中国斑翅蝗科部分种类线粒体12S rRNA基因的分子进化与系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑翅蝗科(Oedipodidae)隶属于直翅目蝗亚目蝗总科(Orthoptera:Caelifera:Acrididae)。由于蝗虫对农牧业的影响,对蝗虫系统学以及蝗虫防治的研究一直受到广泛重视。分子生物学技术促进了昆虫分子系统学的兴起和发展,但目前国内外对斑翅蝗科昆虫的分子系统学研究远远落后于其它生物类群。本研究以12S rRNA基因为分子标记,探讨其分子进化机制并建立该科分子水平系统发育关系,为确定它们之间的关系提供分子生物学方面的证据。
     12S rRNA基因由于其分布的普遍性、序列和结构的保守性以及进化速率镶嵌性而被广泛应用于不同分类阶元层次上的分子系统学研究。本研究采用PCR产物直接测序法测定了斑翅蝗科4个亚科10属19种昆虫12SrRNA基因546bp的片段,以从NCBI下载的一种蟋蟀Gryllus campestris的相应序列为外群序列,利用Clustal X进行序列比对,结合12S rRNA二级结构模型进行茎区(stem)和环区(loop)碱基的划分。MEGA 2.1进行序列组成统计。PAUP~*4.0b10(PPC)对数据集系统发育信号进行评估,并以NJ、MP,ML和贝叶斯系统发育推论法分别重建系统发生树。
     最后得到的结论如下:
     1.本研究得到19种斑翅蝗科昆虫长为546bp的12S rRNA基因片段,其序列组成分析显示典型的高AT含量(75.4%)和多变的距离依赖的转换/颠换(TS/TV)比。
     2.12S rRNA基因546bp片段根据二级结构模型划分为茎区和环区,对全数据组、茎区数据组和环区数据组分别进行树长分布分析和PTP检验,两者均显示三个数据组包含较强的系统发育信号。对三个数据组分别重建的简约树显示,全数据组系统树分辨率最高,解决的分支最多,而茎区和环区数据组分别解决了部分分支的系统关系,说明茎区碱基和环区碱基各自包含不同的系统发育信息,在12S rRNA基因的系统发育应用中选用全序列比较合适。对茎区和环区碱基赋以不同权值得到的MP树与未加权结果相同,说明在该区段,茎区碱基的补偿性突变对本研究影响不大。
     3.本研究采用MP,NJ,ML和BI法分别重建了斑翅蝗科19种昆虫的系统发生关系,并采用基于似然值的KH和SH检验比较了这四棵系统树,结果认为MP树的似然值(-Ln L)最小,但它们的似然值差异没有达到
    
    统计学显著性,所以认为这四种拓扑结构的系统树都很好的解释了该数据
    集。四种方法没有达到一致的结果,说明该数据集在解决这19个种的系
    统发生关系上提供的信息还是不够的。
     4.四种方法合一树的结果中,包含清晰的两分支,即痴蝗支和飞蝗支。
    痴蝗支包括异痴蝗属、痴蝗属和皱膝蝗属,因为轮纹异痴蝗和两种皱膝蝗
    聚为一支,黄胫异痴蝗和两种痴蝗聚为一支,故本文认为异痴蝗亚科和痴
    蝗亚科应该合并为一个亚科。飞蝗支包含飞蝗属、小车蝗属、车蝗属、疵
    蝗属和绿纹蝗属5个属,建议合并为飞蝗亚科。这些类群的关系可以表示
    为:(((白边痴蝗,青海痴蝗)黄胫异痴蝗)((红翅皱膝蝗,鼓翅皱膝蝗)
    轮纹异痴蝗))(((亚洲飞蝗,东亚飞蝗,西藏飞蝗)(((黄胫小车蝗,红
    胫小车蝗)亚洲小车蝗)云斑车蝗)庆蝗)花胫绿纹蝗)。其它束颈蝗和
    蓝斑翅蝗的归属本研究没有得到一个定论。
     5.125 rRNA基因部分片段没有完全解决斑翅蝗科19种的系统关系问
    题,关键问题在于所测序列长度太短,提供的系统发育信息不足以给出这
    19种昆虫全面正确的系统关系,测定基因全长或增加其它基因序列可能有
    助于该问题的解决。
     本研究对斑翅蝗科19种125 rRNA基因序列的测定是科学上首次对中
    国斑翅蝗科昆虫进行的较大规模的线粒体基因序列分析,通过向GenBank
    提交所测蝗虫基因序列,与世界昆虫学界共享序列数据。通过后续分析,
    探讨斑翅蝗科内的系统发育关系,提供了分子数据方面的观点。
Oedipodidae is a large family in Acridoidea (Orthopera: Caelifera). In China, it includes 37 genera 124 species. Researches on controlling over plague of locusts were of great significance on agriculture. Molecular biological techniques were applied to insect systematics and much important progress has been made. However, studies on molecular phylogeny of Chinese Oedipodidae are rather few, and a comprehensive phylogeny is lacking. Here we report a phylogenetic analysis of Chinese band-winged grasshoppers based on DNA sequence of mitochondrial 12S rRNA gene. The goals of our study were to better resolve the phylogenetic relationships among Chinese band-winged grasshoppers and investigate the effectiveness of 12S rRNA gene sequences for reconstructing the phylogeny of Oedipodidae.
