中国麦红吸浆虫地理种群遗传变异及基因流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦红吸浆虫Sitodiplosis mosellana(Gehin)是一种间歇性大发生的小麦主要害虫, 分布于我国的各主要小麦生产区,在我国历史上曾多次发生麦红吸浆虫对小麦生产造成的灾害,特别是1946-1952年、1984-1991年造成的灾害更为严重。近几年,仍在局部地区爆发成灾,并具有扩散蔓延的趋势,对小麦生产造成潜在的严重威胁。本研究对中国12个地区的麦红吸浆虫种群,选择线粒体DNA细胞色素C氧化酶亚基Ⅱ(COⅡ)和NADH脱氢酶亚基4(ND4)进行序列变异分析,同时结合微卫星引物PCR多态性分析,从分子水平探讨麦红吸浆虫种群传播扩散的途径及其种群的遗传多样性水平,以便为研究该害虫的扩散传播、成灾规律、预测预报及大面积的综合治理提供种群遗传学信息。
    对线粒体DNA COⅡ和ND4基因片段的序列分析结果表明:1)扩增出的麦红吸浆虫 COII基因片段的长度为550bp左右,在所有11个种群中可用于分析的序列长度为447bp。在得到的11条同源序列中,共检测出7个变异位点(约占核苷酸总数的1.6%),其中转换数为5,颠换数为 2,无碱基的缺失/插入。序列中A+T平均含量为78.6%,G+C平均含量为21.4%。不同序列之间核苷酸替换数最大为6,最小为1,这些变异的多态位点共定义了7个单倍型,群体的单倍型多样度为0.873±0.0079。 2)扩增出的麦红吸浆虫ND4基因片段的序列长度为450bp左右,在所有12个种群中可用于分析的序列长度为327bp。在得到的43条同源序列中,共发现21个变异位点(约占分析位点数的6.4%),其中包括17个转换,4个颠换,无碱基的缺失/插入。序列中A+T平均含量为75.6%,G+C平均含量为24.4%。这些变异的多态位点共定义了22种单倍型,不同单倍型之间的核苷酸替换数最大为8,最小为1,单倍型间的序列差异在0.31%~3.06%之间,平均为1.68%,群体的单倍型多样度为0.8782±0.0017。
    利用mtDNA COⅡ和ND4基因序列构建的麦红吸浆虫各地理种群单倍型的分子系统树显示,单倍型的系统发育关系与各种群在地理分布上相对应。所有分布在春麦区的麦红吸浆虫地理种群拥有的单倍型聚为一枝;分布于冬麦区的绝大部分单倍型聚为一枝,而其中的陕西长安种群(SC)拥有的单倍型则在两枝中均有出现,成为单倍型分布的一种过渡区域。结合单倍型空间分布的影响因素分析结果,作者认为受限制的基因流动及其在分布区的扩散可能是形成麦红吸浆虫目前单倍型分布模式的主要原因。麦红吸浆虫群体的单倍型频率非配对分布分析表明, 该种群在历史上曾经历两次群体扩张事件, 其中后一次的规模大于前一次。
    麦红吸浆虫种群遗传分化和基因流水平分析表明,无论在冬麦区还是春麦区,其区域内的各种群之间Fst值均小于0.33,遗传分化很小,在同一类型的耕作区内各种群间存在着较强的基因交流;但在不同类型的耕作区种群之间,其Fst值几乎均大于0.33,遗传分化较大,遗传漂变是影响其分化的主要因素;但陕西长安种群SC和春、冬麦区
    
    
    其他种群的Fst值均小于0.33,这进一步表明陕西长安种群SC所在的区域是麦红吸浆虫在我国冬麦和春麦两种类型耕作区的过渡地带。由此可以认为,麦红吸浆虫的基因流模型应为“距离隔离”模型,即在一个连续分布的群体内,其邻里之间的种群能够发生基因流,且基因流水平与其间的距离成反比。
    结合麦红吸浆虫生物学特征及其寄主植物的生长发育规律特点,对不同地理种群间的基因流方向和影响基因流动的因素进行分析后,作者认为:随机遗传漂变应是形成冬、春麦区麦红吸浆虫种群分化的最主要原因;其各种群间的基因流主要应是在水流和风的推助作用下,进行种群扩散、传播后完成的(幼虫、蛹或圆茧主要随水流传播,而成虫则借助风力扩散)。日照时间和温湿度应是影响其基因流方向的主要因素,因为各地的日照时间和温湿度差异是影响其寄主植物成熟期形成先后顺序的关键因子,这即造成了成虫的扩散传播只能从东向西、由南向北进行。水流的灌溉作用又是局部地区麦红吸浆虫形成一个随机交配群体的主要原因。
    利用4个微卫星引物对麦红吸浆虫11个种群的遗传多样性分析表明,冬麦区种群的基因多样度和多态位点率均高于春麦区种群。基于两两种群间相似系数的聚类分析将11个种群聚为3枝,所有春麦区种群聚为一枝,冬麦区的SC、HL、HX、AF种群聚在一起后于春麦区种群合并,最后与种群AS-HN聚在一起,显示出明显的地理分布特点。
    从mtDNA COⅡ基因序列计算出的麦红吸浆虫11个种群的遗传距离在0.000~0.016之间,由mtDNA ND4基因得到的12个种群的遗传距离在0.0000~0.0180之间,该变异范围属于地理种群一级的变异,因此麦红吸浆虫各种群之间的遗传差异还没有达到种级,仅为种下分化水平。从mtDNA ND4基因估计的麦红吸浆虫12个地理种群内的遗传变异范围在0.0000~0.0145之间,其中安徽宿州种群AS和河北南和种群HN种群内的遗传变异最大,为0.0145, 甘肃武威种群GW和宁夏惠农种群NH种群内的遗传变异最小,为0.0000。
    根据不同地理种群间的遗传距离构建出的系统树表明,麦红吸浆虫12个(COⅡ基因构建了11个种群的系统树)不同地理种群明显地聚为春麦区和冬麦区两个大类,其中陕西长安种群(SC)虽处于冬麦区,却与春麦区各种群间的遗传距离?
The wheat midge, Sitodiplosis mosellana (Gehin), is a serious pest of wheat, outbreaking sporadically and distributing in the main wheat-growing region of China. It outbroke and plagued many times in history and made great losses in the wheat production. Forties and eighties of 20th century were its main outbroke periods. Recently about ten years, it still outbreaks and plagues at certain wheat fields and has a trend to extend their habit, having the potential threat to the wheat production of China.
    In this paper, the genetic diversity of 12 geographic populations of wheat midges was studied through sequence analysis of mtDNA COⅡ and ND4 gene and the PCR technique with repeat sequence primer, in order to analyze its population variation, dispersal and migration patterns and the level of genetic diversity in molecular level. This investigation will provide some essential information for understanding possible local adaptation and migration patterns of the pest, and might provide useful data for the pest forecasting and control in a large area.
    The results about mtDNA COⅡ and ND4 sequence analysis showed that: 1) 550bp DNA fragment was amplified from COⅡ gene and only 447bp can be reliably read for all 11 geographic populations. Among those analyzed sequences, there are 7 variable sites including 5 transitions, 2 transversions and no any delete and insert. Mean A%+T% content for the sequences was 78.6%, while mean G%+C% content was 21.4%. Through comparing pairwise differences among sequences, it was found that the maximum of nucleotide substitions was 6 and minimum was 1, defining 7 haplotypes designated as H1-H7. The haplotype diversity (Hd) of the wheat midge was 0.8782±0.0017. 2) 450bp DNA fragment was amplified from ND4 gene and only 327bp can be reliably read for all 43 individuals from 12 geographic populations. Among those analyzed sequences, there were 21 variable sites including 17 transitions and 4 transversions and no any delete and insert. Mean A%+T% content for the sequences was 75.6%, while G%+C% content was 24.4%. Through comparing pairwise differences among sequences, it was found that the maximum of nucleotide substitions was 8 and minimum was 1, defining 22 haplotypes designated as Hap1-Hap22. The sequence differences among haplotypes was 0.31%~3.06% (mean was 1.68%), the haplotype diversity (Hd) was 0.8782±0.0017.
    The phylogenetic tree of haplotype constructed by mtDNA COⅡ and ND4 gene showed that the phylogeny among haplotypes was closely related with geographical distribution. The haplotypes from the spring wheat region were clustered into one group, and most ones from
    
