor influence wintertimefluxes is the effects of fossil fuel emission which could proved by the regional fossil fuelfluxes of CO_2estimated from CO data measured and δ(13)~C values associated with net CO_2fluxes (δ(13)~Cnet). The second type of systematic differences results from a scale mismatchbetween tower and model footprints. Inversion models relying on mixing ratio observationshave often reported smaller fluxes when compared to tower-based NEE measurements.
     6We compared the Midday CO_2mixing ratios and δ(13)~C of atmospheric CO_2measuredabove the canopy at8ecosystem(Howland Forest, Harvard Forest, Wind River Forest,Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius and Marys River fir). We foundthe seasonal interannual variation. We analyzed the factors which affect the variation. Wefound the reverse variation of CO_2mixing ratios and δ(13)~C of canopy atmospheric CO_2whichcaused by plant photosynthetic discrimination of(13)~C. Also we compared the CO_2mixingratios and its δ(13)~C between canopy and BL.
     7We estimated the ecosystem (13)~C values associated with NEE (δ(13)~Cbio), and comparedδ(13)~Cbioof different8ecosystems. Rannells prairie showed the lowest δ(13)~Cbiovalues. Generallyspeaking, δ(13)~Cbiokept consistent (better consistence appeared at Harvard Forest,the greaterinterannual variation appeared at Howland Forest). Monthly δ(13)~Cbioshowed also consistent(δ(13)~Cbioof Wind River almost the same from May to September. the greater monthly variation appeared at Freeman Ranch and Rannells prairie).
     8We measured and compared the carbon isotope ratios of ecosystem respired CO_2(δ(13)~CR). Higher δ(13)~CRvalues (-24‰和-30‰) appeared at forest ecosystem and lower δ(13)~CRvalues (-12‰and-18‰) appeared at grassland. Seasonal fluctuations of δ(13)~CRwererepeatedly observed in many of our study sites. Generally speaking, values of δ(13)~CRare moredepleted in winter, with progressive enrichment from the onset of a growing season to the endof summer. This seasonal pattern of δ(13)~CRappeared to be more consistent in coniferousforests。Freeman Ranch showed a bigger variation (-16‰and-30‰).
     9We analyzed the relationship between δ(13)~CRand environmental variables on weeklyand monthly time scales and found out that δ(13)~CRwere positive to PPF TA and VPD,negative to SWC (higher correlation coefficient at weekly scale).
     10we used a flux-weighted approach to estimate canopy-level(13)~C of plantdiscrimination (ΔA) for each of the study sites and compared the ΔA value of differentecosystem. These observation-based estimates of ΔA fall in the range between17.3‰and20.0‰with an average ca.18.5‰in forest ecosystems. Our estimates are very close to thevalue expected from wood cellulose samples that was thought to be most appropriate foratmospheric inversion analysis The Latewood cellulose was extracted from tree ring samplesand analyzed for(13)~C ratios from1996to2009. These ΔA estimates from woody tissues werecompared with those derived from bulk leaves, Keeling-plots and the flux-weighted approach.Our results suggest3important patterns:(1) ΔA values derived from nocturnal air samples(Keeling-plots) were consistently2-4‰higher than those derived from wood cellulose (15-16.7‰),(2) ΔA values derived from Keeling-plots were similar to those derived from theflux-weighted approach, with an average value~19‰between2002-2007at the Wind Riversite, and (3) bulk-leaf ΔA values were close but somewhat smaller than Keeling-plot ΔA. Weanalyzed the relationships between annual-mean ΔA and the growing-season water availability.ΔA positive correlation was observed between ΔA and water availability within a site, likelyas a result of a general stomata response to drought stress during dry years. AΔ change from18‰to20‰approximately corresponds to a change from0.59to0.68in Ci/Ca.
     11We estimated and compared the ecosystem WUE at6ecosystems (Howland Forest,Harvard Forest, Wind River Forest, Freeman Ranch, Metolius and Marys River). The WUE ofFreeman Ranch and Metolius showed the lower values. We found a strong negativecorrelation between WUE and VPD for all sites, with Harvard Forest site and MetoliusPonderosa Pine site showing the highest and lowest sensitivity, respectively. We comparedecosystem WUE calculated using eddy covariance flux (EC WUE) and carbon isotope (δ(13)~CR-WUE) measurements. There was good agreement between WUE values calculated using eddy covariance flux and carbon isotope measurements at all but the Freeman Ranch site. EC-WUEvalues underestimate long-term expected WUE at Freeman Ranch site (an open savannasystem) and Marys River Fir (a coastal forest with frequent fog formation) site. At these twosites, LE likely overestimate canopy transpiration, resulting in an underestimation ofecosystem WUE when compared to(13)~C-based WUE values.
     12We evaluated the main4ecosystems. Harvard Forest consistently showed the greatestNEE and GPP, while Howland forest showed the greatest R. The net annual C uptake in theHowland Forest is comparable to Harvard Forest, the longer growing season in HowlandForest compensates with the result that both sites have the similar annual rates of C storage.Although maximum rates of uptake are greater at Harvard Forest than at Howland Forest. Theuptake ability of the forest ecosystems (Harvard Forest site> Howland Forest> Wind RiverForest) were greater than grasslands. Also we analyzed the increasing tendency of CO_2uptakeability and regional fossil fuel emission (especially at Harvard Forest).