    Mitochondrial small subunit ribosomal RNA (12S rRNA) gene has been used for phylogenetic analyses of a wide range of species and divergence levels for their universal occurrence, sequence and structure conservation and abundance. We adopted PCR products direct sequencing technique to sequence fragments of 12S rRNA gene of 19 Oedipodidae species in China (representing 4 subfamilies and 10 of 37 genera). An outgroup, Gryllus campestris 's corresponding fragment from NCBI, and all the sequenced fragments were aligned using Clustal X and the alignment length was 546bp. All nucleotide sites were grouped to stem set and loop set according to the secondary structure model of 12S rRNA. Statistics of sequence compositions and nucleotide substitutions were obtained using MEGA2.1. PAUP*4.0blO (PPC) was used to evaluate the phylogenetic information content of the data and reconstruct NJ, MP and ML trees. Bayesian analyses were also performed with MrBayes V3.0. Sequences and phylogenetic analyses have been arrived at con
    clusions as follows:
    1. Fragments of 12S rRNA gene of 19 Oedipodidae taxa showed patterns, typical of many insects, such as high A+T content and variable distance-dependent transition/transversion (TS/TV).
    2. Analyses of tree length distribution and PTP test of combined data set, loop set and stem set showed strong phylogenetic signals and a strong correction of characteristics beyond that expected by random. MPT reconstructed from three data sets
    
    
    suggested that combined data set produced a more constructive topology while loop set and stem set separately resolved parts of the topology, which showed stem and loop of 12S rRNA gene contained different phylogenetic information and combined data was better for reconstruction. The weighted MP and unweighted MP analyses got the identical topology, which showed that stem bases' compensatory substitution didn't influence the phylogenetic analysis. Reflected from wMP analysis and corrected distance reconstruction, potential substitution saturation showed by saturation analyses also didn't matter much in reconstruction.
    3. Likelihood-based KH and SH tests of four topologies from MP, NJ, ML and Bayesian inference (BI) showed that although the MP tree had the lowest likelihood score, the KH and SH tests showed no significant difference in the -Ln likelihood between four trees so that MP tree was not significantly better than other trees. Therefore we can't reject NJ, ML and BI trees in favor of MP tree. Four trees were all considered good interpretations of the data provided. We concluded that the data couldn't provide enough phylogenetic information to fully resolve the relationship of the 19 species in Oedipodidae.
    4. The 50% consensus tree of MP, NJ, ML, BI trees showed two distinct clades: One clade includes all species of Bryodeminae and Bryodemellinae sampled, and the two Bryodemella taxa separately clustered with Angaracris and Bryodema taxa, so we considered it was appropriate to merge them as one subfamily; the other clade includes Bryodemella, Oedaleus, Gastrimarygus, Trilophidia and Aiolopus. The relationship of the species in these two clades was: (((Bryodema luctuosum luctuosum, Bryodema miramae miramae)
引文
[1] 马恩波,欧晓红,乔格侠,郑哲民,蝗总科染色体研究及科级综合比较,昆虫分类学报,2000,22(1),6-10.
    [2] 牛屹东,李明,魏辅文,冯祚建,线粒体DNA用作分子标记的可靠性和研究前景,遗传,2001,23(6):593-598.
    [3] 王亚明,周开亚,PCR介导的DNA序列分析系统在系统动物学中的应用,动物学杂志,1996,31(3),54-59.
    [4] 王备新,杨莲芳,线粒体DNA序列特点与昆虫系统学研究,昆虫知识,2002,39(2),88-92.
    [5] 叶海燕,中国斑翅蝗科部分种类线粒体Cyt b基因的分子进化与系统学研究,2003,硕士论文.
    [6] 田英芳,黄刚,郑哲民,魏朝民,一种简易的昆虫基因组DNA提取方法,陕西师范大学学报(自然科学版),1999,27(4),82-84.
    [7] 乔海晅,段毅豪,马恩波,韩焱,蝗总科部分种类等位基因酶的比较研究,遗传学报,2002,29(2),133-137.