    
    the winter wheat region were clustered into another group, but the haplotypes in SC population in winter wheat region were found synchronously in each group, so distribution area of SC population become a transition place of haplotype distribution. The main factors that may influence the haplotype distribution were analyzed. It was concluded that the restricted gene flow and distributing pervasion were the main reasons that can effect the haplotype distribution of the wheat midge. The analysis of mismatch distribution of haplotype frequence indicated that the population of the wheat midge had undergone two large population expanding in history.
    The analysis results of genetic differentiation and gene flow about different geographic populations showed that Fst values within populations in winter wheat region and spring wheat region respectively were less than 0.33, so their genetic differentiations were very small and there existed more gene flow. But Fst values between winter wheat region populations and spring wheat region populations were larger than 0.33. This maybe was caused mainly by genetic drift. The Fst values between SC population and other populations were all less than 0.33. Those imply that there existed more gene flows between SC population and other populations. The gene flow model among different geographic populations of wheat midge should belong to “distance-isolation” model. That means gene f
引文
1. 安瑞声,谭声江,陈晓峰. 小型昆虫DNA提取时均浆方法的改进. 昆虫知识,2002,39(4):311-312
    2. 蔡成来. 小麦不同抗虫性品种对红吸浆虫增殖影响的研究. 河南农业科学,1993,(11):15,20
    3. 陈巨莲,倪汉祥. 小麦吸浆虫研究进展. 昆虫知识,1998,35(4):240-243
    4. 陈晓峰,陈靖,栗干朋. 棉铃虫自然种群遗传变异的RAPD-PCR研究. 张芝利(主编):中国有害生物综合治理论文集,北京:中国农业科技出版社,1996,534-538
    5. 陈永久,张亚平,沈发荣等. 中国5种珍稀绢蝶非损伤性取样的mtDNA序列及系统进化. 遗传学报,1999,26(3):203-207
    6. 陈玉林. 中国绵羊的分子进化与遗传多样性研究. 西北农林科技大学博士论文,2000
    7. 程家安,唐振华. 昆虫分子科学. 北京:科学出版社,2001,109-132
    8. 成新跃,周红章,张广学. 分子生物学技术在昆虫系统学研究中的应用. 动物分类学报,2000,25(2):121-132
    9. 程罗根,李凤良,韩招久等. 小菜蛾对杀虫双和杀螟丹抗药性遗传的DNA随机扩增多态性研究. 昆虫学报,2001,44(1):15-20
    10. C W 迪芬巴赫,G S德维克斯勒. PCR技术实验指南. 北京: 科学出版社,1998
    11. 丁红建,郭予元. 小麦对麦红吸浆虫抗性机制的研究. 青年生态学者论丛(二),1992,309-313
    12. 丁红建,郭予元. 小麦籽粒内含物及组织学结构与抗吸浆虫关系的研究. 中国农业,1993,26(1): 56-62
    13. 丁红建. 小麦品种对麦红吸浆虫抗性鉴定技术的探讨. 作物品种资源,1994,(4):34-36
    14. 丁红建,郭予元. 麦穗形态学与抗吸浆虫的关系研究. 植物保护学报,1993,20(1):19-24
    15. 董耀东,常杨生,张德芳等. 小麦吸浆虫药剂防治适期与效果试验. 陕西农业科学,1992,(2):17-19
    16 .段子渊. 从mtDNA序列分析中国家猪的起源进化与遗传多样性. 西北农林科技大学博士论文,2000
    17. 冯国蕾,赵章武,李梅等. 不同寄主植物与棉蚜酯酶活性的关系. 昆虫学报,2001,44(3):304-310
    18. F 奥斯伯等著,颜子颖,王海林译. 精编分子生物学指南. 北京: 科学出版社,1999
    
