高产小麦群体光辐射特征与光合特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大田条件下,连续两年对两个最具超高产潜力的多穗型小麦品种豫麦49和大穗型小麦品种周麦13的冠层结构、光辐射特征和光合特性进行了系统研究。试验结果如下:
     1、两种穗型品种的叶面积系数(LAI)变化趋势均为单峰曲线,由越冬期到开花期LAI逐渐增大,开花期达最大值,然后下降。开花前两品种LAI随密度增加而增大,开花后B_2(每hm~2150×10~4基本苗)、B_4(每hm~2300×10~4基本苗)处理绿叶面积保持时间较长,同期豫麦49的LAI高于周麦13。两品种叶片分布(LD)都以B_2处理较为合理。两品种叶倾角总的变化趋势均为,从越冬期到灌浆中期随生育进程逐渐减小,各时期处理之间均为高密度的平均叶倾角小于低密度处理,返青以前不同密度处理之间的差异较小,拔节以后差异增大,周麦13各处理灌浆末期的平均叶倾角比灌浆中期有所增加。两品种消光系数(K)值变化趋势为随天顶角增大而增大,B_2处理冠层消光系数适中,对光的截获和利用率较高,B_1(每hm~275x10~4基本苗)处理漏光损失严重。开花期和灌浆中期两品种各处理从天顶角7.50°~67.5°直射辐射透过系数(TR)的变化都呈逐渐减小的趋势,开花期各处理之间有明显差异,到灌浆中期各处理之间差异变小。综合以上结果可知,无论多穗型还是大穗型小麦品种都以B_2处理的冠层结构最优,表现为LAI大小适中,叶片分布合理,各叶层消光系数分布合理,光能利用率高。
     2、两种穗型品种群体光合(CAP)速率在整个生育期内的变化趋势一致,均为单峰曲线,峰值出现在开花期;但生育前期豫麦49的CAP高于周麦13,而开花后周麦13有明显优势。豫麦49B_2处理的CAP全生育期,尤其在孕穗以后保持较高水平;周麦13B_2处理的CAP在孕穗以后保持最高。两品种的群体叶源量(CLSC)具有与CAP相同的趋势。开花期和灌浆中期的CAP日变化都呈
    
     王之杰:高产小麦群体光辐射特征与光合特性的研究
     单峰曲线,且峰值均出现在上午 10h左右。
     3、两种穗型品种旗叶一生光合速率(Pn)和RUBP &化酶
     (RUBPcase)活性的变化趋势一致,均呈由低到高再逐渐降低
     的单峰变化曲线。从旗叶展开后开始,各处理Pn逐渐上升,并
     于旗叶展开后第 10d达最大值,此后逐渐下降。两品种相比,旗
     叶展开的 0叶 内豫麦 49各处理的 Pn及 RUBPcase活性均高于
     周麦 13,而第 20d以后则周麦 13均高于豫麦 49。两品种 B。处
     理的Pn、RUBPcase活性、竣化效率(CE)、叶绿素(Chl)含
     量等几个重要光合生理指标均表现出明显优势。
     4、对两种穗型品种开花期和灌浆中期的Pn及其影响因素,
     包括叶温厂L卜光合有效辐射厌虹幻、蒸腾速率(Tr卜 气孔导度
     (Gs卜细胞间隙CO。浓度(Ci)等日变化的测定结果表明,开花期
     两品种都存在光合“午休”现象,豫麦49Pn日变化呈双峰曲线,
     峰值出现在 10h和 14h;周麦 13 Pn日变化为单峰曲线,峰值在
     10h。灌浆中期两品种均表现出一降不起型的严重“午休”现象。
     相关和通径分析结果表明,开花期豫麦 49 shJ J 和 14h Pn
     主要受气孔因素限制,16h、18h非气孔因素对 Pn的限制起主导
     作用;周麦 13 sh、10h、14h和 16h Pn受气孔因素限制,12h和
     18h受非气孔因素限制。灌浆中期sh、10h和14h气孔因素对豫
     麦 49 Pn的限制起首要作用,而 12h、16h和 18h以非气孔因素
     限制为主;周麦 13灌浆中期 Pn主要受气孔因素限制。
     5、两种穗型品种产量性状存在着差异,豫麦49籽粒产量、
     成穗数高于周麦 13;周麦 13穗粒数和千粒重高于豫麦 49。成穗
     数随密度增加而增加,穗粒数和千粒重随密度增加而减小。两品
     种均以BZ处理的产量最高,豫麦49 BZ处理与B4、BI处理的差
     异达显著和极显著水平,周麦 13 BZ、B3、B4三处理之间的差异
     不显著,它们与民处理的籽粒产量差异显著,其中BZ与民处
     理的差异达极显著水平。
     在此研究基础上,提出了两种穗型品种实现超高产的主攻方
     2
    