    [8] 任竹梅,马恩波,郭亚平,蝗总科部分种类Cyt b基因序列及系统进化研究,遗传学报,2002,29(4),314-321.
    [9] 刘运强,廖顺尧,鲁成,周泽扬,向仲怀,动物线粒体编码序列相邻碱基组成对核苷酸替换的影响,西南农业大学学报,2001,23(32),270-272.
    [10] 成新跃,周红章,张广学,分子生物学技术在昆虫系统学研究中的应用,动物分类学报,2000,25(2),121-133.
    [11] 江建平,周开亚,从12S rRNA基因序列研究中国蛙科24种的进化关系,动物学报,2001,47(1),38-44.
    [12] 许升全,中国蝗总科昆虫系统发育和支序生物地理学研究,2000,博士论文).
    [13] 许升全,郑哲民,蝗总科昆虫雌性下生殖板及系统发育关系研究(直翅目),昆虫分类学报,1999,21(2),79-83.
    [14] 吴平,周开亚,杨群,用12S rRNA基因序列研究潮龟科(BATAGURIDAE)闭壳龟类的进化,应用与环境生物学报,1998,4(4),374-378.
    [15] 吴平,周开亚,杨群,亚洲淡水和陆生龟鳖类12S rRNA基因片段的序列分析和系统发生研究,动物学报,1999,45(3),260-267.
    
    
    [16]吴孝兵,王义权,周开亚,童宗中,聂继山,王朝林,谢万树,从12S rRNA基因序列探讨8种鳄类的系统学关系,动物学报,2001,47(5),522-527.
    [17]张亚平,从DAN序列到物种, 动物学研究,1996,17(3),247-252.
    [18]张亚平,熊超科的分子系统发生研究,遗传学报,1997,24(1),15-22.
    [19]张亚州,张亚平,栾云霞,陈永久,尹文英,12S rRNA基因序列变异与六足总纲高级单元分类系统,科学通报,2000,45(22),2434-2438.
    [20]李太平,李均祥,邓昭华,动物线粒体DNA的研究进展,青海畜牧兽医杂志,2003,33(4),32-34.
    [21]李典忠,斑翅蝗科细胞分类学研究,199l,硕士论文.
    [22]李清西,计算机在昆虫分类中的新用途,昆虫分类学报,2000,22(2),153-156.
    [23]杨光,刘珊,季国庆,周开亚,淡水豚类线粒体DNA 12S rRNA基因的序列变异及其分子系统学研究,动物学研究,2000,21(6),425-431.
    [24]汪桂玲,郑哲民,黄原,蝗总科5科蝗虫间RAPD带型变异的比较研究,陕西师范大学学报(自然科学版),2000,28(1),83-90.
    [25]汪桂玲,郑哲民,黄原,疣蝗5个种群间遗传分化的RAPD分析,陕西师范大学学报(自然科学版),2000,28(3),100-103.
    [26]沈曦,周开亚,王义权,几种腹蛇12S rRNA和Cyt b基因片段序列的初步研究,动物学杂志,2000,35(1),18-21.
    [27]邵红光,严健,庚镇城,李国强,黄人鑫,新疆荒漠束颈蝗属及其近、远缘种的线粒体DNA RFLP与系统进化,昆虫学报,1999,42(2),132-139.
    [28]周继亮,姚永刚,黄美华,杨大同,吕顺清,张亚平,蝰科(Viperidae)蝮亚科(Crotalinae)线粒体12S rRNA基因序列分析及其系统发育,遗传学报,2000,27(4),283-289.
    [29]易广才,张晓梅,单祥年,麂属(Muntiacus)动物线粒体12S rRNA、细胞色素b基因和多药耐药基因序列分析及其分子进化关系,遗传学报,2002,29(8),674-680.
    [30]郑乐怡,归鸿,《昆虫分类》上册,昆虫纲·直翅目(刘宪伟,殷海生),南京师范大学出版社,1999,245-281.
    [31]郑哲民,乔格侠,中国蝗总科昆虫科间系统发育关系支序分析(直翅
    
    目,蝗亚目),动物分类学报,1998,23(3),276-280.
    [32]郑哲民,夏凯龄 编著,中国动物志·昆虫纲·第十卷·直翅目蝗总科 斑翅蝗科,北京,科学出版社,1998.
    [33]郑哲民,龚玉新,中国小车蝗属(Oedaleus Fieber)研究(蝗总科:斑翅蝗科),陕西师范大学学报(自然科学版),2001,29(1),62-70.
    [34]郑哲民,蝗虫分类学,西安,陕西师范大学出版社,1993.