    19. 郜虹,姚成. DNA序列分析. 南京化工大学学报,2002,23(1):79-86
    20. 根井正利. 分子群体遗传学与进化论. 北京:农业出版社,1983
    21. 龚鹏,杨效文,谭声江等. 分子遗传标记技术在昆虫科学中的应用. 昆虫知识,2001,38(2): 86-91
    22. 龚鹏,张孝羲,杨效文等. 用微卫星引物PCR分析棉蚜不同蚜型的DNA多态性. 昆虫学报,2001,44(4):416-421
    23. 龚鹏,杨效文,张孝羲等. 棉蚜(Aphis gossypii)种群寄主分化和季节分化的微卫星引物PCR研究生态学报,2002,21(5):765-771
    24. 郭予元. 用相对定级标准鉴定小麦品种对吸浆虫的抗性. 植物保护,1989,(6):33
    25. 郭平仲. 群体遗传学导论. 北京:农业出版社,1993
    26. 郝纪华,李绍文,林昌善. 不同地区粘虫群体的同工酶变异. 昆虫学报,1992,35(1):33-38
    27. 贺秉军,奚耕思. 同工酶电泳在昆虫分类和进化研究中的应用及进展. 杨星科,吴鸿主编:昆虫学研究进展. 北京:科学出版社,1997,10-13
    28. 贺春贵,袁锋,董应才. 小麦吸浆虫淘土方法的改进. 干旱农业研究,1999,17(4):55-57
    29. 贺春贵. 麦红吸浆虫种群遗传多样性. 西北农林科技大学博士论文,2000
    30. 贺春贵,袁锋. 中国西部麦红吸浆虫种群遗传结构的RAPD分析(双翅目:瘿蚊科). 昆虫分类学报,2001,23(2):124-129
    31. 贺春贵,袁锋,张雅林. 中国麦红吸浆虫不同地理种群的遗传结构. 昆虫学报,2003,46(6):783-787
    32. 胡玉佳. 现代生物学. 高等教育出版社&施普林格出版社,1999
    33. 胡能书,万国贤. 同工酶技术及应用. 长沙:湖南科技出版社,1985
    34. 胡木林,张克斌. 麦红吸浆虫滞育习性研究. 昆虫知识,1995,32(1):13-16
    35. 胡木林,张克斌,汪耀文. 麦红吸浆虫幼虫对土壤含水量生理反应的研究. 西北农业大学学报,1988,16(增刊):25-29
    36. 胡志昂,张亚平. 中国动植物的遗传多样性. 杭州:浙江科学技术出版社,1997
    37. 花保祯. 桃小食心虫生物学及种下分化研究. 西北农业大学博士论文,1996
    38. 黄原. 分子系统学-原理、方法及应用. 北京:中国农业出版社,1998
    39. 黄原,袁锋,顾晓军. 蚜虫的分子系统学研究概况. 昆虫知识,1996,33(5):306-310
    40. 黄永成,李伟丰,陆温等. 长蠹科几种检疫性害虫的ND4基因序列及系统进化. 昆虫学报,2001,44(4):494-499
    41. J 萨姆不鲁可, E F弗里奇,T 曼尼阿蒂斯著:金冬雁,黎孟枫等译. 分子克隆实验指南. 北京:科学出版社,1999
    42. 嵇美全,尹楚道,陶前之. 小麦吸浆虫化蛹羽化与温湿度的关系. 安徽农业科学,
    
    
    1990,(1):44-47
    43. 季国庆,杨光,刘珊等. 中国水域瓶鼻海豚的mtDNA控制区序列变异性分析. 动物学报, 2002,48(4):487-493
    44. 贾振宇,朱宝良,庚镇城等. 中国大陆若干群体的黑果蝇的mtDNA多态性研究. 动物学研究,1995,16(1): 65-73
    45. 金善宝. 中国小麦学. 北京:中国农业出版社,1996
    46. 西北农学院昆虫教研组. 小麦吸浆虫之研究. 西北农学院学报,1956,(1):29-62
    47. 雷仲仁. 应用RAPD分析棉铃虫不同地理种群的DNA多态性. 昆虫学报,1997,40(增):13-19
    48. 李宝娟. 松毛虫赤眼蜂不同种群间酯酶同工酶研究初报. 浙江农业大学学报,1992,18(3):58-60
    49. 李迎刚,宋美荣,蔡成来. 小麦品种(系)对吸浆虫抗性田间鉴定结果. 河南农业科学,1992,(4):16-17
    50. 李修炼. 麦红吸浆虫种群变动与气象因素的关系. 麦类作物,1994,(2):47-49
    51. 李修炼. 小麦红吸浆虫幼虫在耕层中的变动规律. 陕西农业科学,1990,(2):17-18
    52. 李修炼,吴兴元,成文宁. 小麦吸浆虫寄生蜂混合种群发生与数量消长研究. 西北农业学报,1997,6(2):13-16
    53. 李修炼,赵菊香,吴兴元等. 据小麦穗部特征建立判别品种对麦红吸浆虫抗性数学模型的研究. 西北农业学报,1993,2(1):78-82
    54. L G 戴维斯等著,张钰等译. 分子生物学基本实验方法. 上海:复旦大学出版社,1989
    55. 刘海,杨光,魏辅文等. 中国大陆梅花鹿mtDNA控制区序列变异及种群遗传结构分析. 动物学报,2003,49(1):53-60
    56. 刘家仁. 小麦吸浆虫. 农业科学通讯,1958,(4):215-217
    57. 刘家仁. 我国小麦吸浆虫的地理分布. 昆虫知识,1964,(5):226-229
    58. 刘绍友,仵均祥,袁中林等. 小麦吸浆虫为害损失规律及防治指标研究. 西北农业大学学报,1988,16(增刊):50-56
    59. 刘绍友,仵均祥. 小麦吸浆虫药剂防治技术的研究. 西北农业大学学报,1988 ,16(增刊):57-62
    60. 刘星春,朱绍义,殷济书. 小麦吸浆虫的发生规律与防治研究. 植物保护,1990,(3):23-24
    61. 刘伏领,倪晓燕,马成成. 基因组DNA制备方法的探讨. 中国现代医学杂志,2002,12(9):70-73
    62. 卢欣石,何琪. 种群遗传变异及基因多样度分析. 草业学报,1999,8(3):76-82
    63. 鲁成,赵爱春,周泽扬等. 中国野桑蚕和家蚕的AFLP分析. 蚕业科学,2001,27(4):243-252
    