     河南农业大学硕士学位论文
     向及相应技术措施:多穗型品种豫麦49超高产栽培应适当控制
     基本苗数,尽量控制无效分莲发生,加强中后期管理,协调好群
     体与个体的关系,把减少不孕小穗数提高单穗结实粒数作为实现
     超高产的主攻目标。对于周麦13这一类的大穗型品种,应立足
     于提高分莲成穗率,可适当增加基本苗数,前期合理促控增加有
     效分蒙数,充分发挥其后期光合作用强、穗粒重高的优势夺取超
     高产。
The canopy architecture, solar radiation traits and apparent photosynthesis characteristics of both small spike-type cultivar(Yumai 49) and large spike-type cultivar(Zhoumai 13) had been studied under field conditions. The main results were as follows:
    1. The Leaf Area Index(LAI) of both the cultivars showed as a single-peaked curve and the peak value reached at anthesis. With the increasing of density, the LAI of all treatments enhanced before anthesis. The B2 and B4 treatments had longer green leaf area duration after anthesis. The LAI of Yumai49 were higher than that of Zhoumai 13 at the same stage. The leaf distribution of the 62 of the two cultivars were more reasonable than that of the others. With the wheat growing, the Mean Leaf Angle(MFIA) of the two cultivars decreased gradually. The higher density treatments had smaller MFIA than the lower density treatments. The differences of MFIA among the treatments after booting stage were larger than that of the stage before reviving. The MFIA of Zhoumai 13 at waxening stage were greater than Middle-filling stage. The Extinction Coefficant(K) of both the cultivars enlarged with increasing of zenith angle. Treatments B2 of both cultivars had a reasonable canopy architecture than others, which accounted for
    they had intercepted more solar
    63
    
    
    radiation. The Transmition Coefficient for Radiation Penetration(TR) for the two cultivars at anthesis and middle-filling stage declined with increasing of zenith angle. There were significant differences among all of the treatments at anthesis, but the differences were smaller at middle-filling stage. For the two spike-type cultivars, the B2 treatments were the best.
    2. There were the same trends in the change of canopy apparent photosynthesis (CAP) rate in both small spike-type cultivar and large spike-type cultivar. During wheat development, the CAP generally appeared as a single-peaked curve and the peak value reached at anthesis. Yumai 49 had a higher CAP before booting stage, but Zhoumai 13 showed obvious dominance in CAP after flowering stage. The change of CAP in canopy leaf source capacity(CLSC) of the two cultivars was similar to that of CAP. The diurnal changes of CAP at flowering stage and mid-filling stage were single-peaked ones and the peak value appeared at 10am. The differences existed in the CAP among different planting densities of the two cultivars.
    3.There were identical trends in the changes of net photosynthesis(Pn) rate and RUBPcase activity of flag leaf for both cultivars. At the beginning of spreading of flag leaves for both cultivars, their Pn and RUBPcase activity inclined gradually, and reached the max at the tenth day after spreading, then declined little by little. Compared with Zhoumai 13, Yumai49 had higher Pn and RUBPcase activity from the Oth to the 10th day after spreading of flag leaf. But there was contrary fact after 20 days. The B2 treatment of the two cultivars had apparent advantages in Pn, RUBPcase activity, carboxylation efficiency and Chi content of flag leaf.
    64
    
