中国四个畜种(黄牛、水牛、牦牛、家驴)线粒体DNA遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从我国陕西省、山西省、湖南省、内蒙古自治区及河南省采集秦川牛(QC)、西镇牛(XZ)、晋南牛(JN)、岳阳牛(YY)、蒙古牛(MO)、南阳牛(NY)、郏县牛(JX)与中国黑白花奶牛(BW)共8个品种的样品,利用PCR技术,自行设计了一对特异性引物,用于扩增中国黄牛线粒体DNA D-loop区910bp全序列。用Clustal W(1.82)软件对8个黄牛品种22个个体的D-loop区全序列进行同源序列比对与深入分析,结果表明:
     1.1 中国黄牛线粒体DNA D-loop核苷酸位点突变类型有五种,即转换、颠换、插入、缺失及转换与颠换共存。碱基转换以T〈=〉C形式为主,占62.96%,A〈=〉G占37.04%。本文还发现一个特殊位点,即266位点,出现碱基突变C〈=〉G〈=〉A〈=〉T,在22个黄牛个体中,碱基G出现12次,占54.55%,碱基A6次,占27.27%,碱基C3次,占13.64%,碱基T1次,占4.55%。本文把266位点称为转换与颠换共存位点。
     1.2 中国8个黄牛品种22个个体D-loop区全序列中,A+T平均含量为61.65%,G+C平均含量为38.35%。在黄牛D-loop 910bp序列中,共检测到核苷酸多态位点66个,约占核苷酸总数的7.25%。其中转换54个,约占核苷酸多态位点的81.82%;颠换4个,占6.06%;插入4个,占6.06%;缺失3个,占4.54%,转换与颠换共存位点1个,占1.52%。
     1.3 以Anderson(1982)测定的欧洲牛mtDNA D-loop全序列(910bp)为标准,8个黄牛群体D-loop的平均核苷酸变异率分3个层次,西镇牛、蒙古牛、黑白花奶牛及秦川牛的核苷酸变异率最低,分别为0.37%、0.44%、0.52%和0.66%;南阳牛与郏县红牛的核苷酸变异率居中,分别为1.91%和2.02%;晋南牛与岳阳牛的核苷酸变异率最高,分别为4.47%和4.73%。
     1.4 发现中国黄牛D-loop全序列中存在两个高变区,第一个主要的高变区,
    
    中国四个畜种(黄牛、水牛、耗牛、家驴)mONA遗传多样性研究
    与欧洲牛相同,位于241~61obP区域,长度为37ObP,约占核昔酸总变异位点的
    60.00%;第二个次要的高变区位于713一850bp区域,长度为138bp,约占20.00%。
     1.5中国黄牛品种内D一looP区全序列变异率为0.55%~5.39%。其中蒙古牛
    D一loop区全序列变异率最低(0.55%),南阳牛与郊县红牛变异率最高(大于5.0%)。
    中国黄牛品种间D一loop区全序列变异率为1.21%~6.59%。中国黄牛品种间D一100p
    区第一高变区的序列变异率为0.54%~9.46%,第二高变区的序列变异率为0.74%~
    8 .82%。
     1.6对22条mtDNAD一1。。p的全序列进行同源序列比对,结果发现19种单倍
    型,其中南阳牛1(NYI)、秦川牛1(QCI)与秦川牛3(QC3)共享一种单倍型;晋
    南牛1(州l)与岳阳牛(YY)共享一种单倍型;其余17个个体分别单独享有一种单
    倍型,单倍型比例为86.36%,表明中国黄牛遗传多态性很丰富。
     1.7通过对中国8个黄牛品种mtDNAD一loop区910饰全序列进行NJ法聚类
    分析,发现中国黄牛有三种单倍型组,分别代表着中国黄牛的三大母系起源。单倍
    型组I代表欧洲普通牛起源,单倍型组n代表印度瘤牛起源,单倍型组m代表一种
    不明身份的母系起源。首次从mtDNAD一loop母性遗传标记上证明中国黄牛是欧洲普
    通牛和印度瘤牛为主的混合起源,但受普通牛的影响更大一些。发现所研究的晋南
    牛1号、2号及岳阳牛起源于瘤牛,黑白花奶牛、秦川牛、蒙古牛与西镇牛起源于普
    通牛,晋南牛3号有另一种不明身份的母系起源。南阳牛与郊县牛品种内个体间分
    别含有普通牛与瘤牛的血缘。中国黄牛品种间与品种内有较大的分歧,表明中国黄
    牛品种间和个体之间具有丰富的遗传多态性。
     从我国陕西省、甘肃省、云南省及新疆自治区采集关中驴(GZ)、凉州驴(LZ)、
    云南驴(YN)与新疆驴(XJ)共4个品种的血样,利用PCR技术,用一对驴的特
    异性引物(该引物为克罗地亚Ivankovic与斯洛文尼亚Dovc(2002)先生设计并惠
    赠的)扩增了中国家驴和关中马D一1。oP区部分序列,其长度分别为399bp和396bp。
    用Clustalw(l .82)软件对4个家驴品种21个个体和2匹关中马的D一foop区部分序
    列进行同源序列比对与分析,结果表明:
     2.1以xu(1996)己发表的驴D一foop序列为对照,对家驴21个个体的mtDNA
    D一fo叩区399bp序列分析表明,中国4个家驴品种D一Icop序列核昔酸变异只有转换
    一种形式,没有发生D·lonp序列长度变异,说明中国家驴D一loop区序列核昔酸突变
    比较稳定。
     2.2中国4个驴品种21个个体D一loop区部分序列中,A+T平均含量为59.06%,
    G+C含量为40.94%。共检测到核昔酸多态位点22个,只有转换一种类型,约占核
    
     中国四个畜种(黄牛、水牛、耗牛、家驴)mtDNA遗传多样性研究且
    昔酸总数的5.51%。其中A<=> G10次,约占核昔酸多态位点的45.45%;C<=>T12
    次,占54.55%。
     2.3关中马2个个体D一loop区396bp序列由2种单倍型组成,共检测到核营酸
    多态位点8个,全部为转换,约占核营酸总数的2.02%。其中A<=> G3次,约占核
    昔酸多态位点的37.50%;C<=>TS次,占62.50%。关中马n一loop区396bp序列中,
    A十T平均含量为57.95%,而G+C平均含量为42.05%。
     2.4以xu(1996)己发表的欧洲驴D一loop作
The samples were collected from 8 Chinese yellow cattle breeds, including Qinchuan cattle (QC), Xizhen cattle (XZ), Jinnan cattle (JN), Yueyang cattle (YY), Mongolian cattle (MG), Nanyang cattle (NY), Jiaxian cattle (JX) and China Holstein cattle (BW) from Shaanxi, Shanxi, Hunan, Mongolian and Henan Province or Autonomous region in China. In order to amplify the complete control region (D-loop) sequence of mtDNA in Chinese cattle by PCR technique, the specific primers was designed by ourself in reference to Loftus (1991) Si Wu (2000). The complete mitochondrial D-loop sequence, 910bp in length, in 22 individuals from 8 cattle breeds were aligned by Clustal W (1.82) software and analyzed, the results showed that:
    1.1 Comparisons of these D-loop sequences revealed five types of mutation of nucleotide sites in Chinese cattle: transition, transversion, insertion, deletion and coexistence of transition and transversion. The nucleotide transitions existed mainly in T<=>C with 62.96%, A<=>G with 37.04%. A special polymorphic site of 266 position with C<=>G<=>A<=>T was revealed, of the 22 individual sites, 12 represented base G with 54.55%, 6 represented base A with 27.27%, 3 represented base C with 13.64%, 1 represented base T with 4.55%, the 266 position was named as coexistence site of transition and transversion.
    1.2 In the complete mitochondrial D-loop sequence, 910bp in length of 22 individuals from 8 Chinese cattle breeds, A% + T% was about 61.65%, G% +C% was about 38.35% and 66 polymorphic nucleotide sites were observed, with the percentage of 7.25% of 910bp. Of the 66variable positions, 54 represented transition with 81.82%, 4 represented transversion with 6.06%, 4 represented insertion with 6.06%, 3 represented
    