    64. 罗晨,姚远,王戎疆等. 利用mtDNA COII基因序列鉴定我国烟粉虱的生物型. 昆虫学报,2002,45(6):759-763
    65. 罗勃 德赛尔,本内德 谢尔沃特编,何田华等译. 生态与进化研究中的分子方法. 北京:科学出版社,2001
    66. 吕宝忠. 分子进化树的构建. 动物学研究,1993,14(2):186-193
    67. 孟庆祥. 引黄灌区麦红吸浆虫发生动态的调查分析. 宁夏农林科技,1990,(4):14-16
    68. 倪汉祥,丁红建,孙京瑞等. 小麦吸浆虫发生动态及综合治理对策. 中国农学通报,1994,10(3):20-23
    69. 彭奕欣,黄诗笺. 进化生物学. 长沙:武汉大学出版社,1997
    70. 裴新澍. 生物进化控制论. 北京:科学出版社,1998
    71. 丘芳,伏建民,金德敏等. 遗传多样性的分子检测. 生物多样性,1998,6(2):143-150
    72. 屈振刚,张淑芬,马跃辉等. 麦品种资源对麦红吸浆虫的抗性鉴定简报. 作物品种资源,1994,(4):41-42
    73. 任文曾,卢瑞华,沈谢岗等. 小麦吸浆虫预测模型及其初步应用. 河南农业科学,1991,(3):11-12
    74. 任竹梅,马恩波,郭亚平. 不同地域小稻蝗mtDNA部分序列及其相互关系. 昆虫学报,2003,(1):51-57
    75. 芮昌辉,赵建周,卢光美等. 棉铃虫对三氟氯氰菊酯抗性的遗传方式及RAPD分析. 邱式邦(主编):中国植物保护研究进展. 北京:中国科学技术出版社,1996,653-657
    76. 施立明. 遗传多样性及其保存. 生物科学信息,1990,3(3) :143-146
    77. 宋铭晶,张知彬,徐来祥. 动物种群遗传多态性研究中的PCR技术. 动物学杂志,2003,38(1):93-97
    78. 孙四台,倪汉祥等. 小麦对麦红吸浆虫生化抗性机制研究. 中国农业科学,1998,31(2):24-29
    79. 孙珊,徐茂磊,李绍文. RAPD方法用于亚洲玉米螟地理种群分化研究. 昆虫学报,2000,43(1)103-106
    80. 孙儒泳. 动物生态学原理(第二版). 北京:北京师范大学出版社,1992
    81. 唐斌,戴璇颖,徐世清等. 家蚕单粒卵DNA的快速制备. 江苏蚕业,2002,(1):10-12
    82. 田英芳,黄刚,郑哲民等. 一种简易的昆虫基因组DNA提取方法. 陕西师范大学学报,1999,27(4): 82-84
    83. 谭声江,刘志斌,郑哲民. 蚂蚁亲系识别及研究方法进展. 昆虫知识,1998,35(4):246-249
    84. 谭声江,陈晓峰,王正军等. 日本弓背蚁亲系识别研究:攻击行为测试与RAPD-PCR分析. 昆虫学报,2001,44(3):373-377
    85. 谭六谦,王光香. 不同寄主桃小食心虫酯酶同工酶的比较研究. 落叶果树,1989,(3):
    
    
    21-23
    86. 万春玲,祝玉芳,谭远德. AFLP标记在研究家蚕遗传多态性方面的应用. 生物技术,1999,9(5):4-8
    87. 王桂荣. RAPD技术及其在昆虫学研究中的应用. 昆虫知识,1999,36(3):84-188
    88. 王少丽,徐广,杨效文等. 棉铃虫不同寄主植物种群间的微卫星引物扩增多态性研究. 棉花学报,2003,15(2):79-82
    89. 王备新,杨莲芳. 线粒体DNA序列特点与昆虫系统学研究. 昆虫知识,2002,39(2):88-92
    90. 王静波,胡长龙,徐宏发. 线粒体DNA(mtDNA)多态性在动物保护生物学中的应用. 生物多样性,2002,9(2):181-187
    91. 王文,凌发瑶,施立明. 银额果蝇自然群体中的mtDNA多态性研究Ⅱ.银额果蝇的起源和进化. 遗传学报,1994,21(4):263-274
    92. 王龙武, 徐克前,罗识奇. 基因组DNA提取方法及进展.上海医学检验杂志,2002,17(6):379-381
    93. 吴振廷,滕怀妹. 麦红吸浆虫幼虫的扫描电镜观察. 安徽农学院学报,1989,(1):15-17
    94. 吴国凯,秦德智,古立秀. 生态遗传学. 农林读物出版社,1992
    95. 谢力,温硕洋,谢以权等. 林氏果蝇种群间mtDNA的比较研究. 动物学研究,1997,18(2):213-219
    96. 辛相启,宋国春. 我国小麦吸浆虫研究进展. 国外农学—麦类作物,1995,(1):43-46
    97. 徐卫华. 昆虫滞育的研究进展. 昆虫学报,1999,42(1):100-107
    98. 许文贤,张克斌,董应才. 小麦吸浆虫土中上升幼虫的多项或趋势分析及主因子分析. 西北农业大学学报,1988,16(增刊):10-14
    99. 薛芳森,魏洪义,朱杏芬. 黑纹粉蝶滞育蛹体内过氧化氢酶活力的研究. 植物保护学报,1997,24(3):204-208
    100. 杨玉慧,李义明. 分子生态学研究与动物多样性保护. 生物多样性,2001,9(3):284-293
    101. 杨效文,张孝羲,陈晓峰等. 我国烟蚜种群分化的RAPD分析. 昆虫学报,1999,42(4):372-380
    102. 杨效文,张广学,陈晓峰. 棉蚜微卫星DNA的克隆及其多态性检测. 昆虫学报,2001,44(4):586-589
    103. 杨平澜. 小麦吸浆虫研究与防治. 昆虫学集刊,北京:科学出版社,1959
    104. 杨平澜,杨成章,邬恤民. 小麦吸浆虫研究Ⅱ:幼虫在麦穗的生活. 昆虫学报,1959,(2):116-123
    105. 闫秀华,吴传家.小麦吸浆虫再度猖獗原因分析及防治对策.农业科技通讯,1992,
    