    4. The diurnal changes of flag leaf net photosynthetic rate (Pn) for the two cultivars and its major affecting factors, i.e. Leaf Temperature (TL), Photosynthetically Active Radiation (PAR), Transpiration rate (Tr), Stomatal Conductance (Gs) and Intercellar CO2 Concentration (Ci) were tested. The results indicated that both cultivars showed midday depression phenomenon at anthesis. The Pn of Yumai49 varied as a two-peaked curve, whose peak values appeared at 10h and 14h, but Zhoumai13 varied as a single-peaked curve with peak value appeared at 10h. Both cultivars showed serious midday depression phenomenon at middle-filling. The relation between flag leaf net photosynthetic rate and its affecting factors was analysed by the correlation analysis and path analysis. At anthesis, the Pn of Yumai49 at 8h,10h,12h and 14h were influenced mainly by stomatal factors, but at 16h and 18h, non-stomatal factors played an important role. The Pn of Zhoumail3 were limited by Stomatal factors at 8h,10h,14h and
引文
[1] 余松烈,赵君实,王吉云,等.山东小麦.北京:农业出版社,1990
    [2] 单玉珊主编.小麦高产栽培研究文集.北京:中国农业科技出版社,1998:253~26
    [3] 段藏禄,张维城,袁祝三.河南小麦模式化栽培.中国科学技术出版社,1993
    [4] 马元喜,孙德营,丁绍禹,等.小麦超高产应变栽培技术.中国科学技术出版社,1992
    [5] 余叔文,周嘉槐.稻麦群体研究论文集,上海科学技术出版社,1961,112~128
    [6] 胡廷积,郭天财,王志和,等.小麦穗粒重研究.1995,115~121
    [7] 孙元敏,季吉庆,季国庆,等.小麦超高产群体质量栽培调控技术研究.江苏农业学报,1996,12(4):7~11
    [8] 王龙俊,陈维新,唐明臻.小麦高产群体质量栽培的应用研究2:小麦高产群体质量栽培的调控技术.江苏农业科学,1996,2:12~15
    [9] 姚金来.小麦超稀播增产机理分析.耕作与栽培,1998
    [10] 张道玺,刘安民,刘清毅,等.冬小麦亩产600kg配套技术指标的研究.山东农业科学,1996,6:4~7
    [11] 任德昌,赵君实.冬小麦亩产600kg配套技术研究.山东农业科学,1997,4:4~7
    [12] 朱新开,郭文善,封超年,等.肥料运筹对小麦群体质量的调节效应.江苏农学院学报,1998,10;45~50
    [13] 董树亭.高产冬小麦群体光合能力与产量关系的研究.作物学报,1991,17(6):461~468
    [14] 曾浙荣,赵双宁,李青.北京地区高产小麦品种的冠层形成、光截获和产量.作物学报,1991,17(3):161~170
    [15] 王绍中,赵虹,王西成.小麦超高产品种筛选的研究初报.作物学报,1998,24(6):870~875
    
    
    [16] 赵双宁,李培,曾浙荣.北京地区冬小麦冠层结构的研究.作物学报,1998,24(2):217~223
    [17] 殷毓芬,张存良,姚凤霞.冬小麦不同叶片光合速率与气孔导度等性状之间关系的研究.作物学报,1995,21(5):560~567
    [18] 林忠辉,周允华,王会民,等.青藏高原小麦关层几何结构光截获及其对光合潜能的影响.生态学报,1998,18(4):392~398
    [19] 胡延吉,兰近好.不同时期小麦品种冠层结构研究.中国农业气象,1999,20(1):11~14
    [20] 王天铎.光合作用与作物产量.植物生理学通讯,1988,(1):52~54
    [21] 朱云集,崔金梅,郭天财,等.温麦六号生育规律及其超高产栽培关键技术研究.作物学报,1998,24(6):947~951
    [22] 董树亭.高产麦田群体结构与光合作用的关系.山东农业大学学报,1992,23(1):27~30
    [23] 颜景义,郑有义,张海珍,等.小麦群体结构及光能利用研究.中国农业气象,1995,16(6):5~9
    [24] Gardner,F.P.,Pearce,R.B.,Mitchell,R.L.,etal著,于振文,王振林,崔德才译.作物生理学.北京农业出版社,1993
    [25] 康祥波.冬小麦群体叶层的研究.河南职技师院学报,1990,18(3-4):13~24
    [26] 张艳敏,李晋生,钱维朴.小麦冠层结构与光分布研究.华北农学报,1996,11(1):54~58
    [27] 杜宝华,刘明孝,洪佳华.冬小麦群体光照条件及其光合特征.中国农业气象,1990,11(3):27~30
    [28] 徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献.作物学报,1995,21(2):204~209
    [29] 许大全,沈允钢.光合作用与作物产量.见:邹琦主编.作物高产高效生理学研究进展.北京:科学出版社1996,17~24
    [30] 李建民,等.冬小麦节水高产栽培技术途径及其分析.中国青年农业科学学术年报,1997,104~108
    