引文
李克让.2002.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社:209~233
    李玉强,赵哈林,陈银萍.2005.陆地生态系统碳源与碳汇及其影响机制研究进展.生态学杂志,24(1):37~42
    林光辉.1995.柯渊.稳定同位素技术与全球变化研究.见:李博.现代生态学讲座.北京:科学出版社:1161~188
    戚培同,2008.青藏高原高寒草甸生态系统的水分收支与生态系统水分利用效率的研究.[硕士学位论文].青海:中国科学院研究生院
    秦钟.2005.华北平原农田水热、CO2通量的研究.[博士学位论文].杭州:浙江大学
    严燕儿,赵斌,郭海强,吴千红.2008.生态系统碳通量估算中耦合涡度协方差与遥感技术研究进展地球科学进展,23(8):884~894
    冉慧,邢立新,潘军,黄舒城,尤金凤,张淑燕.2010.遥感技术与陆地生态系统碳循环研究.环境科学与管理,35(3):117~121
    王效科,白艳莹,欧阳志云,苗鸿.2002.全球碳循环中的失汇及其形成原因.生态学报,22(1):94~104
    于贵瑞.2003.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社:73~77
    于贵瑞,孙晓敏.2008.中国陆地生态系统碳通量观测技术及时空变化特征.北京:科学出版社:237~245
    于贵瑞,王秋凤,朱先进.2011.区域尺度陆地生态系统碳收支评估方法及其不确定性.地理科学进展,30(1):103~113
    中国发展门户网.2005.中国陆地碳汇抵消28%~37%的工业二氧化碳总排放量.http://cn.chinagate.cn/development/2009-05/12/content_17765489_2.html [2012-01-12]
    Bakwin P S, Tans P P, Hurst D F, Zhao C L.1998(a). Measurements of carbon dioxide on very tall towers:results of the NOAA/CMDL program. Tellus Series B-Chemical and Physical Meteorology,50(5):401~415
    Bakwin, P S, Tans P P, White J W C, Andrew R J.1998(b). Determination of the isotopic (13C/12C)discrimination by terrestrial biology from a global network of observations, Global BiogeochemCycles,12,555~562
    Bakwin P S, Davis K J, Yi C, Wofsy S C, Munger J W, Haszpra L, Barcza Z.2004. Regional carbondioxide fluxes from mixing ratio data. Tellus Series B-Chemical and Physical Meteorology,56(4):301~311
    Baldocchi D.2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange ratesof ecosystems: past, present and future. Global Change Biology,9:1~14
    Baldocchi D.2008. Breathing of the terrestrial biosphere: lessons learned from a global network of carbondioxide flux measurement systems. Aust.. Bot.,56(1),1-26
    Baldocchi D, Falge E, Gu L H, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, EvansR, Fuentes J, Goldstein A, Katul G, Law B, Lee X H, Malhi Y, Meyers T, Munger W, Oechel W,Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K,Wofsy S.2001. FLUXNET: Anew tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor,and energy flux densities. Bulletin of the American Meteorological Society,82(11):2415~2434
    Battle M, Bender M L, Tans P P, White J W C, Ellis J T, Conway T, Francey R J.2000. Global carbonsinks and their variability inferred from atmospheric CO2and δ13C. Science,287(5462):2467~2470
    Betts A K, Ridgway W.1989. Climatic equilibrium of the atmospheric convective boundary-layer over atropical ocean, Journal of the Atmospheric Sciences,46(17):2621~2641
    Betts A K.2000. Idealized model for equilibrium boundary layer over land. Journal of Hydrometeorology,1(6):507~523
    Betts A K, Helliker B, Berry J.2004. Coupling between CO2, water vapor, temperature, and radon and theirfluxes in an idealized equilibrium boundary layer over land. Journal of Geophysical Research,109,D18103, doi:10.1029/2003JD004420
    Bowling D R, McDowell N G, Bond B J, Law B E, Ehleringer J R.2002.13C content of ecosystemrespiration is linked to precipitation and vapor pressure deficit. Oecologia,131:113~124
    Cao M K, Woodward FI.1998. Dynamic responses of terrestrial ecosystem carbon cycling to globalclimate change. N ature,393:249~252
    Chen B Z, Chen J M, Mo G, Black A, Worthy D E J.2008. Comparison of regional carbon flux estimatesfrom CO2concentration measurements and remote sensing based footprint integration. GlobalBiogeochemical Cycles,22: GB2012, doi:10.1029/2007GB003024
    Ciais P, Tans P P, Trolier M, White J W C, Francey R J.1995. A large northern-hemisphere terrestrial CO2sink indicated by the13C/12C ratio of atmospheric CO2. Science,269:1098~1102
    Ciais P, Meijer H A J.1998. The18O/16O isotope ratio of atmospheric CO2and its role in global carboncycle research. In: Griffiths H. Stable Isotopes. Oxford,U.K.: BIOS Scientific Publishers Ltd:409~431
    Ciais P, Friedlingstein P, Schimel D S, Tans P P.1999. A global calculation of the δ13C of soil respiredcarbon: implications for the biospheric uptake of anthropogenic CO2. Global Biogeochem Cycles,13:519~530
    Conway T J, Tans P P, Waterman L S, Thoning K W.1994. Evidence for interannual variability of thecarbon cycle from the national-oceanic-and-atmospheric-administration climate monitoring anddiagnostics laboratory global-air-sampling-network. Journal of Geophysical Research,99(D11):22831~22855
    Cramer W, Bondeau A, Woodward F I, Prentice C, Betts R A, Brovkin V, Cox P M, Fisher V, Foley J A,Friend A D, Kucharik C, Lomas M R, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C.2001. Global response of terrestrial ecosystem structure and function to CO2and climate change:results from six dynamic global vegetation models. Global Change Biol,7:357~373.