    [35]姜海英,陆佩洪,李悦民,鹅科五种鸟线粒体DNA序列变化与亲缘关系的研究,遗传,2000,22(1),21-24.
    [36]胡玉琴,中国蝗总科斑翅蝗科属级支序分析初探,2000,硕士论文.
    [37]赵爱春,鲁成,家蚕分子系统学研究之中外群的作用与影响,西南农业大学学报,2001,23(5),385-391.
    [38]钟扬,李伟,黄德世,分支分类的理论和方法,北京,科学出版社,1994.
    [39]徐庆刚,花保祯,线粒体DNA在昆虫系统学研究中的应用,西北农林科技大学学报(自然科学版),2001,29(Suppl.),79-83.
    [40]贾潇凌,马恩波,斑翅蝗科部分种属细胞分类学的研究。山西大学学报,1998,21(3),291-296.
    [41]高天翔,张秀梅,渡边精一,中华绒螯蟹与日本绒螯蟹线粒体DNA 12S rDNA序列的比较,水产学报,2000,24(5),413-416.
    [42]高天翔,张秀梅,楼东,张军生,日本绒螯蟹太平洋群体和日本海群体12S rRNA序列比较研究,浙江海洋学院学报(自然科学版),1999,18(4),275-278.
    [43]常青,周开亚,分子进化研究中系统发生树的重建,生物多样性,1998,6(1),55-62.
    [44]曹蔚,云斑车蝗核型和C-带的研究,贵州师范大学学报(自然科学版),2000,18(2),23-25.
    [45]萨姆布鲁克 J,弗里厅 EF,曼尼阿蒂斯,分子克隆实验指南(第二版),金冬雁,黎孟枫等译,北京,科学出版社,1992.
    [46]黄大卫,昆虫系统学研究现状及其发展趋势,世界农业,1995,6,37-38.
    [47]黄原,分子系统学—原理方法及应用,北京,中国农业出版社,1998
    [48]黄原,周尧,袁锋,昆虫小分子化合物的分子系统学研究综述,昆虫分类学报,1995,17(1),9-14.
    
    
    [49]黄原,袁锋,周尧,昆虫核酸分子系统学研究进展,昆虫分类学报,1995,17(3),180-184.
    [50]龚鹏,杨效文,谭声江,陈晓峰,分子遗传标记技术及其在昆虫科学中的应用,昆虫知识,2001,38(2),86-91.
    [51]龚玉新,新疆斑翅蝗科部分种类染色体初步研究,2001,硕士论文.
    [52]程家安,唐振华,昆虫分子科学,北京,科学出版社,2002.
    [53]童宗中,王义权,周开亚,从12S rRNA基因片段序列研究20种蛇的系统发生关系,动物学报,2002,48(4),494-500.
    [54]蒋国芳,郑哲民,蝗虫分子系统学研究进展,昆虫知识,2001,38(2),81-86.
    [55]谢强,卜文俊,RNA二级结构在动物分子系统学研究中的应用,动物分类学报,2003,28(4),557-562.
    [56]韩雅莉,六种蝗虫基因组DNA多态性的RAPD标记研究,汕头大学学报,2001,1(16),39-43.
    [57]韩雅莉,谭竹钧,郑哲民,9种蝗虫酯酶同工酶研究,内蒙古大学学报(自然科学版),1998,29(2),229-234.
    [58]韩雅莉,潭竹钧,郑哲民,斑翅蝗科部分种类的酯酶同工酶研究,昆虫分类学报,1998,20(3),157-162.
    [59]韩德民,周开亚,王义权,从12S rRNA基因序列探讨中国10种壁虎的系统关系,动物学报,2001,47(2),139-144.
    [60]廉振民,胡玉琴,乔永民,小车蝗属Oedaleus Fieber昆虫的种间系统发育关系支序分析,昆虫分类学报,2000,22(3),171-174.
    [61]適晓南,刘芳政,新疆蝗虫染色体的研究,八一农学院学报,1994,17(3),6-13.
    [62]Ackerly DD, Taxon sampling, correlated evolution, and independent contrasts, Evolution, 2000, 54, 1480-1492.
    [63]Anderson S, Bankier AT, Barrell BG et al., Sequence and organization of the human mitochondrioal genome, Nature, 1981, 290 (9), 457-464.
    [64]Bensasson D et al., Genomc gigantism: DNA loss is slow in mountain grasshopper, Mol. Biol. Evol., 2001, 18, 225-239.
    [65]Bensasson D et al., Mitochondrial pseudogenes: evolution's misplaced witnesses, Trends Ecol.Evol., 2001, 16(6), 314-321.