    
    [31]岳寿松,亓新华,余松烈.冬小麦生育后期的群体光合能力与物质生产能力.山东农业大学学报,1992,23(1):9~13
    [32]胡延吉,兰进好,赵坦方,等.不同穗型的两个冬小麦品种冠层结构及光合特性的研究.作物学报,2000,26(6):905~912
    [33]邹琦,苏宝林,王学臣.积极开展高产、优质、高效农业的生理学基础研究,为农业现代化服务.见:邹琦主编.作物高产高效生理学研究进展.北京:科学出版社1996,1~12
    [34]张荣铣,高忠.小麦种和品种间叶片展开后光合特性的差异及其机理.见:邹琦主编.作物高产高效生理学研究进展.北京:科学出版社,1996,35~45
    [35]沈允钢,施教耐,许大全.动态光合作用.北京:科学出版社,1998,6~10
    [36]高青吉.小麦光合作用与物质生产的研究.3:小麦群体的光合能力和呼吸能力随生育时期的变化.日本作物学会记事,1978,47:63~68
    [37]宫板著.郑丕尧,周殿玺,刘兴海译.作物的形态与机能.农业出版社,1983
    [38]金善宝。中国小麦学。北京:中国农业出版社,1996,162~166
    [39]郭天财,彭文博,王向阳,等.小麦灌浆后青枯骤死原因分析及控制.作物学报,1997,23(4):474~481
    [40]左宝玉.植物生理与农业现代化.北京:农业出版社,1985:49~53
    [41]赖世登,刘柞昌,余彦波,等.小麦光合速率与光呼吸的研究.植物学报,1981,23(2):122~126
    [42]肖凯,谷俊涛,张荣铣,等.杂种小麦光合特性的初步研究.作物学报,1997,23(4):425~431
    [43]钟阳和,张理.作物群体辐射特征合群体光合量的研究.见:中国农业气象研究会农业小气候专业委员会编.中国农业小气候研究进展.北京:气象出版社,1993,121~126
    [44]杜宝华,吕学都.土壤湿度对冬小麦光合速率的影响.中国农业气象,1992,13(4):8~11
    
    
    [45] 李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,1992,18(1);37~44
    [46] 许振柱,于振文,李晖,等.限量灌水对冬小麦光合性能和水分利用的影响.华北农学报,1997,12(2):65~70
    [47] 蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响.植物生理学通讯,2000,36(2):110~113
    [48]武玉叶,李德全,赵世杰,等.外源渗透调节物质对渗透胁迫下小麦幼苗叶片水分状况和光合作用的影响.植物生理学通讯,1999,35(1):23~26
    [49]贺明荣,王振林,张杰昌.小麦开花后光合物质在不同穗位间得分配及其与穗粒重的关系.作物学报,2000,26(2):190~199
    [50]宣亚南,吴源英,贾高峰,等.小麦旗叶展开后氮素对光合能力的调控及其与穗粒重的关系.南京农业大学学报,1996,19(4):5~9
    [51]上官周平.氮速营养对旱作小麦光合特性的调控.植物营养与肥料学报,1997,3(2):103~109
    [52]肖凯,张树华,邹定辉.不同形态氮素营养对小麦光合特性的影响.作物学报,2000,26(1):53~58
    [53]肖凯,谷俊涛,张荣铣,等.杂种小麦碳同化特性及籽粒产量性状的研究.中国农业科学,1997,30(5):34~41
    [54]周春菊,张嵩午,王长发.杂种小麦“901”某些光合生理特性的研究.西北农业大学学报,1998,26(5):1~4
    [55]许大全,李德耀,沈允钢,等.田间小麦叶片光合作用“午睡”现象的研究.植物生理学报,1984,10(3):269~275
    [56]韩凤山,等.小麦午睡原因的研究.1:大田生态因子与午睡的关系.作物学报,1984,10(2):137~143
    [57]韩凤山,等.小麦午睡原因的研究.2:生理因子与午睡的关系.作物学报,1987,13(4):329-335
    [58]韩凤山,等.小麦午睡原因的研究.3:形成小麦午睡生态生理因素作用的综合分析.作物学报,1988,14(4):290~301
    