    
    
    deletion with 4.54% and 1 represented coexistence site of transition and transversion with 1.52%.
    1.3 Complete mtDNA D-loop of Bos Taurus (Anderson, 1982) was as a control, 3 groups were divided according to the average percentage of mtDNA D-loop nucleotide variation in 8 Chinese cattle breeds. The first group with the lowest percentage of D-loop nucleotide variation, including Xizhen cattle (XZ) , Mongolian cattle (MG), China Holstein cattle (BW) and Qinchuan cattle (QC) with 0.37%, 0.44%, 0.52%, 0.66% respectively; the second group with the percentage of D-loop nucleotide variation, including Nanyang cattle (NY) and Jiaxian cattle (JX) with 1.91%, 2.02% respectively and the third group with the highest percentage of D-loop nucleotide variation, including Jinnan cattle (JN), Yueyang cattle (YY) with 4.47% , 4.73% respectively.
    1.4 An examination of the distribution of nucleotide mutations in the bovine whole D-loop revealed two major hypervariable regions in China cattle, the first major hypervariable regions was the same as that of the European Bos Taurus (Loftus, 1994), 370bp in length between the 241-610bp, containing almost 60.00% of the overall number of nucleotide mutations, and the second, less variable region, 138bp in length between the 713-850bp, containing almost 20.00% of mutations.
    1.5 The average sequence divergence estimated from total D-loop within breeds varied from 0.55%~5.39% in Chinese cattle. The average levels of divergence were seen within 8 cattle breeds: the lowest (0.55%) and the highest (above 5.0%) among Mongolian cattle, Nanyang cattle and Jiaxian cattle, respectively. The average sequence divergence estimated from total D-loop among breeds varied from 1.21%~6.59%. The average sequence divergence estimated from total D-loop from the 370bp and 138bp hypervariable region among breeds varied from 0.54%~9.46% and 0.74%~8.82%, respectively.
    1.6 Comparisons of these 22 complete D-loop sequences revealed 19 mitochondrial haplotypes in Chinese cattle, one haplotype sequence was shared by NY1, QC1 and QC3, another by JN1 and YY1. The haplotype rate is 86.36%, demonstrating that Chinese cattle existed abundant mitochondrial genetic diversity.
    1.7 Phylogenetic trees were constructed using the neighbor-joining algorithm (NJ) in complete mt
引文
1 Amano T, Miyakoshi Y, Takada T, et al. Genetic variants of ribosomal DNA and mitochondrial DNA between swamp and river buffaloes. Animal Genetics, 1994, 25 (Supl) :29-30
    2 Amason U, Gullberg A, Janke A, et al. Pattern and timing of evolutionary divergencies among hominoids based on analysis of compoete mtDNA. J Mol Evol, 1996, 43:650-661
    3 Amason U, Gullberg A, Janke A. Phylogenetic analysis of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and Ferungulates. Mol Biol Evol, 1997, 14:762-768
    4 Amason U, Gullberg A, Wideegren B. The complete nucleotide sepuence of the mitochonduial DNA of the fin whale, Balaenoptera physalus. J Mol Emol, 1991, 33:556-558
    5 Amason U, Gullburg A.Comparison between the complete hybridize in nature. J Mol Evol, 1993, 37:312-322
    6 Arnason U, Gullberg A. Cytochrome b nucleotide sequence and the identifiction of five primary lineages of extant cetaceans. Mol Biol Evol, 1996, 13:407-417.
    7 Anderson, S., de Bruijn, M. H. L, Coulson, A. B.et al. Complete sequence of bovine mitochondrial DNA conserved features of the mammalian mitochondrial genome. J.Mol. Biol., 1982, 156: 683-717.
    8 Aqadro C F, Greenberg B D. Human mitochondrial DNA variation and evolution:analysis of nucleotede sequences from seven individuals. Genetics, 1983, 103:211-220
    9 Aranson E, Rand D M. Heteroplasmy of short tandem repeats in mitchondrial DNA of Atlant cod, Gadus morhua. Genetics, 1992, 132:211-220
    10 Avise J C, Amold J, Ball R M, et al. Intraspecific phylogeogrphy: the mitochondrial DNA bridge between population genetics and systematics. Anu Rev Ecol Syst, 1987,18:489-522
    11 Bell B R, et al. Effects of cytoplasmic in heritance on procuction traits of dairy cattle. J Dairy Sci, 1985, 68:2028-2052
    12 Bennet J L, Clayton D A. Efficient site-specific cleavage by Rnase MRP requires interaction with two evolutionarily conserved mitochondrial RNA sequences. Molecular and Cillular Biology, 1990, 10:2191-201
    13 Bentzen P, Leggett W C, Brown G C, Lenth and restriction sit heteroplasmy in the mitochondrial Dna of American shad(Alosa sapidissema), Genetics, 1998,118:509-518
    
    
    14 Bhat P P, Mishra B P, Bhat P N. Polymorphism of mitochondrial DNA (mtDNA) in cattle and buffalo. Biocheical Genetics, 1990, 28:311-317
    15 Bibb M J, Van Etten R A, Wright C T, et al. Sequence and gene organization of mouse mitochondrial DNA. Cell, 1981, 26:167-80
    16 Birky C W, Fuerst P, Maruyama T, Ofganelle gene diversity undermigriation, mutation, and drift: equilibrium expectation, approach to equilibrium, effect of heteroplasmic cell, and comparison to nuclear genes, Genetics, 1989, 121:613-627
    17 Bjorn MU, Amason U, The complete mitochondrial DNA sequence of the pig (Susscrofa). J,. Mol. Evol., 1998, 47:302-306
    18 Blin N, Staford D E. A general method for isolation of high molecular weigh DNA from eukaryotes. Nucleic Acid Research, 1976, 3:2303-8
    19 Boettcher P J, Freeman A E, Johnston SD, et al. Relationship between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cow. Journal of Dairy Science, 1996a, 79:648-54
    20 Boettcher P J, Kuhn M T, freeman A E. Impct of cytoplasmic inheritance on genetic evaluaton. Journal of Dairy Science, 1996b, 79:663-75
    21 Bowling, A.T. Del Valle, A. Bowling, M. A pedigree-based study of mitochondrial D-loop DNA sequence variation among Arabian horses. Animal Genetics: 2000. 31(1): 1-7.
    22 Bradley D G, Mac Hugh D E, Cunningham P, et al. Mitochodrial diversity and the origins of African and European cattle. Proc Natl Acad Sci USA, 1996, 93:5131-5
    23 Broughton R E, Dowling T E. Length variation in mitochondrial DNA of the Minnow cyprinella spiloptera. Genetics, 1994, 138:179-190
    24 Brown D R, Koehler C M, Linberg G L, et al. Molecular analysis of cytoplasmic genetic evaluation in Holstein cows. J. Anim. Sci., 1989, 67:1926-32
    25 Brown G G, Gadaleta G, pepe G, et al. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol, 1986,192:503-11
    26 Brown J R, Beckenbach A T, et al. Length variation heteroplaxmy and sequence divergence in the mitochondrial DNA of four species of sturgeon. Genetics, 1996, 142:552-535
    27 Brown J R, Beckenbach A T, Smith M J. Interaspecific DNA length variation and heteroplasmy in populations of white stugeon (Acipenser transmontamus). Mol Biol. Evol, 1993, 10(2): 326-341
    28 Brown W M, Prager E M, Wang A, et al. Rapid evolution of animal mitochondrial
    