    Damesin C, LeLarge C.2003. Carbon isotope composition of current-year shoots from Fagus sylvatica inrelation to growth, respiration, and use of reserves. Plant Cell Environ,26:207~219
    de Arellano J V G, Gioli J B, Miglietta F, Jonker H, Baltink H, Hutjes R, Holtslag A.2004. Entrainmentprocess of carbon dioxide in the atmospheric boundary layer. Journal of Geophysical Research,109:D18110, doi:10.1029/2004JD004725
    Denmead O T, Raupach M R, Dunin F X, Cleugh H A, Leuning R.1996. Boundary layer budgets forregional estimates of scalar fluxes. Global Change Biology,2(3):255~264
    Denning A S, Fung I Y, Randall D.1995. Latitudinal gradient of atmospheric CO2due to seasonalexchange with land biota. Nature,376(6537):240~243
    Denning A S, Randall D A, Collatz G J, Sellers P J.1996. Simulations of terrestrial carbon metabolism andatmospheric CO2in a general circulation model.2.Simulated CO2concentrations. Tellus Series B-Chemical and Physical Meteorology,48(4):543~567
    Denning A S, Nicholls M, Prihodko L, Baker I, Vidale P L, Davis K, Bakwin P.2003. Simulated variationsin atmospheric CO2over a Wisconsin forest using a coupled ecosystem-atmosphere model. GlobalChange Biology,9(9):1241~1250
    Denning A S, Zhang N, Yi C X, Branson M, Davis K, Kleist J, Bakwin P.2008. Evaluation of modeledatmospheric boundary layer depth at the WLEF tower. Agricultural and Forest Meteorology,148(2):206~215
    Desai A R, Helliker B R, Moorcroft P R, Andrews A E, Berry J A.2010. Climatic controls of interannualvariability in regional carbon fluxes from top-down and bottom-up perspectives. Journal ofGeophysical Research,115, G02011, doi:10.1029/2009JG001122
    Desjardins R L, Hart R L, Macpherson J I, Schuepp P H, Verma S B.1992. Aircraft-based and tower-basedfluxes of carbon-dioxide, latent, and sensible heat. Journal of Geophysical Research,97(D17):18477~18485
    Dolman A J, Noilhan J, Durand P, Sarrat C, Brut A, Piguet B, Butet A, Jarosz N, Brunet Y, Loustau D,Lamaud E, Tolk L, Ronda R, Miglietta F, Gioli B, Magliulo V, Esposito M, Gerbig C, Korner S,Glademard R, Ramonet M, Ciais P, Neininger B, Hutjes R W A, Elbers J A, Macatangay R, SchremsO, Perez-Landa G, Sanz M J, Scholz Y, Facon G, Ceschia E, Beziat P.2006. The CarboEuroperegional experiment strategy. Bulletin of the American Meteorological Society,87(10):1367~1379
    Dolman A J, Gerbig C, Noilhan J, Sarrat C, Miglietta F.2009. Detecting regional variability in sources andsinks of carbon dioxide: a synthesis. Biogeosciences,6(6):1015~1026
    Ehleringer JR, Osmond B.1989. Stable isotopes. In Pearcy R W, Eheringer J R, Mooney H A. PlantPhysiological Ecology: Field Methods and Instrumentation. Chapman and Hall, New York,472
    Ehleringer J R, Hall A E, Farquhar G D.1993. Stable Isotopes and Plant Carbon-Water Relations. NewYork: Elsevier Ltd:20~555
    Enting I G, Trudinger C M, Francey R J.1995. A synthesis inversion of the concentration and delta-c-13ofatmospheric CO2. Tellus Series B-Chemical and Physical Meteorology,47(1-2):35~52
    Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P.1998. A large terrestrial carbonsink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science,282(5388):442~446
    Farquhar G D, O'Leary M H, Berry J A.1982. On the relationship between carbon isotope discriminationand the intercellular carbon dioxide concentrations in leaves. Aust J Plant Physiol,9:121~137
    Farquhar G D, Ehleringer J R, Hubick K T.1989. Carbon isotope discrimination and photosynthesis. Annu.Rev. Plant Physiol. Plant Mol Bio,40:503~537
    Fessenden, J.E. and J.R. Ehleringer.2003. Temporal variation in δ13C of ecosystem respiration in thePacific Northwest: links to moisture stress. Oecologia,136:129~136.