    
    [59]周竹青,朱旭彤.华麦9号、鄂麦12号净光合速率变化规律初探.湖北农业科学,1998,5:15~20
    [60]许大全,丁勇,武海.田间小麦叶片光合效率日变化与光合“午睡”的关系.植物生理学报,1992,18(3):279~284
    [61]张树源,武海,吴姝.青海高原及上海平原地区植物光合作用的光抑制.西北植物学报,1999,19(1):56~66
    [62]王邦锡,何军贤,黄久常,等.水分胁迫导致小麦叶片光合作用下降的非气孔因素.植物生理学报,1992,18(1):77~84
    [63]赵世杰,许长成,孟庆伟,等.田间小麦叶片光合作用的光抑制.西北植物学报,1998,18(4):521~526
    [64]薛松,汪沛洪,许大全,等.水分胁迫对冬小麦CO_2同化作用的影响.植物生理学报,1992,18(1):1~7
    [65]赵致,陈坤玲,张军.不同类型小麦品种抽穗后光合生理性状的变化.西南农业学报,1997,10(4):20~26
    [66]许大全,李德耀,沈允钢,等.毛竹叶片光合作用的气孔限制研究.植物生理学报,1987,13(2):154~160
    [67]肖凯,张荣铣,邹定辉.杂种小麦及亲本旗叶老化过程中RUBisco特性的研究.植物学报,1998,40(4):343~348
    [68]许大全.光合作用“午睡”现象的生态、生理、生化.植物生理学通讯,1990,(6):5~10
    [69]王焘,郑国生,邹琦.小麦光合午休过程中RUBPcase活性的变化.植物生理学报,1992,32(4):257~260
    [70]冯福生,陈文龙,李杰,等.不同供氨水平下冬小麦叶片中RUBPcase和NRA活性的变化.植物生理学通讯,1986,(6):20~22
    [71]肖凯,张荣铣,钱维朴.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制.植物营养与肥料学报,1998,4(4):371~378
    [72]上官周平,陈培元.小麦叶片光合作用与其渗透调节的关系.植物生理学报,1990,16(4):347~354
    [73]曹旸,蔡士宾,严建民,等.小麦叶片RUBPcase活性对湿害逆境
    