    DNA.Proc Natl Acad Sci USA, 1979, 76:1967-1971
    29 Brown W M, Prager E M, Wilson A C. Mitochondrial DNA sequences of primates:tempo and mode of evolution. Journal of Molecular Evolution, 1982, 18:225-39
    30 Chen H. and Leibenguth F. Studies on multilocus fingerprints, RAPD markers and mitochondrial DNA of a gynogenetic fish (Carassius auratus gibelio). Biochem Genet,1995, 33: 297-306.
    31 Chen H and Leibenguth F. Restriction endonuclease analysis of mitochondrial DNA of three farm animal species, cattle, sheep and goat. Comp. Biochem. Physiol., 1995,111B: 643-649.
    32 Chen H. and F. Leibenguth. Restriction patterns of mitochondrial DNA (mtDNA) in European wild boar and German Landrace. Comp. Biochem. Physiol., 1995, 110B:725-728
    33 Cheng Y, Wang Y, Cao H, Pang Z and Yang G, 1994, Black-ear gene and blood polymorphism in four southern Chinese cattle groups. Animal Genetics, 1 (Supplement): 89-90
    34 Lin Chich-Sheng, sun Yu-Lin, Liu Chang-Yue et al. Complete nucleotide sequence of pig (Sus sccrofu) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene, 1999, 236:107-114
    35 Clayton D A. Replication and transcription of vertebrate mitochondrial DNA. Annual Review of Cell Biology, 1991, 7:453-78
    36 Clayton D A. Replication of animal mitochondrial DNA. Cell, 1982, 28:693-705
    37 Crawford A M, Doodds K G, Ede A J. et al. An autosomal genetic linkage map of the sheep genome. Genetics, 1995, 140:703-74
    38 Cronin M A. A unique SacII restriction fragment length polymorphism in mitochondria DNA of sheep and goats. J Anim Sci, 1994, 72:796
    39 Dairaghi D J, Clayton D A.Boxine RNase MRP cleaxes the divergent bovinemitochonrial RNA sequence at the displacement-loop region. J Mol Evol, 1993,37:338-46
    40 Desjardins P, Morais K. Sequence and organization of the Chicken mitochondrial genome. A novel gene order in higher vertebrates. J.Mol.Biol., 1990, 212:5 99-633
    41 Di Rienzo A, Wilson A C. Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad of Sci USA, 1991, 88:1597-1601
    42 Doad J N, Wright C T, Clayton D A. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc Natl Acad Sci USA, 1981, 78:6116-6120
    
    
    43 Dufresne C, Mihnotte F, Giueride M. The presence of tandem repeats and the initiation of replication in rabbit mitochondrial DNA. Eur J Biochem, 1996, 235:593-600
    44 Duret L, Mouchiroud D, Gouy M. Hovergen: adatabase of homologous vertebrate genes. Nucl Acid Res, 1994, 22:2360-2365
    45 Easteal S, Herbert G. Molecular evidence from the nuclear ginome for the time frame of human evolution. J Mol Evol, 1977,44:S121-S132
    46 Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol, 1981,17:368-376
    47 Fumagalli L, Taberlet P, Favre F, et al. Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol Biol Evol, 1996,13:31-46n
    48 Gah M H, Brown W M. Characteristics and distribution of large tandem duplication in brook stickleback (Gulaea inconstans). Genetics, 1997,145:383-394
    49 Ghivizzani S C, Mackay S L D, Maddsen C S, et al. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol, 1993, 37:36-47
    50 Ghivizzani S C, Madsen C S, Hauswirth W W. In: organello footprinting. Analysis of protein bindig at regulatory rigions in bovine mitochondrial DNA. J Bio Chem, 1993, 268:8675-8682
    51 Gietva J B, Cook D I, Zouros E. Repeated sequences and large-sacle size variation of mitochondrial DNA: a common feature among scallops (Bivalvia: Pectinidae). Mol Biol Evol, 1992, 9:106-124
    52 Gilbert T L, Brown J R, O Hara P J, et al. Sequence of tRNA~(thr) and tRNA~(pro) from white sturgeon (Acipenser transmontanus) mitochondria. Nucl Acid Res, 1988, 16 (24):11825-11825
    53 Gordon L, et al. Mitochondrial-DNA Variation and genetic-population structure in Rocky mountain bighorn Sheep. J of mammalogy, 1996, 77(1): 109-123
    54 Graziano P. et al. Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol, 1999, 48:427-434
    55 Gyllensten U, Wharton D, Josefsson A, et al. Paternal inheritance of mitochondrial DNA in mice. Nature, 1991, 325:255-257
    56 Hartl G.B., et al. On the biochemical systematics of the Bovini. Biochemical systematics and ecology, 1988, 16:575-579
    57 Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol, 1985, 22:160-174
    
    
    58 Hayasaka K, Ishida T, Horai S. Heteroplasmy and polymorphism in the major nocoding region of mitochondrial DNA in Japanese monkeys: association with tandemly repeated sequences. Mol Biol Evol, 1991,8(4): 399-415
    59 Hecht W. Studies on mitochondrial DNA in farm animals. In: Genome Analysis in Domestic Animals., 1990, 259-268.
    60 Hiendleder S, Hecht W, Wassmuth R.Characterization of ovine mitochondrial DNA and possible association of polymorphisms with phenotypic traits. Animal Genetics, 1990,22: (Suppl), 68
    61 Hiendleder S, Hecht W, Dzapo V, et al. Ovine mitochondrial DNA: restriction enzyme analysis, mapping and sequencing data. Animal Genetics, 1991a, 23:151-60
    62 Hiendleder S, Lewalski H, Wassmuth R, et al. The complete mitochondrial DNA sequence of the domestic sheep (Ovis arise) and comparison with the other major ovine haplotyoe. J Mol Evol, 1998a, 47: 441-8.
    63 Hiendleder S, Hecht W, Wassmuth R. Restriction enzyme analysis of cytoplasmic genetic variation in sheep. Journal of Animal Breeding and Genetics. 1991b, 108:290-8
    64 Hiendleder S, Mainz K, Plante Y. et al. Analusis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources. No evidece for contributions from Uria! and Argali sheep. Journal of Heredity, 1998b, 89:113-20
    65 Hiendleder S. A low rate of replacement substitutions in two major Ovis aries mitochondrial genomes. Animal Genetics, 1998c, 29:116-22
    66 Hiendleder S. Detailed restriction map of sheep mitochondrial DNA. Archives of Animal Breeding, 1993,36:511-7
    67 Hiendleder S. Length variations and heteroplasmy in ovine mitochondrial DNA are due to repeated sequences in the D-loop region. Animal Genet, 1994, 25:32
    68 Hiendleder S.Genome analysis and gene transfer in livestock: Molecular charecterization of the sheep mitochondrial genome. Journal of Animal Breeding and Genetics, 1996, 113:293-302
    69 Hill E W, Bradley D G, AI-Barody M et al. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Animal Genetics, 2002, 33:287-294
    70 Hoeh M A, Blakley K H, Brown W M. Heteroplasm suggested limited biparented inheritance ,of Mitils mitochondrial DNA. Sciences, 1991, 251: 1488-1490
    71 Hoelzel A R, Lopez J V, Dover G A, et al. Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J Mol Evol,1994, 39:191-199
    