    Field, C.B., J. Merino and H.A. Mooney.1983. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia,60:384~389
    Fitzjarrald D R.2004. Boundary layer budgeting. In: Kabat P C, Claussen, M, Dirmeyer, P A, Gash J H C,Guenni L B. Vegetation, water, humans and the climate: a new perspective on an interactive system.New York: Springer-Verlag:189~196
    Fitzjarrald D R, Garstang M.1981. Vertical structure of the tropical boundary-layer. Monthly WeatherReview,109(7):1512~1526
    Flanagan, L B, Brooks J R., Varney G T, Berry S C.1996. Carbon isotope discrimination duringphotosynthesis and the isotope ratio of respired CO2in boreal forest ecosystems. Global BiogeochemCycles,10:629~640
    Flanagan LB, Ehleringer J R.1998. Ecosystem–atmosphere CO2exchange: interpreting signals of changeusing stable isotope ratios. Trends Ecol Evol,13:10~14
    Francey R J, Tans P P, Allison C E, Enting I G, White J W C Trolier M.1995. Changes in oceanic andterrestrial carbon uptake since1982. Nature,373:326~330
    Freedman J M, Fitzjarrald D R, Moore K E, Sakai R K.2001. Boundary layer clouds and vegetation-atmosphere Feedbacks. Journal of Climate,14(2):180~197
    Fung I, Field C B, Berry J A, Thompson M V, Randerson J T, Malmstrom C M, Vitousek P M, JamesCollatz G, Sellers P J, Randall D A, Denning A S, Badeck F, John J.1997. Carbon13exchangesbetween the atmosphere and biosphere. Global Biogeochem Cycles,11:507~533
    Gamon J A, Cheng Y F, Claudio H, MacKinney L, Sims D A.2006a. A mobile tram system for systematicsampling of ecosystem optical properties. Remote Sensing of Environment,103(3):246~254
    Gamon J A, Rahman A F, Dungan J L, Schildhauer M. Huemmrich K F.2006b. Spectral Network(SpecNet)-What is it and why do we need it?. Remote Sensing of Environment,103(3):227~235
    Gatti L V, Miller J B, Amelio M T S D, Martinewski A, Basso L S, Gloor M E, Wofsy S, Tans P.2010.Vertical profiles of CO2above eastern Amazonia suggest a net carbon flux to the atmosphere andbalanced biosphere between2000and2009. Tellus Series B-Chemical and Physical Meteorology,62B:581~594
    Gerbig C, Lin J C, Wofsy S C, Daube B C, Andrews A E, Stephens B B, Bakwin P S, Grainger C A.2003.Toward constraining regional-scale fluxes of CO2with atmospheric observations over a continent:2.Analysis of COBRA data using a receptor-oriented framework. Journal of Geophysical Research,108(D24), doi:10.1029/2003jd003770
    Ghashghaie J, Badeck F W, Lanigan G, Nogues S, Tcherkez G, Deleens E, Cornic G, Griffiths H.2003.Carbon isotope fractionation during dark respiration and photorespiration in C3plants. Phytochem Rev,2:145~161
    Gibert F, Schmidt M, Cuesta J, Ciais P, Ramonet M, Xueref I, Larmanou E, Flamant P H.2007. Retrievalof average CO2fluxes by combining in situ CO2measurements and backscatter lidar information.Journal of Geophysical Research,112(D10301), doi:10.1029/2006jd008190
    Gioli B, Miglietta F, De Martino B, Hutjes R W A, Dolman H A J, Lindroth A, Schumacher M, Sanz M J,Manca G, Peressotti A, Dumas E J.2004. Comparison between tower and aircraft-based eddycovariance fluxes in five European regions. Agricultural and Forest Meteorology,127(1-2):1~16
    GLOBALVIEW-CO2.2009. Cooperative Atmospheric Data Integration Project-Carbon Dioxide. CD-ROM,NOAA ESRL, Boulder, Colorado.[Also available on Internet via anonymous FTP toftp.cmdl.noaa.gov, Path: ccg/CO2/GLOBALVIEW],2009
    Gloor M, Bakwin P, Hurst D, Lock L, Draxler R, Tans P.2001. What is the concentration footprint of a talltower?. Journal of Geophysical Research,106(D16):17831~17840
    Goulden M L, Munger J W, Fan S M, Daube B C, Wofsy S C.1996. Measurements of carbon sequestrationby long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biology,2(3):169~182
    Gruber, N., C. D. Keeling, R. B. Bacastow, P. R. Guenther, T. J. Lueker, M. Wahlen, H. A. J. Meijer, W. G.Mook, and T. F. Stocker(1999), Spatiotemporal patterns of carbon-13in the global surface oceans andthe oceanic Suess effect, Global Biogeochem Cycles,13:307~335
    Gurney K R, Law R M, Denning A S, Rayner P J, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P,Fan S, Fung I Y, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, PeylinP, Prather M, Pak B C, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen C W.2002. Towardsrobust regional estimates of CO2sources and sinks using atmospheric transport models. Nature,415(6872):626~630
    Helliker B R, Berry J A, Betts A K, Bakwin P S, Davis K J, Denning A S, Ehleringer J R, Miller J B,Butler M P, Ricciuto D M.2004. Estimates of net CO2flux by application of equilibrium boundarylayer concepts to CO2and water vapor measurements from a tall tower. Journal of GeophysicalResearch,109(D20)
    Helliker B R, Berry J A, Betts A K, Bakwin P S, Davis K J, Ehleringer J R, Butler M P, Ricciuto D M.2005. Regional-scale estimates of forest CO2and isotope flux based on monthly CO2budgets of theatmospheric boundary layer. SEB Exp Biol Ser,77~92