    
    (12):22-23
    106. 尹楚道,嵇美全,陶前之. 温湿度对小麦吸浆虫化蛹及蛹的发育的影响. 安徽农学院学报,1989,(4):269-274
    107. 尹楚道,潘锡康,宋社吾等. 小麦红吸浆虫种群动态、消长因素及为害调查研究. 安徽农学院学报,1987,(3):43-48
    108. 原国辉. 农药对麦红吸浆虫幼虫和蛹的作用方式. 河南农业科学,1990,(3):17-20
    109. 原国辉,郑祥义,韩桂仲等. 麦红吸浆虫幼虫土壤空间分布型及取样查虫方法探讨. 河南农业科学,1992,(4):18-20
    110. 袁锋,花保祯,仵均祥等. 小麦吸浆虫成灾规律与控制. 科学出版社,2004
    111. 袁志发,周静芋. 试验设计与分析. 高等教育出版社,2000
    112. 曾省. 小麦吸浆虫. 农业出版社,1965
    113. 曾省. 小麦吸浆虫的生态地理、特性及其根治途径的讨论. 中国农业科学,1962,(3):10-15
    114. 曾省,刘家仁. 小麦抗吸浆虫品种的选择. 农业科学通讯,1954,(4):170-173
    115. 张爱兵,王正军,谭声江等. 分子生态学重要概念—遗传距离及其测度的理论研究概况. 生态学报,2002,22(6):943-949
    116. 张克斌,宁毓华,胡木林等. 小麦品种对麦红吸浆虫抗性鉴定结果综析. 西北农业大学学报,1988,16(增刊):43-49
    117. 张克斌,胡木林,张衡德. 麦红吸浆虫外形细微特征电镜扫描. 西北农业大学学报,1988,16(增刊): 35-38
    118. 张克斌,许文贤,胡木林等. 小麦吸浆虫在关中再度猖獗的特点、成因与对策. 西北农业大学学报,1988,16(增刊):1-9
    119. 张克斌,胡木林,罗都强等. 麦红吸浆虫田间不同年级种群的比较研究. 西北农业大学学报,1988,16(增刊):19-24
    120. 张克斌,胡木林. 麦红吸浆虫滞育幼虫呼吸代谢的季节变化. 西北农业大学学报,1988,16(增刊):30-34
    121. 张克斌,汪世泽,董应才等. 麦红吸浆虫幼虫在土壤中分布型及其应用. 西北农业大学学报,1988,16(增刊):86-88
    122. 张爱民. 小麦吸浆虫发生发展的气象分析及预报. 安徽农业科学,1996,24(2):151-153
    123. 张民照,康乐. AFLP标记的特点及其在昆虫学研究中的应用. 昆虫学报,2002,45(4):538-543
    124. 张文霞,陈瑛,戴灼华. 中国大陆部分地区Drosophila immigrans果蝇种群中mtDNA的遗传多态性研究. 遗传学报,1999,26(4):336-344
    125. 张青文. 昆虫遗传学. 北京:科学出版社,2000
    
    126. 张亚平. DNA序列、物种树和保护单元——ESU. 胡志昂,张亚平主编:中国动植物的遗传多样性.杭州:浙江科学技术出版社,1997,1-6
    127. 张亚平. 从DNA序列到物种树. 动物学研究,1996,17(3):247-252
    128. 张亚平,施立明. 动物线粒体多态性的研究概况. 动物学研究,1992,13(3):289-298
    129. 张亚州,张亚平,栾云霞等. 12sRNA基因序列变异与六足总纲高级单元系统分类. 科学通报,2000, 45(22):2434-2438
    130. 张迎春,郑哲民,安书成. 瓢虫DNA的提取研究. 陕西师范大学学报,1999,27(1):92-94
    131. 张迎春, 刘波,郑哲民等. 不同保藏处理的昆虫标本DNA提取及其随机扩增多态DNA反应. 昆虫学报,2002,45(5):693-695
    132. 张太平. 分子标记及其在生态学中的应用. 生态科学,2000,19(1):52-58
    133. 张方,米志勇. 动物线粒体DNA的分子生物学研究进展. 生物工程进展,1998,18(3):25-31
    134. 章士美. 农林主要害虫的生物学及地理分布. 南昌:江西人民出版社,1973
    135. 赵慧燕. 蚜虫体色变化的生态遗传学研究. 西北农业大学,1996
    136. 赵世德,杜安太,卜文俊. 麦田吸浆虫的类似种研究. 昆虫知识,1993,(4):212-218
    137. 赵菊香,李双鱼. 小麦品种抗麦红吸浆虫特性的初步观察. 陕西农业科学,1988,(5):23-25
    138. 赵国锦,张克斌,郭士英等. 小麦吸浆虫化学防治技术的研究. 西北农业大学学报,1988,16(增刊):63-64
    139. 赵文臣,尹善,屈振刚等. 小麦吸浆虫发生规律及综合防治研究初报. 河南农业大学学报,1989,22(2):14-20
    140. 赵菊香,任芝英. 小麦品种资源对麦红吸浆虫的抗性鉴定. 陕西农业科学,1990,(4):5-6
    141. 郑向忠,洪伟,俞海菁等. 黑果蝇(D.virilis)自然群体遗传多态研究. 遗传学报,1999,26(3):198-202
    142. 周尧. 小麦吸浆虫简介. 昆虫知识,1956,(1):28-33
    143. 朱军. 遗传模型分析方法. 北京:中国农业出版社,1994
    144. 朱象三. 小麦抗吸浆虫性能的研究. 中国植物保护科学,1961,365-385
    145. 祝传书, 袁锋. 河北南和县2001年麦红吸浆虫发生成灾. 植物保护, 28(2):60-61
    146. 邹晨辉,杨效文,陈晓峰等. 利用重复序列引物PCR方法对棉蚜地理种群遗传差异的初步研究. 昆虫知识,2002,38(5):348-351
    147. 邹喻苹. RAPD分子标记简介. 生物多样性, 1995, 3(2):104-108
    148. Abbot P. Individual and population variation in invertebrates revealed by Inter-Simple Sequence Repeats (ISSRs). Journal of Insect Science, 2001, 8:1-4
    