    
    72 Holmes E C, Pesole G, Saccone C.Stochastic models of molecular evolution and the estimation of phylogeny and rates of nucleotide substitution in the hominoid primates. J Hum Evol, 1989, 18:775-794
    73 Horai S, Hayasaka K, Kondo R, et al. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci. USA, 1995, 92:532-6
    74 Horai S, Hayasaka K. Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. American Journal of Human Genetics, 1990, 46:828-42
    75 Horal S. Time of the deepest root for polymorphism in human itochondrial DNA. J Mol Evol, 1991, 32:37-42
    76 Hu Wenping, Xu Baoming, Lian Linsheng. Polymorphism of mitochondrial DNAs of Yunnan domestic water buffaloes, Bubalus bubalus, in China, based on restriction endonuclease cleavage patterns. Biochemical Genetics, 1997,35:225-231.
    77 Hutchison, C. A., Newbold, J. E., Potter, S. S., and Edgell, M. H. Maternal inheritance of mammalian mitochondrial DNA. 1974, Nature, 251: 531-538.
    78 Irwin D M, Kocher T D, Wilson A C. Evolution of the cytochrome b gene of mammals. J Mol Evol, 1991, 32:128-44
    79 Ishida N, Oyunsuren T, Mashima S, et al. Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse. J Mol Evol, 1995, 41:180-188
    80 Ishida N, et al. Polymorphic sequence in the D-loop region of equine mitochondrial DNA. Animal Genetics, 1994, 25:215-221.
    81 Ishida N, et al. PCR-RFLP analysis of the cytochrome b gene in horse mitochondrial DNA. Animal Genetics, 1996, 27: 359-363.
    82 Ivankovic A, Kavar T, Caput P, et al. Genetic diversity of three donkey populations in the Croatial region. Animal Genetics, 2002, 33, 169-177
    83 Janke A, Feldmaier-Fuchs G, Thomes W K, et al. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics, 1994, 137:243-256
    84 Jenuth J P, Peterson A C, Shoubredge E A. Tissue specific selection for different mtDNA genotypes in heterplasmic mice. Nature Genetics, 1997, 16:93-5
    85 Kikkawa Y, Yonekawa H, Suzuki H, et al. Analysis of genetic diversity of domestic water buffaloes and anoas based on variations in the mitochondrial gene for cytochrome b. Animal Genetics, 1997, 28:195-210
    86 Kikkawa Y, Amano T, Suzuki H, et al. Analysis of genetic diversity of domestic cattle
    
    in East and Southeast Asia in terms of variation in restriction sites and sequences of mitochondrial DNA. Biochem Genet, 1995, 33:51-60
    87 Kim K I, Yang Y H, Lee S S, et al. Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism. Animal Genetics: 1999, 30 (2): 102-108.
    88 Kim K I, Lee J H, Li K, et al. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Animal Genetics, 2002,33:19-25
    89 King T C, Low R L. Mapping of control elements in the displaement loop region of bovine mitochondrial DNA. Biochem Genet, 1995,262:6204-6213
    90 Kocher T D, Thomas W K, Myers A, et al. Dynamics of mitochondrial DNA evolution in animals: amplified and sequences with conserved primers. Pro. Natl. Acal Sci USA, 1989, 86:6196-6200
    91 Laipis J. P., Wilcox C. J. und Hauswirth W. W. Nucleotide sequence variation in mitochondrial DNA from bovine liver. J. Dairy Sci. 1982, 65, 1655.
    92 Lan H, shi L M. The origin and genetic differentiation of native brees of pigs in southwest China: An approach from mitochondrial DNA polymorphism. Biochemical Genetics, 1993, 31:51-60
    93 Lan H, Xiao X K, Lin S Y, Liu A H and Shi L M..Mitochondrial DNA polymorphism of cattle (B. taurus ) and mithum (B. frontalis) in Yunnan province. Acta Genetica Sinica, 1993, 20 (5): 419
    94 Lansman R A, Shade R O, Shapiro J F, et al. The use of restriction endonucleases to measure DNA sequences relatedness in national populations:Ⅲ. Techniques and potential applications. J Mol Evol, 1981, 17:214-226
    95 Li W H, Ellesworth D L, Krushkal J, et al. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phul Evol, 1996, 5:182-187
    96 Li W H, Tanimura M, Sharp P M. Ann evalution of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol, 1987, 25:330-343
    97 Lindberg, G.L. Koehler, C.M. Mayfield, J.E. Recovery of mitochondrial DNA from blood leukocytes using detergent lysis. Biochemical genetics. 1992.30 (1/2): 27-33.
    98 Lindsay E H, Opdyke N D, Johnson N M. Pliocene dispersal of the horse Equus and late Cenozoic mammalian dispersal events. Nature, 1980, 287:135-138
    99 Loftus R T, MacHugh D E, Bradley D G, et al. Evidence for two independent domestication in cattle. Proc Natl Acacd Sci USA, 1994, 91:2575-2761
    
    
    100 Loftus R T, MacHugh D E, Ngere L O, et al. Mitochondrial geetic vareation in European African and Indian cattle populations. Anim Genet, 1994, 25:165-171
    101 Ma D P, Zharkikh A, Graur D, et al. Structure and evolution of opossum, guinea pi,and porcupine cytochrome b genes, J Mol Evol, 1996, 36:327-220
    102 Madsen C S, Ghivizazani S C, Hauswirth W W. rotein binding to a sigle termination-association sequence in the mitochondrial DNA D-loop region. Mol Cell Biol, 1993, 13:2167-2172
    103 Mannen H, Kojima T, Ojama K, et al. Effect of mitochonrial DNA variation on carcass traits of Japanese Black cattle. J Anim Sci, 1998, 76:36-41
    104 Mannen H, Tsuji S, Lofius R T, et al. Mitochondrial DNA variation and evolution of Japanese Black cattle (Bos taurus). Genetics, 1998, 150:1169-1175
    105 Meng Shijie, Wang Pingzhong. Mitochondrial DNA polymorphsms for taken, cattle and sheep in Boriedae, Proceedings of international conference of animal biotechnology, 1997, 174-177
    106 Miyamoto, M M, et al. Systematic relationships in the artiodacyl tribe Bovini (Family Bovidae), as determined from mitochondrial DNA sequence. Syst. Zool., 1989, 38(2): 342
    107 Montgomeru G W, Sise J A, Extraction of DNA from sheep white blood cells. New Zeal J Agric Res, 1990, 33:437-441
    108 Moore W S, Graham J H, Price J T. Mitochondrial DNA variation in the northern flicker. Molecular Biology and Evolution, 1989, 8:327-344
    109 Moritz C, Dowling T E, Brown W M. Evolution of anima mitochondrial DNA: relevance for population biology and systematics. Ann Rev Ecol Syst, 1987,18:269-29
    110 Morutz C, Brown W M. Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial RNA. Sciences, 1986 233:1425-1427
    111 Mullenbach R, Lagged, P Welter C. An efficient salt-chlorform extraction of DNA from blood and tissues. Trends in Genetics, 1989, 5:391
    112 Nachman M W, Boyer S N, Aquadro C F. Nonneutral evolution at the mitochondrial DNAH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci USA, 1994, 91:6364-8
    113 Nachman M W, Brown W M, Stoneking M, et al. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Gentics, 1996, 142:953\63
    114 Naitana S, Ledda S, Cosso E, et al. Haemoglobin phenotypes of the wild European Mouflon sheep living on the island of Sardinia. Anim Gent, 1990, 21:67-75
    
    
    115 Nei M, LI W H. Mathematical model for studying genetic variation in terms of restrication endoncleases. Prodeedings of the National Academy of Sciences, 1979, 76(10): 5269-5273
    116 Nei M, Miller J C. A simple mithod for estimating average number of nuceotide substitutions within and between populations from restriction data. Genetics, 1990, 125:873-879
    117 Nei M, tajima F. DNA polymorphism detectable by restriction endoncleases. Genetics,1985, 97:145-163
    118 Nei L, Yu Y, Zhang G F, Wen J K and Zhang Y P. Genetic diversity of cattle in South China as revealed by blood protein electrophoresis Biochemical Genetics. 1999,37:257-265
    119 Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA proceeding in human mitochondrial. Nature, 1981,290:470-474
    120 Operz J V, S O, Bren S J. Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA repeat. Numt, I nte nuclear genome. Genomics, 1996, 33:329-246
    121 Pegorara L, Z, Samake S, et al. Sequence comparison of mitochondrial TRNA genes and origin of light strand replication in Bos taurus and Nellore (Bos indicus) breeds. Animal Genetics, 1996, 27:91-4
    122 Pholt, W. B. and Dawid, J. B. Mapping of mitchondrial DNA of individual sheep and goat. Rapid evolution in the D- loop region. Cell, 1977, 11: 571.
    123 Potter S. S., Nowbold J. E., Hutchinson C. A. Ⅲ und Edgell M. H. Specific cleavage analysis of mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72: 4496-4500.
    124 Quinn T W. The genetic legacy of mother goose-phylogenetic patterns of lesser snow goose maternal lineages. Molecular Ecology, 1992, 1:105-127
    125 Ralls K, Ballou J, AND A, et al. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conservation Biology, 1988, 2:185-193
    126 Rand D M, Harrison G K. Molecular poulation genetics of mtDNA size variation in crickets. Genetics, 1998, 121:551-569
    127 Roff D P. Bemmtzem. The statistical analysis of mitochondrial DNA polymorphisms:x ~2and thd promblem of small samples. Mol Bio Evol, 1989, 6:539-545
    128 Ron M, Genis I, Ezra E,et al. Mitochonidrial DNA polymorphism and determination of effects on economic traits in dairy cattle. Animal Biotechnology, 1992, 3:201-19
    129 Saccone C, Pesole G.Sbisa E. The main regulatory region of mammalian mitochdrial
    