    [66]Bensasson D, Zhang DX, Hewitt GM, Frequent assimilation of
    
    mitochondrial DNA by grasshopper nuclear genome, Mol.Biol.Evol., 2000, 17, 406-415.
    [67] Blaisdell BE, A measure of the similarity of sets of sequences not requiring sequence alignment, Proc. Natl. Acad. Sci., 1986, 83, 5155-5159.
    [68] Bremer K, Branch support and tree stability, Cladistics, 1994, 10: 295-304.
    [69] Bremer K, The limits of amino acid sequence data in angiosperm phylogenetic reconstruction, Evolution, 1988, 42:795-803.
    [70] Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, Feng B. Lin N, Madabusi LV, Muller KM, Pande N., Shang Z, Yu N, and Gutell RR, The Comparative RNA Web (CRW) Site, An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs, BioMed Central Bioinformatics, 2002, 3, 2. [Correction, BioMed Central Bioinformatics, 3, 15.]
    [71] Caterino MS, Cho S, and Sperling FAH, The current state of insect molecular systematics: a thriving tower of Babel, Annu. Rev. Entomol., 2000,45,1-54.
    [72] Chapco W, Ashton NW, Martel RK, Antonishyn N, Crosby WL, A feasibility study of the use of random amplified polymorphic DNA in the population genetics and systematics of grasshoppers, Genome, 1992, 35(4), 569-574.
    [73] Chapco W, Martel RKB and Kuperus WR, Molecular phylogeny of north American band-winged grasshoppers (Orthoptera: Acrididae), Anna. Entomo. Soc. Am., 1997, 90(5), 555-562.
    [74] Chippindale PT, Dave VK, Whitmore DH, Robinson JV, Phylogenetic relationships of North American damselflies of the genus Ischnura (Odonata: Zygoptera: Coenagrionidae) based on sequences of three mitochondrial genes, Mol. Phylo. Evol., 1999,11(1), 110-121.
    [75] Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM, The Ribosomal Database Project (RDP-Ⅱ): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy, Nucleic. Acids. Res.,
    
    2003, 31(1), 442-443
    [76] Colombo PC, and Confalonieri VA, An adaptive pattern of inversion polymorphism in Trimerotropis pallidipennis (Orthoptera), Correlation with environmental variables: an overall review, Hereditas, 1996, 125, 289-296.
    [77] Confalonieri VA, Inversion polymorphisms and natural selection in Trimerotropis pallidipennis (Orthoptera): correlations with geographical variables. Hereditas, 1994, 121, 79-86.
    [78] Confalonieri VA, Macrogeographic patterns in B chromosome and inversion polymorphisms of the grasshopper Trimerotropis pallidipennis, Genet. Sel. Evol., 1995, 27,305-311.
    [79] Confalonieri VA, Scataglini MA, Remi MI., Sequence Differentiation Among Inversion Rearrangement are Revealed by Random Amplified Polymorphic DNA Markers in the Grasshopper Trimerotropis pallidipennis (Orthoptera, Acrididae: Oedipodinae), Ann. Entomol. Soc. Am., 2002, 95(1), 201-207.
    [80] Confalonieri VA, Sequeira A, Todaro L, and Vilardi JC, Mitochondrial DNA and phylogeography of the grasshopper Trimerotropis pallidipennis in relation with clinal distribution of chromosome polymorphisms, Heredity, 1998, 81,444-452.
    [81] Corpet F and Michot B, RNAlign program: alignment of RNA sequences using both primary and secondary structure, Comoput. Applic. Biosci. , 1994, 389-399.
    [82] Cummings MP, Otto SP and Wakeley J, Samlping properties of DNA sequence data in phylogenetic analysis, Mol. Biol. Evol. , 1995, 12(5), 814-822.
    [83] De Rijk P and De Wachter R. DCSE, an interactive tool for sequence alignment and secondary structure research, Comput. Appl. Biosci., 1993, 9, 735-740.
    [84] Desalle RT, Freedman T, Prager EM and Wilson AC, Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila, J. Mol. Evol., 1987, 26, 157-164.
    [85] Dixon MT and Hillis DM, Ribosomal RNA secondary structure,
    
    compensatory mutations and implication for phylogenetic analysis, Mol. Biol. Evol., 1993, 10(1), 256-267.
    [86] Donoghue MJ, Olmstead RG, Smith JF, and Palmer JD,. Phylogenetic relationships of the Dipsacales based on rbcL sequences, Ann. Missouri Bot. Gard., 1992 79:333-345.
    [87] Edwards AWE, Assessing molecular phylogenies, Science, 1995, 267, 253.
    [88] Flook PK and Rowell CHF, Inferences about orthopteroid phylogeny and molecular evolution from small subunit nuclear ribosomal DNA sequences, Insect Mol. Bio. , 1998, 7(2), 163-178.