    149. Aitkenhea P & K S George. Field trials on assessment of wheat blossom midge,1954~1956. Plant Path., 1958, 7(2): 64-70
    150. Atkinson L & E S Adams. Double-strand conformation polymorphism (DSCP) analysis of the mitochondrial control region generates highly variable markers for population studies in a social insect. Insect Mol. Biol., 1997, 6(4): 369-376
    151. Barker P S. Statistical distribution of damage on wheat heads caused by the wheat midge, Sitodiplosis mosellana (Gehin), in Manitoba. Canad. Entomol., 1986, 118(10): 1075-1077
    152. Barnes H F. Studies of fluctuation in insect populations I: the infestation of broadbalk wheat by wheat blossom midge (Cecidomyiidae). J. Anim. Ecol., 1932, 1(1): 12-31
    153. Barnes H F. Studies of fluctuations in insect population Ⅻ: Further evidence of prolonged larval life in the wheat blossom midges. Ann. Appl. Biol., 1952, 39: 370-373
    154. Barnes H F. Studies of fluctuations in insect populationⅩ: Prolonged larva life and delayed subsequent emergence of the adult midge. J. Anim. Ecol., 1943, 12: 137-138.
    155. Barnes H F. Gall midge of economic importance vol.Ⅶ: Gall midge of cereal crops. Crosby, Lockwood & Son, London, 1956, 557-581.
    156. Basedow V T. The effects of temperature and precipitation on diapause and phenology of the wheat blossom midge Contarinia tritici (Kirby) and Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae). Zool. J., 1974, 83(2): 173-183
    157. Birungi J & L E Munstermann. Genetic structure of Aedea albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and United States. Ann. Entomol. Soc. Am., 2002, 95(1): 125-132
    158. Boge A, R Gerstmeier & R Einspanier. Molecular polymorphism as a tool for differentiation ground beetles: application of ubiquity PCR/SSCP analysis. Insect Mol. Biol., 1994, 3(4): 267-271
    159. Bourke A F G, H A Green & M W Bruford. Parentage, reproductive skew and queen turnover in a multiple queen ant analyzed with microsatellites. Proceedings of the Royal Society of London Series B. 1997, 264: 277-283
    160. Boyce T M, M E Zwick & C F Aquadro. Mitochondrial DNA in the bark weevils: size structure and heteroplasmy. Genetics, 1989, 123: 825-836
    161. Chen Xiao-feng, Tan Sheng-jiang, Liu Ren-yi et al. Study on the genetic variation of the cotton boll worm Hellcoverpa armigera (Hubner) populations in China. Entomologia Sinica, 2000, 7(3): 243-249
    162. Collins F H, M A Mendez, M O Rasmussen et al. A ribosome RNA gene probe differentiates member species of the Anopheles gambiae complex. Am. J. Trop. Med.
    
    
    Hyg., 1987, 37(1): 37-41
    163. Crozier R H, P Pamilo & Y C Crozier. Relatedness and microgeographic genetic variation in Rhytidoponera mayri, an Australian arid-zone ant. Behav. Ecol. Sociobiol., 1984, 15(1): 143-150
    164. Danforth B N, P L Mitchell & L Packer. Mitochondrial DNA differentiation between two cryptic Halictus (hymenoptera: Halictidae) species. Ann. Entomol. Soc. Am., 1998, 91(4): 387-391
    165. Dexter J E, K R Preston, L A Cooke et al. The influence of orange wheat blossom midge (Sitodiplosis mosellana Gehin) damage on hard red spring wheat quality and effectiveness of insecticide treatments. Can. J. Plant Sci., 1987, 67(3): 697-712
    166. Dietrich C H, S J Fitzgerald, J L Holmes et al. Reassessment of Dalbulus leafhopper (Homoptera: Cicadellidae) phylogeny based on mitochondrial DNA sequences. Ann. Entomol. Soc. Am., 1998, 91(5): 590-597
    167. Doane J E, O O Olferot & M K Mukerji. Extraction precision of sieving and brine flotation for removal of wheat midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae), cocoons and larvae from soil. J. Econ. Entomol., 1987, 80(1): 268-271.
    168. Downie D A, J R Fisher & J Granett. Grapes, galls, and geography: the distribution of nuclear and mitochondrial DNA variation across host-plant species and regions in a specialist herbivore. Evolution, 2001, 55(7): 1345-1362
    169. Elliott, R. H. Evaluation of insecticides for protection of wheat midge against damage by the wheat midge, Sitodiplosis mosellana Gehin (Diptera: Cecidomyiidae). Canad. Entomol., 1988a, 120: 615-626
    170. Elliott, R. H. Factors influencing the efficacy and economic returns of acrid sprays against the wheat midge, Sitodiplosis mosellana (Gehin). Canad. Entomol., 1988b, 120 (11): 941-954
    171. Elliott R H & L W Mann. Control of wheat midge, Sitodiplosis mosellana (Gehin), at lower chemical rates with small capacity spraer nozzles. Crop Protection, 1997, 16(3): 235-242
    172. Elliott R H & L W Mann. Susceptibility of red spring wheat, Triticum aestivum Linn. during heading and anthesis to damage by wheat midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae). Canad. Entomol, 1996, 128(3): 367-375
    173. Fang Q W, I C Black, H D Blocker et al. A phylogeny of new world Deltocephalus-like leafhopper genera based on mitochondrial 16S ribosomal DNA sequences. Mol. Phylogenet. Evol., 1993, 2: 119-131
    174. Floate K D, J F Doane & C Gillott. Carabid predators of the wheat midge (Diptera:
    