    的响能力及亲本效应分析.作物学报,1997,23(1):102~106
    [74]高辉远,邹琦,程丙嵩.甘薯光合活力羧化效率日变化与光合午休的关系.作物学报,1997,23(1):62~65
    [75]杨巧凤,江华,许大全.小麦旗叶发育过程中光合效率的变化.植物生理学报,1999,25(4):408~412
    [76]胡廷积,杨永光,马元喜,等.小麦生态与生产技术.河南科学技术出版社,1986
    [77]金善宝.中国小麦学.北京:中国农业出版社,1996.1~17
    [78]黄秉维.中国农业生产潜力—光合能力.见:中国科学院北京农业生态试验站编,农业生态环境研究,1989,17~24
    [79]黄祥辉,胡茂兴编.小麦栽培生理.上海:上海科技出版社,1984,258
    [80]金善宝.中国小麦学.北京:中国农业出版社,1996,519
    [81]孙昌璜,凌俊.小麦高产栽培途径的理论与实践.中国农业科学,1996,(3):9~14
    [82]山东农业大学小麦栽培生理实验室.冬小麦精播高产栽培的理论与实践.山东农业科学,1984,(1):1~5
    [83]余松烈.冬小麦精播、半精播高产栽培的理论与实践.见:卢良恕主编.中国小麦栽培研究新进展,北京:农业出版社,1993,204~213
    [84]余松烈.小麦高产途径的商榷-兼论穗粒重的矛盾.科学通报,1975,(4):156~161
    [85]王庆成,王忠孝.作物高产高效生理学研究进展.北京:科学出版社,1994:25~34
    [86]王晨阳,朱云集,夏国军,等.氮肥后移对超高产小麦产量及生理特性的影响.作物学报,1998,24(6):978~983
    [87]田奇卓,于振文,潘庆民,等.冬小麦超高产栽培群、个体发展动态指标的研究.作物学报,1998,24(6):859~864
    [88]董树亭.大田条件下作物群体光合作用的研究及测定.耕作与栽培,1988,3:62~64
    
    
    [89] 徐增富,方志伟,张荣铣。等.小麦二磷酸核酮糖羧化酶和叶片导度与光合速率的关系.南京农业大学学报,1990,13(4增):5~11
    [90] 王志芬,陈学留,余美炎,等.同穗型的两个冬小麦品种根系活力、光合特性及物质分配变化的比较研究.作物学报,1997,23(5):607~614
    [91] 于振文,岳寿松,沈成国,等.不同密度对冬小麦开花后叶片衰老和粒重的影响.作物学报,1995,21(4):412~418
    [92] 户刈义次主编(薛德榕译).作物的光合作用与物质生产.科学出版社,1979,150~158
    [93] Arnon D C. Copper enzymes in isolated Chloroplasts poly henoloxidase in Bate vulgaris.[J] Plant Physiol. 1949,24:1~15
    [94] Austin R B, et al..Genetic improvement in winter wheat yields since 1900and associated physiological changes. J Agfic Sci Camb,1980,94:675~689
    [95] Baker D N, Musgrave K B. The effects of two level moisture stresses on the rate of apparent photosynthesis in corn[J]. Crop Science, 1964,4:249~253
    [96] Barlow E W K, In: Dale JE, Milthorpe FL(eds), The Growth and Functioning of Leaves[J]. Gambridge University Press, Gambridge London, 1983, 315~345
    [97] Bishop D L, B G Bugbee Photosynthestic capacity and dry mass partitioning in dwarf and semi-dwarf wheat. Plant Physiology,1998,153(5/6): 558~565
    [98] Brougham R W. Interception of light by the foliage of pure and mixed stands of pasture plants. Agric Res, 1965,7: 377~384
    [99] Duncan W G. Leaf angles,leaf area, and can canopy photosynthesis Crop. Sci. 1971,11:482~485
    [100] Evans L T. From leaf to crop productivity. In Research potosynthesia Vol 4,1992:587~594
    [101] Evans L T, R L Dunstone. Some physiological aspects of evelotion in wheat. Aust. J. Agric. Res, 1971,23:725
    [102] Evans R J. Nitrogen and photosynthesis in the flag leaf of
    