    Hollinger D Y, Aber J, Dail B.2004. Spatial and temporal variability in forest-atmosphere CO2exchange.Global Change Biology,10(10):1689~1706
    Holzworth G.1972. Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout theContiguous United States. U. S. Research Triangle Park: North Carolina: Environmental ProtectionAgency (AP-101):4
    Houghton R A, Hobbie J E, Melillo J M, Moore B, Peterson B J, Shaver G R, Woodwell G M.1983.Changes in the carbon content of terrestrial biota and soils between1860and1980: A net release ofCO2to the atmosphere. Ecological Monographs,53:235~262
    Hurwitz M D, Ricciuto D M, Bakwin P S, Davis K J, Wang W G, Yi C X, Butler M P.2004. Transport ofcarbon dioxide in the presence of storm systems over a Northern Wisconsin forest. Journal of theAtmospheric Sciences,61(5):607~618
    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, WoollenJ, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C,Ropelewski C, Wang J, Roy Jenne, Dennis Joseph.1996. The NCEP/NCAR40-year reanalysis project,Bulletin of the American Meteorological Society,77(3):437~470
    Katul G, Lai C-T, Schafer K, Vidakovic B, Albertson J, Ellsworth D, Oren R.2001. Multiscale analysis ofvegetation surface fluxes: from seconds to years. Advances in Water Resources,24(9-11):1119~1132
    Keeling C D.1958. The concentration and isotopic abundances of atmospheric carbon dioxide in ruralareas. Geochim Cosmochim Acta,13(4):322~34
    Keeling C D, Whorf T P, Wahlen M, Van Der Plicht J.1995. Interannual extremes in the rate of rise ofatmospheric carbon dioxide since1980. Nature,375:666~670
    Keeling C D, Chin J F S, Whorf T P.1996. Increased activity of northern vegetation inferred fromatmospheric CO2measurements. Nature,382(6587):146~149
    Keeling C D, Piper S C, Bacastow R B, Wahlen M, Whorf T P, Heimann M, Meijer H A.2001. Exchangesof atmospheric CO2and13CO2with the terrestrial biosphere and oceans from1978to2000. In:Scripps Institution of Oceanography References Series. Scripps Institution of Oceanography: La Jolla,CA:1~89
    Keeling C D, Piper S C, Whorf T P, Keeling R F.2011. Evolution of natural and anthropogenic fluxes ofatmospheric CO2from1957to2003. Tellu, Ser B,63:1~22
    Keitel C, Adams M A, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A.2003. Carbon andoxygen isotope composition of organic compounds in the phloem sap provides a short-term measurefor stomatal conductance of European beech (Fagus sylvatica L.). Plant Cell Environ,26:1157~1168
    Kim J, Verma S B.1991. Modeling canopy stomatal conductance in a temperate grassland ecosystem.Agricultural and Forest Meteorology,55(1-2):149~166
    Knapp A K.1984. Water relations and growth of3grasses during wet and drought years in a tallgrassprairie. Oecologia,65(1):35~43
    Knohl A, Werner R A, Brand W A, Buchmann N2005. Short-term variations in δ13C of ecosystemrespiration reveals link between assimilation and respiration in a deciduous forest. Oecologia,142:70~82
    Lai C T, Schauer A J, Owensby C, Ham J M, Ehleringer J R.2003. Isotopic air sampling in a tallgrassprairie to partition net ecosystem CO2exchange, Journal of Geophysical Research-Atmosphere,108(D18)4566, doi:10.1029/2002JD003369.
    Lai C T, Ehleringer J R, Tans P, Wofsy S C, Urbanski S P, Hollinger D Y.2004. Estimating photosynthetic13C discrimination in terrestrial CO2exchange from canopy to regional scales. Global BiogeochemicalCycles,18GB1041, doi:10.1029/2003GB002148
    Lai C T, Ehleringer J R, Schauer A J, Tans P P, Hollinger D Y, Paw U K T, Munger J W, Wofsy S C.2005.Canopy-scale δ13C of photosynthetic and respiratory CO2fluxes: observations in forest biomes acrossthe United States. Global Change Biology,11(4):633~643
    Lai C T, Schauer A J, Owensby C, Ham J M, Helliker B, Tans P P, Ehleringer J R.2006a. Regional CO2fluxes inferred from mixing ratio measurements: estimates from flask air samples in central Kansas,USA, Tellus Series B-Chemical and Physical Meteorology,58(5):523~536
    Lai C T, Riley W, Owensby C, Ham J, Schauer A, Ehleringer J R.2006b. Seasonal and interannualvariations of carbon and oxygen isotopes of respired CO2in a tallgrass prairie: Measurements andmodeling results from3years with contrasting water availability, Journal of Geophysical Research,111(D8)
    Lai C T, Ehleringer J R, Bond B J, Paw U K T.2006c. Contributions of evaporation, isotopic non-steadystate transpiration and atmospheric mixing on the δ18O of water vapour in Pacific Northwestconiferous forests. Plant, Cell&Environment,29(1):77~94
    Larson V E, Volkmer H.2008. An idealized model of the one-dimensional carbon dioxide rectifier effect.Tellus Series B-Chemical and Physical Meteorology,60(4):525~536
    Law R M, Rayner P J, Denning A S, Erickson D, Fung I Y, Heimann M, Piper S C, Ramonet M, TaguchiS, Taylor J A, Trudinger C M, Watterson I G.1996. Variations in modeled atmospheric transport ofcarbon dioxide and the consequences for CO2inversions, Global Biogeochem Cycles,10(4):783–796