    
    Cecidomyiidae) in Sasdatchewan. Envir. Ent., 1990, 19(5): 1503
    175. Fonseca D M, S Campbell, W J Crans et al. Aedes (Finlaya) japonicus (Diptera: Culicidae), a Newly Recognized mosquito in the United States: analyses of genetic variation in the United States and Putative source population. J. Med. Entomol., 2001, 38(2): 135-146
    176. Golighthy, W. H. Soil Sampling for wheat blossom midge. Ann. Appl. Biol., 1952, 39: 379-384.
    177. Gawel N J, A C Bartlett. Characterization of differences between whiteflies using PAPD-PCR. Insect Molecular Biology, 1993, 2(1): 33-38
    178. Gonzalez-Rodriguez A,B Betty&A Castaneda. Population genetic structure of Acanthoscelides obtectus and A.obvelatue (Coleoptera: Bruchidae) from wild and cultivated Phaseolus spp. (Leguminosae). Ann. Entomol. Soc. Am., 2000, 93(5): 1100-1107
    179. He Chungui & Yuan Feng. Esterase variation and genetic structure in three geographic populations of Sitodiplosis mosellana (Gehin)(Diptera: Cecidomyiidae) in western China. Entomologia Sinica, 2001, 8(1): 73-80
    180. Helenius J & S Kurppa. Quality losses in wheat caused by the orange wheat blossom midge, Sitodiplosis mosellana. Ann. Appl. Bio., 1989, 114(3): 409-417
    181. Heinze J, J Gadue & B Holldobler. Variability in the ant Camponotus fbridanus detected by multilocus DNA fingerprinting. Naturwissenschaften, 1994, 81(1): 34-36
    182. Hinks C F & J F Doane. Observations on rearing and diapause termination of Sitodiplosis mosellana (Diptera: Cecidomyiidae). J. Econ. Ent., 1988, 81(6): 1816-1818.
    183. Hiss R H. Molecular taxonomy using single-strand conformation polymorphism (SSCP) analysis of mitochondrial ribosomal DNA genes. Insect Mol. Biol., 1994, 3:171-182
    184. Hodgkinson V H, J Birungi, M E Haghpanah et al. Rapid identification of mitochondrial cytochreome B haplotypes by Single Strand Conformation Polymorphism (SSCP) in Lutzomyia longipalpis (Diptera: Psychodidae) populations. J. Med. Entomol., 2002, 39(4): 689-694
    185. Howland D E & G M Hewitt. Phylogeny of the Coleoptera based mitochandrial cytochrome oxidase I sequence data. Insect Mol. Biol., 1995, 4(3): 203-225
    186. Jeanmougin F, J D Thompson, M Gouy, D G Higgins & T J Gibson. Multiple sequence alignment with Clustal x. Trends biochem. Sci., 1998, 23: 403-405
    187. Kambhampati S, K S Rai & D M Verleye. Frequencies of mitochondrial DNA haplotypes in laboratory cage population of the mosquito, Aedes albopictus. Genetics, 1992, 132: 205-209
    
    188. Kim K C & B A Mcpheron. Evolution of insect pests: Patterns of variation. John Wiley & Sons, INC. 1993
    189. Krafsur E S, P Nariboli & J J Obrycki. Gene flow and diversity at allozyme loci in the twospotted lady beetle (Coccinellidae). Ann. Entomol. Soc. Am., 1996, 89(3): 410-419
    190. Kirfer J J. Family Cecidomiidae. In Genera Insectorum., 1913, 152: 1-346
    191. Kumar S, KTamura, I Jakobsen & M Nei. MEGN: molecular evolutionary genetics analysis software, Ver2.0. Bioinformatics, 2001, 17(12): 1244-1245
    192. Loxdale H D & G Lushai. Molecular markers in entomology. Bulletin of Entomological Research, 1998, 88: 577-600
    193. Lu Y J, M J Adang, D Isenhour et al. RFLP analysis of genetic variation in North American population of the fall armyworm moth Spodoptera frugiperda (Lepidoptera: Noctuidae). Mol. Ecol., 1992, 1: 199-208
    194 Luna C, M Bonizzoni, Q Cheng et al. Microsatellite polymorphism in tsetse flies (Diptera: Glossinidae). J. Med. Entomol., 2001, 38(3): 376-381
    195. Manfrin M H, R D Brito & F M Sene. Systematics and evolution of the Drosophila buzzatii (Diptera: Drosophilidae) cluster using mtDNA. Ann. Entomol. Soc. Am. 2001, 94(3): 333-346
    196. Mardulyn P, A Termonia & M C Milinkovitch. Structure and evolution of the mitochondrial control region of leaf beetles (Coleoptera: Chrysomelidae): A hierarchical analysis of nucleotide sequence variation. J. Mol. Evol., 2003, 56: 38-45
    197. Martinez D, A Moya & A Latorre. Mitochondrial DNA variation in Rhopalosiphum padi (Homoptera: Aphididae) populations from four Spanish localities. Ann. Entomol. Soc. Am., 1992, 85(2): 241-246
    198. Mcmichael M & D P Prowell. Differences in Amplified Fragment-Length Polymorphisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ann. Entomol. Soc. Am., 1999, 92(2): 175-181
    199. Miura T, K Maekawa, O Kitade et al. Phylogenetic relationships among subfamilies in higher termites (Isoptera: Termitidae) based on mitochondrial COII gene sequence. Ann. Entomol. Soc. Am., 1998, 91(5): 515-523
    200. Mukerji, M. K. O Olfert & J F Doane. Development of sampling designs for egg and larval populations of the wheat midge, Sitodiplosis mosellana (Gehin) (Diptera Cecidomyiidae) in wheat. Canad. Entomol., 1988, 120(6): 497-505
    201. Mun J H, Y H Song, K L Heong et al. 1999. Genetic variation among Asian populations of rice planthoppers, Nilaparvata lugens (Stal) and Sogatella furcifera (Horvath)
    
    
    (Homoptera: Delphacidae): mitochondrial DNA sequences. Bull. Entomol. Res., 89: 245-253
    202. Narang S K & M E Degrugillier. Genetic fingerprinting of the screwworm (Diptera: Calliphoridae) infestation in North Africa by mitochondrial DNA markers. Florida Entomologist, 1995,78(2): 294-304
    203. Nice C C & A M Shapiro. Population genetic evidence of restricted gene flow between host races in the butterfly genus Mitoura (Lepidoptera: Lycaenidae). Ann. Entomol. Soc. Am., 2001, 94(2): 257-267
    204. Okaley J N, D I Green & A E Jones. Forecasting the abundance of orange wheat blossom midge in wheat. Proceedings Brighton Crop Protection Conference: Bracknell, UK, 1994, (1): 193-198.
    205. Olfert O O, M K Mukerji & J F Doane. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) in spring wheat in Saskatchewan. Canad. Entomol., 1985, 117: 593-598
    206. Pashley D P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex? Ann. Entomol. Soc. Am., 1986, 79: 898-904
    207. Pivnick K A & E Labbe. Emergence and calling rhythms, and mating behaviour of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) Canad. Entomol., 1992, 124: 501-507
    208. Pivnick. K. A & E Labbe. Daily patterns of activity of females of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae). Canad. Entomol., 1993, 125 (4): 725-736
    209. Pivnick. K. A. Response of males to female six pheromone in the orange wheat midge, Sitodiplosis mosellana (Gehin). J. Chem. Ecol., 1993, 19(8): 1677-1689
    210. Ramirez M G & K E Haakonsen. Gene flow among habitat patches on a fragmented landscape in the spider Argiope trifasciata (Araneae: Araneidae). Heredity, 1999, 83: 580-585
    211. Reeher M M. The wheat midges in the Pacific Northwest . U.S.D.A. Cir., 1945. 732: 1-8
    212. Reyes A & M D Ochando. Use of molecular markers for detecting the geographical origin of Ceratitis capitata (Diptera: Tephritidae) population. Ann. Entomol. Soc. Am. 1998, 91(2): 222-227
    213. Roderick G. K. Geographic structure of insect populations: gene flow, phylogeography, and their uses. Ann. Rev. Entomol., 1996, 41:325-352
    214. Roehrdanz R L & M E Degrugillier. Long sections of mitochondrial DNA amplified
    