    [89] Flook PK and Rowell CHF, The effectiveness of mitochondrial rRNA gene sequences for the reseonstruction of the phylogeny of an insecta order (Orthoptera), Mol. Phyl. Evol., 1997b,8(2), 177-192.
    [90] Flook PK and Rowell CHF, The phylogeny if the Caelifera (Insecta, Orthoptera) as deduced from mtrRNA genes sequences, Mol. Phyl. Evol. , 1997a, 8(1), 89-103.
    [91] Flook PK and Rowell CHF, The phylogeny of the Caelifera (Insecta, Orthoptera) as deduced from mtrRNA genes sequences, Mol. Phyl. Evol., 1999, 8(1), 89-103.
    [92] Flook PK, Klee S and Rowell CHF, Combined molecular phylogenetic analysis of the Orthoptera (Arthropoda, Insecta) and implication for their higher systematics, Syst. Biol., 1999,48(2), 233-253.
    [93] Flook PK, Rowell CHF and Gellissen G, The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome, J. Mol. Evol., 1995, 41,928-941.
    [94] Fu JZ and Murphy RW, Discriminating and locating character covariance, An application of permutation tail probability (PTP) analyses, Systematic Biology, 1999, 48,380-395.
    [95] Garcia BA, Moriyama EN, Powell JR, Mitochondrial DNA sequences of triatomines (Hemiptera: Reduviidae): phylogenetic relationships, J. Med. Entomol., 2001, 38(5), 675-83.
    [96] Gellissen G and Michaelis G, Gene transfer: mitochondrioa to nucleus, Ann. New York Acad. Sci., 1987, 503,391-401.
    
    
    [97] Gilbert G and Ribera C, The position of Arthropods in the animal kingdom, a search for a reliable outgroup for internal arthropod phylogeny, Mol. Phylo. Evol., 1998, 19(3), 481-488.
    [98] Goldman N, Anderson JP, and Rodrigo AG, Likelihood-based tests of topologies in phylogenetics, Systematic Biology. 2000, 49, 652-670.
    [99] Graur D et al., Deletions in processed pseudogenes accumulate faster in rodents than in humans, J. Mol. Evol., 1989, 28, 279-285.
    [100] Gutell RR, Collection of small subunit (16S- and 16S-like) ribosomal RNA structures, Nucleic Acids Res., 1994, 22, 3502-3507.
    [101] Harrison RG, Animal mitochondrial DNA as a genetic marker in population and evolutionary biology, Trends Ecol. Evol., 1989, 4, 6-11.
    [102] Hiekson RE, Simon C and Perrey SW, The performance of several multiplel-sequence alignment programs in relation to secondary-structure features for an rRNA sequence, Mol. Biol. Evol. , 2000, 17(4), 530-539.
    [103] Hickson RE, Simon C, Cooper A, Spieer GS, Sullivan J, and Penny D, Conserved Sequence Motifs, Alignment, and Secondary Structure for the Third Domain of Animal 12S rRNA, Mol. Biol. Evol., 1996, 13(1), 150-169.
    [104] Hillis DM and Huelsenbeek JP, Signal, noise, and reliability in molecular phylogenetic analyses, Journal of Heredity, 1992, 83, 189-195.
    [105] Hillis DM and Moritz C, Molecular Systematics. Sinauer Assoxiates, Sunderland, Massachusetts, 1990.
    [106] Hillis DM, Discriminating between phylogenetic signal and random noise in DNA sequences. Pp. in press in M. M. Miyamoto and J. Craeraft, Eds. Phylogenetie Analysis of DNA Sequences. Oxford Univ. Press, New York, 1991.
    [107] Holmquist R, Transitions and transversions in evolutionary descent: an approach to understanding, J. Mol. Evol., 1983, 19, 134-144.
    [108] Huelsenbeek JP, MrBayes: Bayesian inference of phylogeny. Distributed by the author. Department of Biology, University of Rochester, New York.
    
    
    [109] Huelsenbeck JP, The robustness of two phylogenetic methods, four-taxon simulations reveals a slight superiority of maximum likelihood over neighbor-joining, Mol. Biol. Evol. ,1995, 12(5), 843-849.
    [110] Hwang JS, Lee JS, Goo TW, Yun EY, Sohn HR, Kim HR, Kwon OY, Molecular genetic relationships between Bombycidae and Saturniidae based on the mitochondria DNA encoding of large and small rRNA, Genet. Anal., 1999,15(6), 223-228.
    [111] Jeannmougin F, Thompson JD, Gouy M, Higgins DG and Gibson TJ. Multiple sequence alignment with Clustal Ⅹ, Trends Biochem. Sci., 1998, 23,403-405.