    Le Quere C, Raupach M R, Canadell J G, Marland G, Bopp L, Ciais P, Conway T J, Doney S C, Feely R A,Foster P, Friedlingstein P, Gurney K, Houghton R A, House J I, Huntingford C, Levy P E, Lomas M R,Majkut J, Metzl N, Ometto J P, Peters G P, Prentice I C, Randerson J T, Running S W, Sarmiento J L,Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf G R, Woodward F I.2009. Trends in thesources and sinks of carbon dioxide. Nature Geoscience,2(12):831~836
    Levy P E, Grelle A, Lindroth A, Molder M, Jarvis P G, Kruijt B, Moncrieff J B.1999. Regional-scale CO2fluxes over central Sweden by a boundary layer budget method. Agricultural and Forest Meteorology,98-9:169~180
    Lloyd J, Farquhar G D.1994.13C discrimination during CO2assimilation by the terrestrial biosphere,Oecologia,99:201~215
    Lloyd J, Kruijt B, Hollinger D Y, Grace J, Francey R J, Wong S C, Kelliher F M, Miranda A C, Farquhar GD, Gash J H C, Vygodskaya N N, Wright I R, Miranda H S, Schulze E D.1996. Vegetation effects onthe isotopic composition of atmospheric CO2at local and regional scales: Theoretical aspects and acomparison between rain forest in Amazonia and a boreal forest in Siberia, Aus J Plant Physiol,23(3):371~399
    Lloyd J, Francey R J, Mollicone D, Raupach M R, Sogachev A, Arneth A, Byers J N, Kelliher F M,Rebmann C, Valentini R, Wong S C, Bauer G, Schulze E D.2001. Vertical profiles, boundary layerbudgets, and regional flux estimates for CO2and its13C/12C ratio and for water vapor above aforest/bog mosaic in central Siberia. Global Biogeochemical Cycles,15(2):267~284
    Mahecha M D, Reichstein M, Jung M, Seneviratne S I, Zaehle S, Beer C, Braakhekke M. C, Carvalhais N,Lange H, Le Maire G.2010. Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple timescales, Journal of Geophysical Research-Biogeosciences,115,G02003, doi:10.1029/2009JG001016
    Mahrt L.1998, Flux sampling errors for aircraft and towers. Journal of Atmospheric and OceanicTechnology,15(2):416~429
    Masarie K A, Tans P P.1995. Extension and integration of atmospheric carbon-dioxide data into a globallyconsistent measurement record. Journal of Geophysical Research,100(D6):11593~11610
    McDowell NG, Bowling D R, Schauer A, Irvine J. Bond B J, Law B E Ehleringer J R.2004. Associationsbetween carbon isotope ratios of ecosystem respiration, water availability and canopy conductance.Global Change Biol,10:1767~1784
    McNaughton K G.1989. Regional interactions between canopies and the atmosphere. In: Russell G,Marshall B, Jarvis P G. Plant Canopies: Their Growth, Form and Function-Society for ExperimentalBiology Seminar Series,31. New Rochelle, New York, USA: Cambridge University Press:63~82
    Melgarejo J W, and Deardorff J W.1974. Stability function for the boundary layerresistance laws basedupon observed boundary layer heights. Journal of the Atmospheric Sciences,31:1324~53
    Miller J B, Tans P P, White J W C, Conway T J, Vaughn B.2003. The atmospheric signal of terrestrialcarbon isotopic discrimination and its implication for partitioning carbon fluxes, Tellus Se. B,55:197~206
    Moffat A M, Papale D, Reichstein M, Hollinger D Y, Richardson A D, Barr A G, Beckstein C, Braswell BH, Churkina G, Desai A R, Falge E, Gove J H, Heimann M, Hui D F, Jarvis A J, Kattge J, Noormets A,Stauch V J.2007. Comprehensive comparison of gap-filling techniques for eddy covariance netcarbon fluxes. Agricultural and Forest Meteorology,147(3-4):209~232
    Moore K E, Fitzjarrald, D R.1993. How well can regional fluxes be derived from smaller-scale estimates.Journal of Geophysical Research,98(D4):7187~7198
    Mortazavi B, Chanton J P, Prater J L, Oishi A C, Oren R, Katul G.2005. Temporal variability in13C ofrespired CO2in a pine and a hardwood forest subject to similar climatic conditions. Oecologia,142:57~69
    Myneni R B, Keeling C D, Tucker C J Asrar G, Nemani R R.1997. Increased plant growth in the northernhigh latitudes from1981to1991. Nature,386:698~702
    Ometto, J P H B, Flanagan L B, Martinelli L A, Moreira M Z, Higuchi N, Ehleringer J R.2002. Carbonisotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. GlobalBiogeochem. Cycles,16:10, doi:10.1029/2001GB0011462
    Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, ValentiniR, Vesala T, Yakir D.2006. Towards a standardized processing of Net Ecosystem Exchange measuredwith eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences,3(4):571~583
    Pataki D E, Ehleringer J R, Flanagan L B, Yakir D, Bowling D R, Still C J, Buchmann N, Kaplan J O BerryJ A.2003. The application and interpretation of Keeling plots in terrestrial carbon cycle research.Global Biogeochem Cycles,17(1):1022doi:10.1029/2001GB001850
    Paw U K T, Falk M, Suchanek T H, Ustin S L, Chen J Q, Park Y S, Winner W E, Thomas S C, Hsiao T C,Shaw R H, King T S, Pyles R D, Schroeder M, Matista A A.2004. Carbon dioxide exchange betweenan old-growth forest and the atmosphere. Ecosystems,7(5):513~524.