    DNA: structure-function model and evolutionary pattern. J Mol Evol, 1991, 33: 83-91
    130 Sage R D, Wolff J O. Pleistocene glaciations. Fluctuating ranges, and low genetics variability in a large mammal (Ovis dalli). Evolution, 1985, 40:1092-1095
    131 Saitou N, Nei M.The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol Biol Evol, 1987, 4:406-42
    132 Sausman K. Survival of captive born Ovis Canadensis in North American zoos. Zoo Biology, 1984, 3:111-121
    133 Schreiber A, Seibold I, Notzold G, et al. Cytochrome b gene haplotypes characterize chromosomal lineages of Anoa, the Sulawesi Dwarf Buffalo (Bovidae: Bubalus sp.).The Journal of Heredity, 1999, 90(1): 165-176
    134 Schutz M M, Freeman A E, Lindberg G L, et al. Effects of maternal lineages grouped by mitochondrial genotypes on milk yidld and composition. Journal of Dairy Science,1993.76:621-9
    135 Schutz M M.Freeman A E, Lindberg G L, et al. The effect of mitochondrial DNA on milk prodiction and health of dairy cattle. Livestock Production Science, 1994, 37:283-95
    136 Sedroff, R. R.. Structural variation in mitochondrial DNA. Advances in Genetics, 1984,22.
    137 Slatkin M. Gene flow and the geographic structure of natural populations. Science,1987, 236:787-792
    138 Solignac M, Monnerot M, Mounolou J C. Concerted evolution of sequences repeats in Drosophila mitochondria; DNE. J Mol Evol, 1986, 24:53-60
    139 Stewart D T, Baker A J. Patterns of sequence variation in the mitochondrial D-loop region of shrews.Mol Biol Evol, 1994, 11: 9-21
    140 Stratil A, Bobak P. Comparison of biochemical polymorphisms in mouflon and sheep:isoelectric differences in haemoglobins and quantitative variation of mouflon haemopoxin. Comp Biochem physiol, 1988, 90, 24:159-162
    141 Suzuki R, KempS J, Tealke A J. Polymerase chain reaction analysis of mitochondrial DNA polymorphism in N'Dama and Zebu cattle. Animal Genetics, 1993, 24:339-43
    142 Tamura K, Aotsuka T. Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure. Biochemical genetics. 1988,26:815-819.
    143 Tanaka K, Yamagata T, Masangkay J S, et al. Nucleotide diversity of mitochondrial DNAs between the swamp and the river types of domestic water buffaloes, Bubalus bubalus, based on restriction endonuclease cleavage patterns. Biochemical Genetics, 1995, 33 (5/6): 137-148
    
    
    144 Tanaka k, Solis C D, Masangkay J S, et al. Phylogenetic relationship among all living species of the Genus Bubalus based on DNA sequences of the Cytochrome b gene. Biochemical Genetics, 1996, 34 (11/12): 443-452
    145 Toelle V D. et al. Cytoplasmic effects in swine. J Anim Sci, 1986, 63(Suppli): 203(Abstr)
    146 Troy C S, MacHugh D E, Bailey J F, et al. Genetic evidence for Near-Eastern origins of European cattle. Nature, 2001, 410:1088-1091
    147 Tu Z C, Nie L, Yu Y, Zhang Y P and Wen J K. Blood protein polymorphism in B.frontalis, B. grunniens, B. Taurus and B. indicus. Biochemical Genetics, 2000,38:413-416
    148 Upholt W B, Dawid I B. Mapping of mitochondrial DNA of individual sheep and goats:rapid evolution in the D loop region. Cell, 1977, 11:571-583
    149 Varvio S L, Chakraborty R, Nei M. Genetic varoation in subdiviedpopulations and conservation genetics. Heredity, 1986, 57:189-198
    150 Vigilant L, Pennington R, Harpending H, et al. Mitochondrial DNA sequences in single hairs fro, a southern African population. Proc Natl Acad of Sci USA, 1989, 86:9350-4
    151 Vila C, Leonard J A, Gotherstrom A, et al. Widespread origins of domestic horse lineages. Science, 2001, 291:474-477
    152 Villalta M, Fernandez-Solva P, beltran NB, et al. Molecular characterisaton and cloning of sheep mitochondrial DNA. Current Genetics, 1992, 21:235-40
    153 Wakana S, Watanabe T, Hayashi Y. A variant in the restrication endonuclease cleavage pattern of mitochondrial DNA in the domestic lowls, Galus domesticus. Animal Genetics, 1986, 17:159-168
    154 Wallace D C. Diseaes of the motochndrial DNA. Annual Review of Biothemistry,1992, 61:1175-212
    155 Wang W et al. Multiple genotypes of mitochondrial DNA within a domestic horse population from a small region in Yunnan Province of China. Biochemical Genetics,1994, 32:371-378
    156 Watanabe T, Hayashi Y, Kimura J, et al. Pig mitochondrial DNA: polymorphism, restriction map orientati on and sequence data. Biochem Genet, 1986, 24:385-396
    157 Watanabe, T., Hayashi,Y., Ogasawara, N. and Tomita, T. Polymorphism of mitochondrial DNA in pig based on restriction endonucleae cleavage pattems, Biochem. Genet, 1985, 23:105-113
    158 Watanabe T, Hayashi Y, Semba R and Ogasawara N. Bovine mitochondrial DNA
    
    polymorphism in restriction endonuclease cleavage patterns and the location of the polymorphic sites. Biochem. Genet, 1985, 23,947-957.
    159 Watanabe T, Masangkay J S, Wakana S, Saitou N and Tomita T. Mitochondrial DNA polymorphism in native Philippine cattle based on restriction endonuclease cleavage patterns. Biochem. Genet, 1989, 27: 431-438.
    160 Wood N J and Phua S H. Variation in control region sequence of the sheep mitochondrial genome. Anim Genet, 1996, 27:25-33
    161 Wu J M, Smith R K, Freeman A E, et al. Sequence heteroplasmy of D-loop and rRNA coding regions in mitochondrial DNA from Holstein cows of independent maternal lineages. Biochemical Genetics, 2000, 38(9/10): 323-335
    162 Xu X, Amason U. The complete mitochondrial DNA sequence of the horse, Equus caballus; Extensime heteroplasmy of the control region. Gene, 1994, 148:357-362
    163 Xu X, Amason U. The complete mitochondrial DNA sequence of the white rhinoceros Ceratotheirum simum, and comparison with the mtDNA of the Indian rhinoceros.Rhinoceros unicomis. Mol Phylogenet Evol, 1997,7:189-194
    164 Xu X, Gullberg A, Armason U. The complete mitochondrial DNA(mtDNA) of the donkey and mtDNA comparison among four closely related mammalian species-pairs.J Mol Evol, 1996, 43:438-446
    165 Xu X, Janke A, Amason U. The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinocers unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla, and Aritodactyla (+Cetacea). Mol Biol Evol, 1996b,13:1167-1173
    166 Yu R L, Chen L, Xin C and Chen Y. A dual-karyotype phenomenom of Qinchuan and Jinnan cattle in China. Report of the Society for Researches on Native Livestock,1990, 3:13-18
    167 Yu Y, Nie L, He Z Q, Wen J K, Jian L S and Zhang Y P. Mitochondrial DNA variation I ncattle of South China: origin and introgression. Animal Genetics, ,1999, 30:245-250
    168 Zardoya R, Villata M, Lopez-Perez M J, et al. Nucleotie sequence of the sheep mitochondrial D-loop and its flanking tRNA genes. Current Genetics, 1995, 28:94-6
    169 Zeuner F E. A history of domesticated animals. London: Hutchinson, 1963
    170 Zhang Y P, Chen Z P. Shi L M. Mitochondrial DNA and karyotype evidence for the phylogeny of the genus Nycticebus, Incurrent primatlogy, Vol 1, Annerson, J R. et al.(ed), Strasbourg, France, 1994
    171 Zhang Y P, Chen Z P. Shi Phylogeny of the slow lorises (genus Nycticebus): and approach using mitochondrial DNA restriction enzyme analysis, International journal
    