    [112] Johnson KP, Cruickshank RH, Adams RJ, Smith VS, Page RDM, Claytonc DH, Dramatically elevated rate of mitochondrial substitution in lice (Insecta: Phthiraptera), Mol. Phyl. Evol. , 2003,26, 231-242.
    [113] Kambhampati S, A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes, Proc. Natl. Acad. Sci. USA., 1995,92, 2017-2020.
    [114] Kambhampati S, Phylogenetic relationship among cockroach families inferred from mitochondrial 12S rRNA gene sequence, Syst. Entomol., 1996, 21(2), 89-98.
    [115] Kumar MK and Felsenstein J, A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates, Mol. Biol. Evol.,1994, 11(3), 459-468.
    [116] Labandeira CC, Sepkoski JJ, Insect diversity in the fossil record, Science, 1993, 16(261), 310-315.
    [117] Lopez JV et al., Numt, a rescent transfer and tandem amplification of mtDNA in the nuclear genomes of the domestic cat, J. Mol. Evol., 1994, 39, 174-190.
    [118] Lopez JV et al., The long and short of nuclear mitochondrial DNA (Numt) lineages, Trends Ecol. Evol., 1997, 3, 114.
    [119] Lyons-weiler J, Hoelzer GA and Tausch RJ. Optimal outgroup analysis, Biological Journal of the Linnean Society, 1998, 64, 493-511.
    [120] Lyons-weiler J, Hoelzer GA and Tausch RJ. Relative Apparent
    
    Synapomorphy Analysis (RASA) Ⅰ: The statistical measurement of phylogenetic signal, Mol. Biol. Evol., 1996,13(6), 749-757.
    [121] Martel RK, Chapco W, Mitochondrial DNA variation in North American oedipodinae, Biochem. Genet., 1995, 33(1-2), 1-11.
    [122] Misof B, Erpenbeck D, Sauer KP, Mitochondrial gene fragments suggest paraphyly of the genus Panorpa (Mecoptera, Panorpidae), Mol. Phylogenet. Evol., 2000, 17(1), 76-84.
    [123] Misof B, Rickert AM, Buckley TR, Fleck G, Sauer KP, Phylogenetic signal and its decay in mitochondrial SSU and LSU rRNA gene fragments of Anisoptera, Mol. Biol. Evol., 2001, 18(1), 27-37.
    [124] Morrison DA and Ellis JT, Effects of nucleotide sequence alignment on phylogeny estimation, a case study of 18S rDNAs of Apicomplexa, Mol. Biol. Evol., 1997, 14, 428-441.
    [125] Morrison DA and Ellis JT, Effects of nucleotides sequence alignment on phylogeny estimation: a case study of 18S rDNA of Apicomplexa, Mol. Biol. Evol., 1997, 14(4), 428-441.
    [126] Mugridge NB, Morrison DA, Jakel T, Heckeroth AR, Tenter AM and Johnson AM, Effects of sequence alignment and structural domains of ribosomal DNA on phylogeny reconstruction for the protozoan family Sarcocystidae, Mol. Biol. Evol., 2000, 17, 1842-1853.
    [127] Nei M and Kumar S, Molecular evolution and phylogeny, 吕宝忠,钟扬,高莉萍等译,分子进化和系统发育,北京,高等教育出版社,2002。
    [128] Otto SP, Cummings MP and Wakeley J, Inferring phylogenies from DNA sequence data, the effects of sampling. In, New Uses for New Phylogenies, Harvey PHA, Brown JL, Smith JM and Nee S(eds.), Oxford University Press, Walton St, Oxford, England OX2 6DP, 1996.
    [129] Page RDM, Cruickshank RH, and Johnson KP, Louse (Insect, Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable, Technical Reports in Taxonomy, 2002, 1, 1-29.
    [130] Pollock DD, Zwickl DJ, McGuire JA, Hillis DM. Increased taxon sampling is advantageous for phylogenetic inference, Syst. Biol., 2002 51(4), 664-671.
    [131] Posada D and Crandall KA. MODELTEST: testing the model of DNA
    
    substitution, Bioinformatics, 1998, 14 (9), 817-818.
    [132]Rosenberg MS and Kumar S, Incomplete taxon sampling is not a problem for phylogenetic inference, Proc. Natl. Acad. Sci., 2001, 98(19), 10751-10756.
    [133]Rosenberg MS, Kumar S, Taxon sampling, bioinformatics, and phylogenomics, Syst. Biol., 2003, 52(1), 119-124.
    [134]Russo CAM, Takecaki N and Nei M, Efficiencies of different tree-building methods in recoving a known vertebrate phylogeny, Mol. Biol Evol. , 1996,13(3), 525-536.