    Peters W, Jacobson A R, Sweeney C, Andrews A E, Conway T J, Masarie K, Miller J B, Bruhwiler L M P,Petron G, Hirsch A I, Worthy D E J, van der Werf, G R, Randerson J T, Wennberg P O, Krol M C,Tans P P.2007. An atmospheric perspective on North American carbon dioxide exchange:CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America,104(48):18925~18930
    Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A,Grelle A, Hollinger D Y, Laurila T, Lindroth A, Richardson A D, Vesala T.2008. Net carbon dioxidelosses of northern ecosystems in response to autumn warming. Nature,451(7174):49~52
    Ponton, S. Flanagan LB, Alstad K P, Johnson B G, Morgenstern K, Kljun N, Black T A, Barr A G.2006.Comparison of ecosystem water-use efficiency among douglas-fir forest, aspen forest and grasslandusing eddy covariance and carbon isotope techniques. Global Change Biology,12(2):294~310
    Priestley C H B, Taylor R J.1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review,100(2):81~92
    Quay P, Sonnerup R, Westby T, Stutsman J, McNichol A.2003. Changes in the13C/12C of dissolvedinorganic carbon in the ocean as a tracer of anthropogenic CO2uptake. Global Biogeochem Cycles,17(1):1004
    Randerson J T, Collatz G J, Fessenden J E, Munoz A D, Still C J, Berry J A, Fung I Y, Suits N, Denning A S.2002. A possible global covariance between terrestrial gross primary production and13Cdiscrimination: Consequences for the atmospheric13C budget and its response to ENSO. GlobalBiogeochem Cycles,16(4):1136
    Raupach M R.1991. Vegetation-atmosphere interaction in homogeneous and heterogeneous terrain: someimplications of mixed-layer dynamics. Vegetatio,91(1-2):105~120
    Raupach M R.2000. Equilibrium evaporation and the convective boundary layer. Boundary-LayerMeteorology,96(1-2):107~141
    Raupach M R, Rayner P J, Barrett D J, DeFries R S, Heimann M, Ojima D S, Quegan S, Schmullius C C.2005. Model-data synthesis in terrestrial carbon observation: methods, data requirements and datauncertainty specifications. Global Change Biology,11(3):378~397
    Rayner P J, Enting I G, Francey R J, Langenfelds R.1999. Reconstructing the recent carbon cycle fromatmospheric CO132, dC and O2/N2observations. Tellus51B,213~232
    Rayner, P J, O'Brien D M.2001. The utility of remotely sensed CO2concentration data in surface sourceinversions. Geophysical Research Letters,28(1):175~178
    Rayner P J, Law R M, Allison C E, Francey R J, Trudinger C M.2008. Interannual variability of the globalcarbon cycle (1992–2005) inferred by inversion of atmospheric CO2and δ13CO2measurements.Global Biogeochem Cycles,22: GB3008, doi:10.1029/2007GB003068
    Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N,Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T,Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J M, Pumpanen J. Rambal S,Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R.2005. On theseparation of net ecosystem exchange into assimilation and ecosystem respiration: review andimproved algorithm. Global Change Biology,11(9):1424~1439
    Running S W, Nemani R R, Heinsch F A, Zhao M S, Reeves M, Hashimoto H.2004. A continuoussatellite-derived measure of global terrestrial primary production. Bioscience,54(6):547~560
    Schauer A J, Lai C T, Bowling D R, Ehleringer J R.2003. An automated sampler for collection ofatmospheric trace gas samples for stable isotope analyses. Agricultural and Forest Meteorology,118(1-2):113~124
    Schauer A J, Lott M J, Cook C S, Ehleringer J R.2005. An automated system for stable isotope andconcentration analyses of CO2from small atmospheric samples. Rapid Communications in MassSpectrometry,19(3):359~362
    Scholze M, Kaplan J O, Knorr W, Heimann M.2003. Climate and interannual variability of theatmosphere-biosphere13CO2flux. Geophy. Re. Let.,30(2),1097, doi:10.1029/2002GL015631
    Shaw D C, Franklin J F, Bible K, Klopatek J, Freeman E, Greene S, Parker G G.2004. Ecological setting ofthe Wind River old-growth forest. Ecosystem,7:427~439
    Shilong Piao, Jingyun Fang, Philippe Ciais, Philippe Peylin, Yao Huang, Stephen Sitch, Tao Wang.2009.The carbon balance of terrestrial ecosystems in China. Nature,458:1009~1013
    Stephens B B, Gurney K R, Tans P P, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P,Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M,Shibistova O, Langenfelds R L, Steele L P, Francey R J, Denning A S.2007. Weak northern andstrong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science,316(5832):1732~1735
    Stull R B.1988. An Introduction to Boundary Layer Meteorology. Netherlands: Kluwer AcademicPublishers:666
    Styles J M, Lloyd J, Zolotoukhine D, Lawton K A, Tchebakova N, Francey R J, Arneth A, Salamakho D,Kolle O, Schulze E D.2002. Estimates of regional surface carbon dioxide exchange and carbon andoxygen isotope discrimination during photosynthesis from concentration profiles in the atmosphericboundary layer. Tellus Series B-Chemical and Physical Meteorology,54(5):768~783
    Sun J L, Oncley S P, Burns S P, Stephens B B, Lenschow D H, Campos T, Monson R K, Schimel D S,Sacks W J, De Wekker S F J, Lai C T, Lamb B, Ojima D, Ellsworth P Z, Sternberg L S L, Zhong S R,Clements C, Moore D J P, Anderson D E, Watt A S, Hu J, Tschudi M, Aulenbach S, Allwine E,Coons T.2010. A multiscale and multidisciplinary investigation of ecosystem-atmosphere CO2exchange over the rocky mountains of colorado. Bulletin of the American Meteorological Society,91(2):209~230
    Tans P P, Fung I Y, Takahashi T.1990. Observational constraints on the global atmospheric CO2budget.Science,247(4949):1431~1438