    of primatology, 1993, 14:167-175
    172 Zhang Y P, Ryder O A. Different rates of mitochondrial DNA sequences evolution in kirk's dik-dik (madoqua kirkiiI) populations. Mol. Phylogenet. Evol. 1995, 4:291-297
    173 Zhang Y P, Ryder O A. Mitochondrial DNA sequence evolution in the Arotoidae, Proc. Natl. Acad. Sci. USA, 1993, 99:9557-9561
    174 Zhang Y P, Shi L M. Phylogny of rhesrs monkeys (Macaca mulatta) as revealed by mitochondrial restriction enzyme analysis, International journal of primatology, 1993,14:587-605
    175 Zhang Y P. Lan H, and Shi L M. Animal mitochondrial DNA polymorphism a valuable tool for evolutionary studies. Cell research, 1993, 3:113-119
    176 Zhang Y P, Shi L M. Phylogenetics relationships of macqques as inferred from restriction endonuclease analysis of mitochondrial DNA, Folia Primatologica, 1993,60:7-17
    177 Zhang Y P, Shi L M. Riddle of the giant panda. Nature, 1991, 352:573
    178 柏干荣,武凡,李萍,等.大鼠线粒体ATPase8基因的多态性与表达的研究.中国病理生理杂志,2001 17:16-19
    179 常洪主编.家畜遗传资源学纲要.北京:中国农业出版社,1995
    180 常洪,王人波.黄牛集团特征的形成—中国黄牛源流考察之二.见:中国黄牛生态种特征及其利用方向,中国农业出版社,1990,213-219
    181 常洪,耿社民,武斌,等.秦岭两侧黄牛群体遗传检测报告,中国家畜遗传资源研究,1998,159-166
    182 常洪,苗泽荣编著,黄牛育种.中国环境科学出版社,1988
    183 陈宏,邱怀,詹铁生,等.中国四品种黄牛性染色体多态性的研究.遗传,1993,15(4),14—17
    184 陈宏,F.Leibenguth.家畜线粒体DNA(mtDNA)的研究.黄牛杂志,1995,21(1):7—13
    185 陈宏,F.Leibenguth,邱怀.德国骑乘马线粒体DNA(mtDNA)的限制性酶分析.西北农业大学学报,1999,27(4):23—27
    186 陈永久,张亚平,沈发荣,等.中国5种珍稀绢蝶非损伤性取样的mtDNA序列及系统进化.遗传学报,1998,26(3):203-207
    187 陈玉林.中国绵羊的分子进化与遗传多样性研究.西北农林科技大学博士研究生学位论文,中国杨凌,2000年
    188 陈幼春.中国黄牛生态钟持征及其利用方向.中国农业科学院畜牧研究所编,中国农业出版社,1990,3—7
    189 陈幼春,常洪.编制中国牛种体型外貌调查提纲的探讨.中国黄牛,1987,3:
    
    75-77
    190 陈幼春,曹红鹤.中国黄牛品种多样性及其保护.生物多样性,2001,9(3):275-283
    191 陈智华.西藏牦牛血液蛋白多态性研究.西南民族学院学报,1995,4:414-417
    192 陈智华,钟金城.西藏黄牛染色体的研究,黄牛杂志,1995,1:1-2
    193 段子渊.从mtDNA序列分析中国家猪的起源进化与遗传多样性.西北农林科技大学博士研究生学位论文,中国杨凌,2000年
    194 段江萍,项松平,徐志彬,等.瓯江彩鲤线粒体DNA的限制性内切酶分析.上海水产大学学报,2002 11(1):14-18
    195 戴纪刚.三个封闭群小鼠线粒体DNA PCR-RFLP分析.第三军医大学学报,2000,22:1-3
    196 樊连春,赖宇鹏,朱蓝菲,等,雌核发育银鲫两个不同品系线粒体DNA比较.海洋与湖沼,2000,31:4-7
    197 高天翔,张秀梅.齿突斜纹蟹线粒体DNA中12SrRNA基因序列的研究.大连水产学院学报,2000,15(2):98-102.
    198 高天翔,任一平.日本绒螯蟹线粒体DNA序列研究Ⅱ.16SrRNA.青岛海洋大学学报(自然科学版),2000,30(3):482-486
    199 孙玉华,王伟,刘思阳,等.中国胭脂鱼线粒体控制区遗传多样性研究.遗传学报,2002,29(9):787-790
    200 关海红,石连玉,刘明华.黑龙江四个地区鲤鱼种群的线粒体DNA的多态性.淡水渔业,2002,32(3):35-37
    201 郭爱扑.黄牛、牦牛和它们杂种后代犏牛染色体的比较研究.畜牧兽医学报,1983,10(2):133-143
    202 郭经恂.牛.中国农业百科全书(畜牧业卷),1996,433-437
    203 何正权,张亚平,简承松,等.贵州黄牛品种间mtDNA限制性片段长度多态性研究.动物学研究,1999,20(1):7-11
    204 侯鹏,卫明,张立勋,等.大石鸡边缘种群的遗传结构.2002,48(3):333-338
    205 胡文平.云南地方鸡种的遗传多样性及其与中国家鸡起源的关系.生物多样性,1999,7(4):285-290
    206 胡文平,张亚平,连林生,等.云南地方猪线粒体DNA多态性研究.畜牧兽医学报,1998,29(5):392-396
    207 胡文平,张亚平,连林生,等.中国水牛的遗传多态性.内蒙古畜牧杂志,1998,(2):1-3
    208 胡文革,王金富.动物线粒体DNA多态研究及其在鱼类群体遗传结构上的应用.石河子大学学报(自然科学版)2001,5(3):
    209 黄勇富,张亚平,等.线粒体DNA多态性与中国地方猪品种起源分化的关系.遗
    
    传学报,1998,25(4):322-329
    210 黄原著.分子系统学—原理方法及应用.北京:中国农业出版社,1998,63—67
    211 黄右军,刘业基.三品种杂交水牛及其亲代、子代染色体的研究.畜牧兽医学报,1989,20(2):123-128
    212 季维智主编.遗传多样性研究的原理与方法.杭州:浙江科学技术出版社,1999
    213 季国庆,杨光,刘珊,等.中国水域瓶鼻海豚的mtDNA控制区序列变异性分析.2002,48(40:487-493
    214 贾永红,史宪伟,等.贵州四个山羊品种mtDNA多态性及起源进化.动物学研究,1999,20(2):88-92
    215 蒋思文,熊远著.6个中国猪地方品种和3个瑞典猪DNA分子系统发育相关关系.遗传学报,2001,28(12):
    216 兰宏,陈志平,等.猪獾和黄鼬mtDNA物理图谱及位点变异性初探.动物学研究,1996,17(3):263-268
    217 兰宏,施立明.四种犬科动物线粒体DNA分子进化.动物学报,1996,42(1):87-95
    218 兰宏,王文,等.西南地区家猪和野猪mtDNA遗传多样性.遗传学报,1995,22(1):28-32
    219 兰宏,熊司昆,林世英,等,云南黄牛和大额牛的mtDNA多态性研究,遗传学报.1993,20(15):419—425
    220 兰蓉,洪琼花,高源汉.云南绵羊线粒体DNA遗传多态性研究.遗传,1998,20(1):20-23
    221 李殿香,李传印,等.泥鳅线粒体DNA限制性酶切图谱.动物学研究,1999,20(2):153-155
    222 李菁菁,彭统序,温硕洋,等.褐家鼠线粒体DNA遗传多态性的研究.动物学研究,1999,20(4):247-251
    223 李明,等.麝、獐、鹿和麂间线粒体DNA的差异及其系统进化研究.兽类学报,1998,18(3):184-193
    224 李明,李元广,盛和林,等,原麝安徽亚种分类地位的再研究.科学通报,1999,(2):18-22
    225 李明,饶刚,魏辅文,等.小熊猫种群遗传结构和地理分化.2002,48(40:480-486
    226 李祥龙,田庆义,等.我国北方部分山羊品种mtDNA遗传多样性.中国兽医学报,2000,20(2):192-194
    227 李祥龙,张亚平,陈圣偶.山羊mtDNA多态性及其起源分化研究.畜牧兽医学报,1999,30(4):313-319
    