    wheat(Triticum aestivum L).Plant Physicol. 1983,72(2): 197~302
    [103] Farquhar G D, T D Sharkey. Stomatal condectance and photosynthesis. Annu Rev Plant Physiol 1982,33:317~345
    [104] Fischer R A, Bidinger F, Syme J R, et al. Leaf photosynthesis,leaf permeability, crop growth and yield of short spring wheat genotypes under irrigation. Crop Sci, 1981, 21:367
    [105] Gerbaud A. M, Andre, C Richand. Gas exchange and nitrogen nutrition patterns during the life cycle of an artificial wheat crop. Physiologic Plantarum, 1988,73(4): 471~478
    [106] Gifford R M. Barriers to increasing crop productivity by genetic improvement in photosynthesis. In: Biggins, J. (ed): Progress in Photosynthesis Research, Vol. Ⅳ, Dordrecht, Martinus Nijhoff Publishers, 1987, p.377
    [107] Good N E, Bell D H. The Biology of crop productivity, New York, Academic press, 1980,P. 3
    [108] Gummuluru S, S L A Hobbs, S Jana. Physiological responses of drought tolerant and drought susceptible durum wheat genotypes. Photosynthetica, 1989,23: 479~485
    [109] Johnson R C, Witters E, Cila A J. Daily patterns of apparent photosynthesis and evapotranspiration in a developing winter wheat. Agronom Journal, 1981,73(3): 414~418
    [110] Kasanaga H., Monsi, M. On the light transmission of leaves. Jap J Bot, 1954,14:304~324
    [111] Loomis R S, B T Kang.Productivity and the morphology of crop stands: Patterns with leaves. Am. Soc. Agron.,Madison, Wisc., 1974,14:255~286
    [112] Loomis R S, et al. Community architecture and the productivity of terrestrial plant communities. Harvesting The Sun. Acad. Press, New York, 1967,191~308
    [113] Major D J, et al, Morphological characteristics of wheat associated with high productivity. Canadian journal of Plant Science, 1992,72(3):689~698
    
    
    [114] Martin P N G, Richard K K. Canopy photosynthesis and respiration in wheat adapted and unadapted to connecticut. Crop Sci., 1992,32:425
    [115] Martin P N G. Canopy light interception, gas exchange,and biomass in Reduced height Isolines of winter wheat. Crop Sci., 1995, 35:1636~1642
    [116] Monsi M and Seaki T. Uber den lichtfakeor in den pflanzen gesellsc hefen und seine bedutung far die stoffproduktion. Jpn J Bot, 1953,14:22~52129
    [117] Morgan J A. Growth and canopy carbon dioxide exchange rate of spring wheat adapted and unadapted to Connecticut. Crop Sci, 1992,32:425
    [118] Moss D N. CO_2 Metabdism and plant productivity, Baltimore, University Park Press, 1976,P. 31
    [119] Natre L. Influence of mineral nutrition on photosynthesis and the use of assimilates.In J P Cooper, ed, Photosynthesis and productivity in different environments. Cambridge University Press. 1975,537~555
    [120] Nelson C J. Genetic associations between photosynthetic characteristics and yield. Review of the evidence. Plant Physiol. Biochem., 1988, 26:543
    [121] Nelson T N, H Harpster, S P Mayfield, et al. Light-regulated Gene expression during maize leaf development. J Cell Biot, 1984,98:558~564
    [122] Nichiporovich A A. Properties of plant crops as optical system. Sov. Plant Physic, 1961,8:428~435
    [123] Osman A M, et al. Photosynthesis of wheat leaves in relation to age, luminance and nutrient supply. Photosynthetica, 1971,5:61~70
    [124] Patterson T G, D N Moss, W A Brun. Enzymetic changes during the senescence of field grown wheat. Crop Sci, 1980,20:15~18
    [125] Puckridge D W. Photosynthesis of wheat under field conditions. Seasonal trends in carbon dioxide uptake of crop communities.Aust. J. Agric.Res, 1971, 22:1
    [126] Shanahan J F, K J Donnelly, D H Smithetal. Shoot development associated with grain yield in winter wheat. Crop Sci, 1985, 25:770~775
    [127] Tenhunen J D, O L Lange, J Gebel, et al. Change in photosynthesis
    
    capacity, caeborxylation efficiency and CO_2 exchange point associated with middy stomatal closure and middy depression of CO_2 exchange of leaves. Planta, 1984,162:193~203
    [128] Verhagen A M, et al. Plant production in relation to foliage illumination. Ann. Bot.N.S. 1963,27:627~640
    [129] Wang Z, J Fu, M He, et al. Effects of source/sink manupulation on net photosynthetic rate and photosynthate partitioning during grain filling in winter wheat. Biologia Plantarum, 1997,39(3):379~385
    [130] Watanabe N, et al. Changes in photosynthetic, properties of Australian wheat cultivars over the last century. Aust J Plant Physiol, 1994,21:169~183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700