    Teixeira J, Stevens B, Bretherton C S, Cederwall R, Doyle J D, Golaz J C, Holtslag A A M, Klein S A,Lundquist J K, Randall D A, Siebesma A R, Soares P M M.2008. Parameterization of theatmospheric boundary layer. Bulletin of the American Meteorological Society,89(4):453~458
    Thoning K W, Tans P P, Komhyr W D.1989. Atmospheric carbon-dioxide at Mauna Loa observatory2.analysis of the NOAA GMCC data,1974-1985. Journal of Geophysical Research,94(D6):8549~8565
    Urbanski S, Barford C, Wofsy S, Kucharik C, Pyle E, Budney J, McKain K, Fitzjarrald D, Czikowsky M,Munger J W.2007. Factors controlling CO2exchange on timescales from hourly to decadal at HarvardForest. Journal of Geophysical Research,112(G2)
    van Heerwaarden C C, de Arellano J V G, Moene A F, Holtslag A A M.2009. Interactions between dry-airentrainment, surface evaporation and convective boundary-layer development. Quarterly Journal ofthe Royal Meteorological Society,135(642):1277~1291
    Wang J W, Denning A S, Lu L X, Baker I T, Corbin K D, Davis K J.2007. Observations and simulationsof synoptic, regional, and local variations in atmospheric CO2. Journal of Geophysical Research,112,D0408, doi:10.1029/2006JD007410
    Wang Y P, Trudinger CM, Enting I G.2009. A review of applications of model-data fusion to studies ofterrestrial carbon fluxes at different scales. Agricultural and Forest Meteorology,149(11):1829-1842
    Werner C, Unger S, Pereira J S, Maia R, David T S, Kurz Besson C, David J S, Máguas C.2006.Importance of short-term dynamics in carbon isotope ratios of ecosystem respiration (δ13CR) in aMediterranean oak woodland and linkage to environmental factors. New Phytol,172:330~346
    Wofsy S C, Harriss R C, Kaplan W A.1988. Carbon-dioxide in the atmosphere over the amazon basin.Journal of Geophysical Research,93(D2):1377~1387
    Xiao J F, Zhuang Q L, Baldocchi D D, Law B E, Richardson A D, Chen J Q, Oren R, Starr G, Noormets A,Ma S Y, Verma S B, Wharton S, Wofsy S C, Bolstad P V, Burns S P, Cook D R, Curtis P S, Drake BG, Falk M, Fischer M L, Foster D R, Gu L H, Hadley J L, Hollinger D Y, Katul G G, Litvak M,Martin T A, Matamala R, McNulty S, Meyers T P, Monson R K, Munger J W, Oechel W C, K T P U,Schmid H P, R. L. Scott, Sun G, Suyker A E, Torn M S.2008. Estimation of net ecosystem carbonexchange for the conterminous United States by combining MODIS and AmeriFlux data. Agriculturaland Forest Meteorology,148(11):1827~1847
    Xiao J F, Zhuang Q L, Law B E, Chen J Q, Baldocchi D D, Cook D R, Oren R, Richardson A D, WhartonS, Ma S Y, Martini T A, Verma S B, Suyker A E, Scott R L, Monson R K, Litvak M, Hollinger D Y,Sun G, Davis K J, Bolstad P V, Burns S P, Curtis P S, Drake B G, Falk M, Fischer M L, Foster D R,Gu L H, Hadley J L, Katul G G, Roser Y, McNulty S, Meyers T P, Munger J W, Noormets A, OechelW C, Paw K T, Schmid H P, Starr G, Torn M S and Wofsy S C.2010. A continuous measure of grossprimary production for the conterminous United States derived from MODIS and AmeriFlux data.Remote Sensing of Environment,114(3):576~591
    Xiao J F, Zhuang Q L, Law B E, Baldocchi D D, Chen J Q, Richardson A D, Melillo J M, Davis K J,Hollinger D Y, Wharton S, Oren R, Noormets A, Fischer M L, Verma S B, Cook D R, Sun G,McNulty S, Wofsy S C, Bolstad P V, Burns S P, Curtis P S, Drake B G, Falk M, Foster D R, Gu L H,Hadley J L, Katulk G G, Litvak M, Ma S Y, Martinz T A, Matamala R, Meyers T P, Monson R K,Munger J W, Oechel W C, Paw U K T, Schmid H P, Scott R L, Starr G, Suyker A E, Torn M S.2011.Assessing net ecosystem carbon exchange of US terrestrial ecosystems by integrating eddy covarianceflux measurements and satellite observations. Agricultural and Forest Meteorology,151(1):60~69
    Yi C, Davis K J, Bakwin P S, Berger B W, Marr L C.2000, Influence of advection on measurements of thenet ecosystem-atmosphere exchange of CO2from a very tall tower, Journal of Geophysical Research,105(D8):9991~9999
    Yi C, Davis K J, Berger P S B W, Bakwin.2001. Long-term observations of the dynamics of thecontinental planetary boundary layer. Journal of Atmospheric Sciences,58:1288~1299
    Yi C, Davis K J, Bakwin P S, Denning A S, Zhang N, Desai A, Lin J C, Gerbig C.2004.Observedcovariance between ecosystem carbon exchange and atmospheric boundary layer dynamics at a site innorthern Wisconsin. Journal of Geophysical Research,109(D08302): doi10.1029/2003JD00416
    Yuan Wenping, Luo Yiqi, Richardson Andrew D, Oren Ram, Luyssaert Sebastiaan, Janssens Ivan A,Ceulemans Reinhart, Zhou Xuhui, Grünwald Thomas, Aubinet Marc, Berhofer Christian, BaldocciDennis D, Chen Jiquan, Dunn Allison L, DeForest Jared L, Dragoni Danilo, Goldstein Allen H,Moors Eddy, Munger J William William, Monson Russell K, Suyker Andrew E, Starr Gregory, ScottRussell L, Tenhunen John, Verma Shashi, Vesala Timo, Wofsy Steven C.2009. Latitudinal patterns ofmagnitude and interannual variability in net ecosystem exchange regulated by biological andenvironmental variables. Global Change Biology,15:2905~2920
    Zhou L, Tucker C J, Kaufmann R K, Slayback D, Shabanov N V, Myneni R B.2001. Variations innorthern vegetation activity inferred from satellite data of vegetation index during1981to1999. JGeophys Res,106:20069~20083
    Zhu Z L.1991.The evapotranspiration quantity of the farmland measured by bowen ratio-energy balancemethod comparison of the Lysimeter, Experimental study of the field evapotranspiration. Beijing:China meteorological Press:71~79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700