    
    228 李祥龙,张亚平,陈圣偶,等.山羊品种间线粒体DNA限制性片段长度多态性研究.动物学研究,1997,18(4):421-428
    229 李祥龙,郑桂茹,张亚平.绵羊、山羊和岩羊mtDNA的RFLP及其遗传分化研究.畜牧兽医学报,2000,31(4):289-295
    230 李祥龙,田庆义,等.乌珠穆沁羊mtDNA的RFLP研究.河北农业技术师范学报,1998,12(3):1-4
    231 李庆伟,袁志刚,张亚平,等.中国民族人群线粒体DNA 9bp序列缺失的分布.自然科学进展,2001,11(4):35-39
    232 李庆伟,李爽,田春宇,等.雀形目10种鸟类线粒体的DNA变异及分子进化.动物学报,2002,48(5):625-632
    233 黎双飞,张轩杰,刘少军,等.银鲴自然群体线粒体DNA的遗传分化.水生生物学报 2000,24(1):8-11
    234 刘运强,鲁成,廖顺尧.家蚕卵线粒体DNA限制性内切酶长度多态性研究.西南农业大学学报,2001 23(1):9-13
    235 陆松敏,王正国,李萍,李伟文.几种线粒体DNA提取方法的比较.中国病理生理杂志,2001,17:11-15
    236 马恩波,任竹梅,郭亚平.中国小稻蝗种内多态性研究.山西大学学报(自然科学版),2002,25(2):62-64
    237 聂龙,陈永久,刘瑞清.海南黄牛和徐闻黄牛线粒体DNA的多态性及其品种分化关系.动物学研究,1996,17(3):269-274
    238 牛屹东,李明,魏辅文,等.线粒体DNA用作分子标记的可靠性和研究前景.遗传,2001,23(6):463-466
    239 庞之洪,王毓英,陈幼春,等.中国黄牛体型大小与产区地理生态因子关系的多元分析研究.中国黄牛生态种特征及其利用方向.中国农业出版社,1990,143-154
    240 钱亚屏,初正韬,褚嘉佑,等.应用线粒体DNA D-loop区遗传多样性分析云南4个少数民族的遗传关系.遗传学报,2001,28(4):283-289
    241 秦树臻,等.福建黄兔线粒体DNA的限制性内切酶分析.中国养兔杂志,19939(5):5-6
    242 雷初朝,陈宏,胡沈荣.Y染色体多态性与中国黄牛起源和分类研究.西北农业学报,2000,9(4):43-47
    243 邱怀,秦志锐,陈幼春,等.中国牛品种志.上海科学技术出版社,1986
    244 权洁霞,张亚平,韩建林,等.家养双峰驼线粒体DNA遗传多样性的研究.遗传学报,2000,27(5):383-390
    245 任竹梅,马恩波,郭亚平.蝗总科部分种类Cyt b基因序列及系统进化研究.遗传学报,2002,29(4):314-321
    
    
    246 任竹梅,马恩波,郭亚平.山稻蝗及相关物种Cyt b基因序列及其遗传关系.遗传学报,2002,29(6):507-513
    247 邵志勇,茅红新,符文俊,等.细胞色素b基因序列与11种熊蜂的系统进化(英文).动物学研究,2002,23(5):361—366
    248 史宪伟,王继文,等.四川白鹅、郎德鹅及杂交后代线粒体DNA多态性研究.畜牧兽医学报,1998,29(6):481-485
    249 史宪伟,曾凡同,张亚平,等.中国主要鹅品种的线粒体DNA多态性与起源分化研究.遗传学报,1998,25(6):499-507
    250 史宪伟,张亚平.云南鹅不同地理群体线粒体DNA多态性研究.云南农业大学学报,1998,13(3):311-313
    251 史荣仙,付茂忠,赖松家,等.长江流域水牛血液蛋白多态性研究[J].遗传,1995,17(1):7-11
    252 宿兵,P.Kressirer,K.Monda,等.中国黑冠长臂猿的遗传多样性及其分子系统学研究—非损伤取样DNA序列分析.中国科学(C辑),1996,26(5):414-419
    253 孙允明,黄鹤龄.几种鸟类mtDNA限制性酶切图谱的比较研究.畜牧兽医学报,1993,24(6);487-493
    254 单祥年.中国牛属五个牛种的染色体的比较研究.动物学研究,1980,1:75-81
    255 谭远德,颜亨梅.mtDNA基因树拓扑距离比较和基因分群,动物分类学报,2002,27(2):23-27
    256 童金苟,吴清江.三个鲤品种线粒体基因片段序列保守性.水生生物学报,2001,25(1):285-289
    257 涂正超,张亚平.藏绵羊线粒体DNA遗传多态性研究.畜牧兽医学报,1998,29(2):132-135
    258 涂正超,张亚平,邱怀.中国牦牛线粒体DNA多态性及遗传分化.遗传学报,1998,25(3):205-212
    259 涂正超,邱怀,等.动物线粒体mtDNA多态性及其在畜牧科学中的应用.黑龙江畜牧兽医,1994,12:38-40
    260 涂正超,邱怀.家牛mtDNA多态性研究进展.黄牛杂志,1997,23(1):11-12
    261 涂正超,邱怀,张亚平.牦牛mtDNA限制性类型及其与其它牛种分化研究.黄牛杂志,1997,23(3):8—10
    262 涂正超,张亚平.中国地方黄牛的遗传多样性.生物多样性,1997,5(2):90-94
    263 涂正超,邱怀.牛属的遗传多样性及种间遗传分化研究进展(下).黄牛杂志,1998,1:1-3
    264 涂正超.中国牦牛遗传多样性及遗传分化研究.西北农业大学博士学位论文,中国杨凌,1996
    