    
    from fourteen Orders of insects using conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am., 1998, 91(6): 771-778
    215. Schulenburg J H, J M Hancock, A Pagnamenta et al. Extreme length and length variation in the first ribosomal internal transcribed spacer of ladybird beetles (Coleoptera: Coccinellidae). Mol. Biol. Evol., 2001, 18(4): 648-660
    216. Simon C, F Fratti, A Beckenbach et al. Evolution, Weighting and phylogenetic utility of mitochondrial gene sequences and a complication of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am., 1994, 87: 651-701
    217. Singh R S & C B Krimbas. Evolutionary genetics: from molecules to morphology. Cambridge University Press, 2000
    218. Shouche Y S & M S Patole. Sequence analysis of mitochondrial 16s ribosomal RNA gene fragments from seven mosquito species. J. Biosci., 2000, 25(4): 361-366
    219. Skinner DZ & R F Camacho. Genetic diversity within a potato leafhopper (Homoptera: Cicadellidae) population infesting Alfafa. Journal of the Kansas Entomological Society, 1995, 68(1): 35-42
    220. Sloane M A, P Sunnucks, A C C Wilson, D F Hales. Microsatellite isolation, linkage group identification and determination of recombination frequency in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Genet. Res. Camb., 2001,77: 251-260
    221. Stanley G, H Wellso & R D Freed. Positive Association of the Wheat Midge (Diptera: Cecidomyiidae) with Glume Blotch. J. Econ. Entomol., 1982, 75: 885-887
    222. Steinmiller B, S Kambhampati & B L Brock. Geographic distribution of genetic variation in the wood roach Cryptocercus (Dictyoptera: Cryptocercidae) in the United States. Ann. Entomol. Soc. Am., 2001, 94(5): 732-742
    223. Stothard J R, Y Yamamoto, A Cherchi et al. A preliminary survey of mitochondrial sequence variation in Triatominae (Hemiptera: Reduviidae) using polymerase chain reaction-based single strand conformational polymorphism (SSCP) analysis and direct sequencing. Bulletin of Entomological Research, 1998, 88: 553-560
    224. Szalanski A L. Genetic characterization and population genetics of stable fly (Diptera: Muscidae). A dissertation from the faculty of the Graduate College of the University of Nebraska, 1995.
    225. Szalanski A L, R L Roehrdanz, D B Taylor & L Chandler. Genetic variation in geographical populations of Western and Mexican corn rootworm. Insect Molecular Biology, 1999, 8(4): 519-525
    226. Szalanski A L, D S Sikes, R Bischof & M Fritz. Population genetic and phylogenetics
    
    
    of the endangered American burying beetle, Nicrophorus americanus (Coleoptera: Silphidae). Ann. Entomol. Soc. Am., 2000, 93(3): 589-594
    227. Szalanski A L, R L Roehrdanz & D B Taylor. Genetic relationship among Diabrotica species (Coleoptera: Chrysomelidae) based on rDNA and mtDNA sequences. Florida Entomologist, 2000, 83(3): 262-267
    228. Taylor M F J, S W McKechnie, N Pierce & M Kreitman. The lepidopteran mitochondrial control region: structure and evolution. Mol. Biol. Evol., 1993, 10: 1259-1272
    229. Tilmon K J, B N Danforth, W H Day et al. Determining parasitoid species composition in a host population: a molecular approach. Ann. Entomol. Soc. Am., 2000, 93(3): 640-647
    230. Urbanell S, R Bellini, M Carrieri et al. Population structure of Aedes albopoctus (Skuse): the mosquito, which is colonizing Mediterranean countries. Heredity, 2000, 84: 331-337
    231. Vogler A P & A Welsh. Phylogeny of North American Cicindela tiger bettles inferred from multiple mitochondrial DNA sequences. Mol. Phylogent. Evol., 1997, 8: 225-235
    232. Vogler A P, A Welsh & T G Barraclough. Molecular phylogeny of the Cicindela maritime (Coleoptera: Cicidelidae) group indicates fast radiation in western North America. Ann. Entomol. Soc. Am., 1998, 91(2): 185-194
    233. Wallman J F & S C Donnellan. The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. Forensic Science International, 2001, 120: 60-67
    234. Wells J D, F Introna et al. Human and insect mitochondrial DNA analysis. J. Forensic Sci., 46(3): 685-687
    235. Wells J D & F A H Sperling. Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae). J. Med. Entomol., 1999, 36(3): 222-226
    236. Whitfield J B & S A Cameron. Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera. Mol. Biol. Evol., 1998, 15(12): 1728-1743
    237. Yeh Wen-Bin, Yang Chung-Tu &Hui Cho-Fat. Phylogenetic relationships of the Tropiduchidae-group (Homoptera: Fulgoroidea) of planthoppers inferred through nucleotide sequences. Zoological Studies, 1998, 37(1): 45-55
    238. Zehnder G W, L Sandall & A M Tisler. Mitochongrial DNA diversity among 17 geographic populations of Lepitinotarsa decemlineata (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am., 1992, 85(2): 234-240
    239. Zhu Yu-cheng & M H Creenstone. Polymerse Chain Reaction techniques for
    
    
    distinguishing three species and two strains of Aphelinus (Hymenoptera: Aphelinidae) from Diuraphis noxia and Schizaphis graminum (Homoptera: Aphididae). Ann. Entomol. Soc. Am., 1999, 92(1): 71-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700