    [135]Sanchez V, and Confalonieri VA, Chromosome banding pattern in Trimerotropis pallidipennis (Orthoptera: Aerididae), Cytobios, 1993,73, 105-110.
    [136]Scheffler IE, A century of mitoehondrial research: achievements and Perspectives, Mitochondrion, 2001, 1, 3-31.
    [137]Silvain JF, Delobel A, Phylogeny of West African Caryedon (coleoptera, bruchidae): congruence between molecular and morphological data, Mol. Phylogenet. Evol. , 1998, 9(3), 533-541.
    [138]Simon C, Frati F, Beekenbaeh A, Crespi B, Liu H and Flook P, Evolution, weighting, and phylogeneties utility of mitochondrial gene sequences and compilation of conserved polymerase chain reaction primers, Ann. Entomol. Soe. Am., 1994,87(6), 651-701.
    [139]Skevington JH, Yeates DK, Phylogeny of the syrphoidea (Diptera) inferred from mtDNA sequences and morphology with particular reference to classification of the pipunculidae (Diptera), Mol. Phylogenet. Evol., 2000, 6(2), 212-224.
    [140]Smith AB, RNA sequences data in phylogenetie reconstruction: testing the limits of its resolution. Cladistics, 1989, 5, 321-344.
    [141]Sorenson MD, TreeRot, version 2, Boston University, Boston, MA, 1999.
    [142]Springer MS and Douzery E, Secondary structure and pattern of evolution among mammalian mitoehondrial 12S rRNA molecules, J. Mol. Evol., 1996, 43,357-373.
    [143]Springer MS, Hollar LJ and Burk A, Compensatory substitutions and the
    
    evolution of mitochondrial 12S rRNA gene in mammals, Mol. Biol. Evol., 1995, 12(6), 1138-1150.
    [144]Steinbachs JE, Schizas NV, Ballard JW, Efficiencies of genes and accuracy of tree-building methods in recovering a known Drosophila genealogy, Pac. Symp. Biocomput., 2001, 6, 606-617.
    [145]Sunnucks P and Dinah FH, Numerous transposed sequences of mitochondrial cytochrome oxidase Ⅰ- Ⅱ in aphids of the genus Sitobion (Hemiptera: Aphididae), Mol. Biol. Evol. , 1996, 13(3), 510-524.
    [146]Swofford D, PAUP: phylogenetic analysis using parsimony, version 4.0b10(PPC). 2001, Sinauer Associates, Sunderland, Massachusetts.
    [147]Swofford DL, Olsen GJ, Waddell PJ et al., Phylogeny inference. In: Hillis DM, Moritz C, Mabel BK (eds). Molecular systematics (second edition). Sunderland: Sinauer Association Inc., 1996, 407-510.
    [148]Tateno Y, Takezaki N and Nei M, Relative efficiencies of the maximum-likelihood, Neighbor-joining, and maximum parsimony methods when substitution rate varies with site, Mol. Biol. Evol., 1994, 11(2), 261-277.
    [149]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG, The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research, 1997, 24, 4876-4882.
    [150]Thorne JL and Kishino H, Freeing phylogenies from artifacts of alignment, Mol. Bio.1 Evol., 1992, 9(6), 1148-1162.
    [151]Thorne JL, Kishino H, and Felsenstein J, An evolutionary model for maximum likelihood algnment of DNA sequences, J. Mol. Evol. , 1992, 33,114-124.
    [152]Tree of life, http//tolweb.org/tree?group=Caelifera&contgroup=Orthoptera.
    [153]Van De Peer Y, Ven Den Broeck I, De Ruk P and De Wachter R, Database on the structure of small ribosomal subunit RNA, Nucleic Acids Res, 1994, 22, 3488-3494.
    [154]Varani L and Pardi A, Structure of RNA.Pp1-24 in Nagai K and Mattaj I,
    
    eds, RNA-protein interactions, Oxford University Press, Oxford, 1994.
    [155] Wheeler WC and Honeycutt RL, Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implication, Mol. Biol. Evol., 1988, 5(1), 90-96.
    [156] Wuyts, J, Van de Peer, Y, Winkelmans, T, De Wachter, R, The European database on small subunit ribosomal RNA, Nucleic Acids Res., 2002, 30, 183-185.
    [157] Zhang DX and Hewitt GM, nuclear integrations: challenges for mitochondrial DNA markers, Trends Ecol. Evol., 1996, 1,247-251.
    [158] Zwickl DJ, Hillis DM, Increased taxon sampling greatly reduces phylogenetic error, Syst. Biol., 2002, 51(4), 588-598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700