    
    265 王文,兰宏,刘爱华,等.家鸡和原鸡的线粒体DNA多态性比较.动物医学研究,1994,15(4):55-60
    266 王文,等.一种改进动物线粒体DNA提取方法.动物科学研究,1993,14(2):197-198
    267 王毓英,曹红鹤,庞之洪,等.中国黄牛血液蛋白多态性及其亲缘关系的研究.见:中国黄牛生态种特征及其利用方向.中国农业出版社,1990,29-41
    268 王金凤,王沥,张端阳,等.山东荣成人群线粒体DNA多态性研究.遗传学报,2001,28,(12):
    269 王爱德,魏泓,刘中禄.中国三种实验用小型猪线粒体DNAD-loop多态性分析.遗传,2001,23(2):96-99
    270 王爱德,曾养志,刘中禄,等.中国三种实验用小型猪mtDNA D-loop多态性分析.动物学报,2001,47(4):487-492
    271 王义权,周开亚,朱伟铨,等.几种鳄分子系统发生的探讨.遗传,2001,23(5):450-454
    272 王静波,徐宏发,胡长龙.线粒体DNA(mtDNA)多态性在动物保护生物学中的应用.生物多样性,2001 9(2):112-115
    273 魏兆军,赵巧玲,张志芳,等.蓖麻蚕线粒体基因组细胞色素氧化酶亚基Ⅲ的序列及其分子进化分析.昆虫学报,2002,45(2):118-122
    274 文际坤,俞英,赵开典,等.云南文山牛和迪庆牛mtDNA的多态性研究.畜牧兽医学报,1996,27(1):94-96
    275 卫明,侯鹏,黄族豪,刘迪发.环境因子对大石鸡种群遗传结构的影响.生态学报,2002,22(4):423-426
    276 吴冰,等.条纹斑竹鲨线粒体DNA的研究.遗传,1998,20(4):23-25
    277 吴春花,张亚平.草兔和云南兔的遗传分化研究.云南大学学报,1999,增刊:234
    278 吴平,周开亚,杨群.亚洲淡水和陆生龟鳖类12S rRNA基因片段的序列分析和系统发生研究.动物学报,1999,45(3):325-328
    279 吴清江,张亚平,张四明.中华鲟(Acipenser sinensis)及相关种类的mtDNA控制区串联重复序列及其进化意义.中国生物化学与分子生物学报,2000,16(4):465-469
    280 向余劲攻,宗颐,杨岚,等.通过细胞色素b基因探讨锦鸡属两个种的分类关系.云南大学学报,1999,增刊:233
    281 肖武汉,张亚平.鱼类线粒体DNA的遗传与进化.水生生物学报,2000,24(4):384-391
    282 肖颖彬,魏泓,戴纪刚.常用实验用近交系小鼠线粒体DNA遗传变异的分析.
    
    遗传学报,2001,28(2):
    283 谢力,等.林氏果蝇种群间mtDNA的比较研究.动物学研究,1997,18(2):213-220
    284 谢志雄,杨代淑,太湖新银鱼线粒体DNA物理图谱及分析.遗传,1998,20(1):16-19
    285 谢志雄,杨代淑,郝广勤,等.南方鲇肝脏线粒体DNA的简便分离纯化方法.动物学杂志,1998,(2):28-32
    286 谢成侠.中国牛种的起源和进化.见:科技史文集(第四辑),生物学史专辑.上海科学出版社,1980,183-192
    287 许文博.云南牛亚科动物来源的探讨.中国畜牧杂志,1983,(4):34-37
    288 易广才,张晓梅,单祥年.麂属动物线粒体12S rRNA、细胞色素b基因和多药耐药基因序列分析及其分子进化关系.遗传学报,2002,29(8):674-680
    289 杨关福,吴显华,丘陵,等,海南黄牛毛色的遗传.见:中国黄牛生态种特征及其利用方向.中国农业出版社,1990,136-139
    290 杨光,任文华,钮明华,等.条纹原海豚mtDNA控制区序列变异分析[J].动物学报,2002,48(1):25-29
    291 姚永刚,庞启平,马志雄,等.广西壮族人群线粒体DNA序列遗传多态性分析.遗传学报,2001,28(2):150-154
    292 姚永刚,张亚平,孔庆鹏.人类线粒体DNA变异的检测方法和思路.动物学研究,2001,22(4):65-69
    293 叶绍辉,等.云南保种山羊线粒体DNA限制性内切酶分析.中国畜牧杂志,1998,34(3):11-12
    294 叶绍群,彭和禄,王文,等.云南龙陵黄山羊线粒体DNA限制性酶切分析.云南农业大学学报,1999,14(1):54-57
    295 于宁,郑昌琳,等。鼠兔属5个种的分子分类及进化.中国科学,1996,26(1):69-77
    296 于汝梁.中国黄牛的Y染色体多态性与品种类型.见:中国黄牛生态种特征及其利用方向.中国农业出版社,1990,136-139
    297 俞英,聂龙,何正权,等.中国南方黄牛的mtDNA变异研究—起源及渐渗现象.云南大学学报,1999,增刊:232
    298 曾养志.云南瘤牛.畜牧兽医学报,1984,4:217-222
    299 张辉,吴清江.鲫不同种系线粒体DNA物理图谱的构建,水生生物学报,2000,24(3):219-227
    300 张四明,龙华.湖北淤泥湖团头鲂mtDNA限制性片段长度多态性的研究.水产学报,1996,20(4):289-293
    
    
    301 张四明,等.中华鲟mtDNA个体间的长度变异与个体内的长度异质性.遗传学报,26(5):489-496
    302 张四明,汪登强,邓怀,等.长江中游水系鲢和草鱼群体mtDNA遗传变异的研究.水生生物学报,2002,26(2):142-147
    303 张四明,张亚平,吴清江.从线粒体DNA控制区核苷酸序列论达式鲟、亚洲和北美洲中吻鲟的分类地位.动物学报,2001,47(6):632-637
    304 张文薇,陈璞,等.中国大陆部分地区Drosophila immigrans果蝇种群中mtDNA的遗传多态性研究.遗传学报,1998,26(4):326-344
    305 张亚平,Dliver A Ryder,范志勇,等.大熊猫DNA序列变异及其遗传多态性研究.中国科学(C辑),1997,27(2):139-144
    306 张亚平.马来熊的DNA序列分析与遗传多样性研究.动物学研究,1996,17(4):459-468
    307 张亚平,等.动物线粒体DNA多态性的研究概况.动物学研究,1992,13(3):289-298
    308 郑冰蓉,张亚平,肖蘅,等.鲤属鱼mtDNA控制区(D-环区)序列的变异性分析.水产学报,2002,26(4):289-294
    309 张征蒲,张淑萍,王子淑.牛血清LDH同工酶与mtDNA多态的比较研究.西南农业大学学报,2001,23(4):23-28
    310 张秀梅,高天翔,王溪宏.冲绳日本绒螯蟹线粒体DNA12S rRNA序列的研究.湛江海洋大学学报,2000 20(2):11-15
    311 郑文竹,洪夏.珠鸡mtDNA的限制性图谱.厦门大学学报(自然科学版),2002,41(1):
    312 郑冰蓉,张亚平,咎瑞光.洱海四种鲤鱼线粒体DNA遗传相似性的初步研究.遗传,2001,23(6):668-673
    313 赵兴波,储明星,李宁,等.绵羊线粒体DNA的父系遗传.中国科学(C辑),2000,30(6):643-646
    314 赵兴波,王爱华,吴常信,等.绵羊(Ovis aries)线粒体DNA的遗传变异类型研究.自然科学进展,2001(11):12-16
    315 赵兴波,等.猪线粒体DNA D-Loop PCR-PFLP分析.中国农业大学学报,1998,3(5):13-18
    316 赵凯,李军祥,吴华,等.青海湖裸鲤mtDNA遗传多样性的初步研究.遗传,2001,23(5):536-540
    317 钟金城,陈智华,钟光辉,等.牦牛染色体和血液蛋白遗传多样性的研究[J].Animal Biotechnology bulletin,2002,8(1):284-287
    318 周开亚,江建平.中国林蛙的分子系统关系.动物学研究,2001,22(1):
    
    
    319 邹霞青,梁学武,许清.白婆罗门牛与本地黄牛杂交效果研究.福建农学院学报,1989,18(2):127-132
    320 邹平,张延钦,等.云南几个地方鸡种的mtDNA限制性片段长度多态性研究.中国畜牧杂志,1997,33(6):26-27
    321 周继亮,姚永刚,黄美华,等.中国腹亚科6种蛇线粒体12sRNA基因序列分析及其系统发育,云南大学学报,1999,增刊:248
    322 周继亮,姚永刚,黄美华,等.蝰科(Viperidae)蝮亚科(Crotalinae)线粒体12S rRNA基因序列分析及其系统发育.遗传学报,2000,27(4):422-426
    323 周开亚,江建平.从12S rRNA基因序列研究中国蛙科24种的进化关系.动物学报,2001,47(1):12-16
    324 亏开兴,李文贵,朱芳贤,等.应用线粒体DNA鉴定动物源性饲料成分研究进展.黄牛杂志,2002,28(6):19-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700