四缸柴油机排气消声器声学特性仿真分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
排气噪声是汽车及其内燃机的主要噪声源之一,在内燃机整机噪声中,排气噪声往往比其它噪声高出10~15dB(A)左右。目前国内外减少排气噪声最有效、最直接的方法是安装排气消声器。因此,研究排气消声器消声性能对消声器的改进设计以及降低排气噪声有着重要的意义。
     本文总结推导了消声器声学基本元件的传递矩阵。基于传递矩阵法计算分析了简单扩张式和内插管扩张式消声器的结构参数对消声器消声性能的影响规律;计算分析亥姆霍兹共振和穿孔管共振消声器的结构参数对消声性能的影响规律;计算分析气流速度和温度对消声器消声效果的影响。仿真结果表明:气流速度小于35m/s左右时,气流速度对消声器的消声性能影响不大;当气流速度大于35m/s左右时,随气流速度增大消声量急剧下降。此外,不同的结构参数对消声性能也有重要的影响。
     为了进一步研究消声器内部声场特性,基于有限元法,以单扩张式消声器和亥姆霍兹共振消声器为例,运用Sysnoise声学软件建立FEM—Fluid三维模型。对比分析了单扩张式消声器在有、无气流存在时的传递损失以及基于传递矩阵的一维模型和三维有限元模型的计算结果;仿真计算两种消声器内部压力分布、速度分布情况,分析了消声器内部声场特性。结果表明,频率在1500Hz以下,一维和三维模型计算结果基本吻合,而在其它频率段,两种模型计算结果偏差较大。
     根据实测的四缸柴油机在标定转速下有、无原消声器的排气噪声频谱图分析,原消声器在频率100Hz~500Hz范围内需要优化。基于传递矩阵法提出四种改进设计方案,考虑到经济性、加工的可行性,选取方案3和方案4进行加工。试验结果表明:在频率大约低于400Hz时,安装方案3改进的消声器比安装方案4改进的消声器,排气噪声平均降低3 dB(A)左右;比安装原消声器,排气噪声平均降低7dB(A)左右。试验结果也表明基于传递据阵法建立的减小低频率段噪声的数学模型是可行性的,对消声器设计有着重要的指导意义。
The exhaust noise is the most main noise source of automobile and even its internal combustion engine, often is about 10 ~ 15dB (A) higher than entire noise of the internal combustion engine in which exhaust noise isn't included. At present, it is the most effective and direct method to install the exhaust silencer to reduce the exhaust noise.Therefore, the researched exhaust silencer have the vital significance to reduce the exhaust noise .
     The present paper, summarized and infered transition matrix of acoustic primary element of silencer.By method of transition matrix, computed and analyzed effect of structure paremeter in the simple expansion type silencer and insert tube expansion type silencer to acoustic performance; Computed and analysed effect of designed parameter in Helmholtz wave resonating silencer and perforated pipe resonating silencer to noise elimination performance; Computed and analysed stream velocity and temperature'effect to noise elimination performance. The analysed conclusions show: When the stream velocity is smaller than about 35m/s, the stream velocity is not big effect to noise elimination performance; When the stream velocity is bigger than about 35m/s, along with the stream velocity increasing noise elimination performance suddenly drop. In addition, the different design parameter has the important influence to the noise elimination performance as well.
     Further, in order to study the silencer'performance, based on the finite element method. taking the simple expansion type silencer and Helmholtz wave resonating silencer as example, built three-dimension models of FEM—Fluid with the Sysnoise acoustic software. contrasted and analysed the transmission loss of silencer with or without air current existence; and contrasted the computed results of one-dimension model based on transmission matrix method and three-dimension finite element model. Simulated and computed internal pressure distribution and velocity distribution in silencer,and studied interior sound field characteristic of silencer. The results indicate, the silencer below 1500Hz, computed result of one-dimension model and three-dimension model is nearly consistent, but during other frequency bands, both of models are more inconsistent.
     According to tested noise result of four- Cylinder diesel with or without original silencer, when it run at the demarcated rotational speed, between 100Hz and 500Hz frequency scopes, original silencer is still improved. According to the transmission matrix technique, proposed four kind of improved design proposals, while considered economical factors and processing feasibility. In the end,selected plan 3 and plan 4 and processed. the test results indicate: under about 400Hz frequency, noise of improved silencer by plan 3 is about 3 dB (A) lower than improved silencer by plan 4, about 7 dB (A)lower than original silencer's. The test results also indicate, by method of transition matrix, established the mathematical model to reduce noise is feasible, and there is the important instruction significance to the silencer design.
引文
[1]杨庆佛.内燃机噪声控制[M].太原:山西人民出版社,1985.
    [2]张志华,周松,黎苏等.内燃机排放与噪声控制[M].哈尔滨:哈尔滨工程大学出版社,1999.
    [3]张宏波.车用排气消声器的设计研究[D]:[学位论文].北京:北京理工大学,2005.
    [4]李娜.柴油机排气消声器的设计与研究[D]:[学位论文].山东:山东大学,2002.
    [5]H.Luo,C,C.Tse and Y.N.Chen.Modeling and Applications of Partially Perforated Intruding Tube Muflers.Applied Acoustics 1995,44:99-116.
    [6]Chao Nan Wang.A numerical Scheme for the analysis of perforated intruding tube muffler components,Applied Acoustics.1995,44:275-286.
    [7]王诗恩,高宗英.抗性消声器的插入损失模型及其应用[J].内燃机工程,1996,17(3):35-40.
    [8]M.L.Munjal.Plane wave analysis of side inlet/outlet chamber Mufflers with mean flow.Applied Acoustics.1997,52(2):165-175.
    [9]黄其柏.计及气流和线性温度梯度的内插管扩张式消声器理论研究[J].声学技术,1998,17(2):50-53.
    [10]唐永琪,陈朝阳,胡立臣.汽车消声器性能计算中的气流与温度因素[J].合肥工业大学学报,2000,6,23(3):327-331.
    [11]黎志勤,黎苏.汽车排气系统噪声与消声器设计[M].中国环境科学院.出版社,1991.
    [12]蔡超,宫镇,曾发林.内燃机排气消声器声传递矩阵的研究[J].汽车技术,1994,(4):12-16.
    [13]董正身,张旭,黎苏.汽车排气消声器的二维有限元分析[J].小型内燃机,1998,27(4):41-46.
    [14]陆森林,刘红光.内燃机排气消声器性能的三维有限元计算及分析[J].内燃机学报,2003,21(5):346-350.
    [15]黎苏等.抗性消声器的声学边界元模型及其应用[J].内燃机学报,1992(2).
    [16]季振林等.抗性消声器声学特性的三维边界元分析[J].哈尔滨船舶工程学院学报,1993,14(1):29-34.
    [17]Wang CN,Tse CC,Chen YN.Analysis of three dimensional muffler with boundary element method.Applied Acoustics.1993,40:91-106.
    [18]Chao Nan Wang,Yih Nan Chen,Jean Yih Tsai.The element evaluation on a silencer in the application of boundary presence of a linear temperature gradient.Applied Acoustics.2001,62:707-716.
    [19]G.Lou,T.W Wu,P.Zhang,C.Y.R Cheng.Vector of silencer performance prediction on a and multithread computation dual-processor PC workstation.Engineering Analysis with Boundary Elements.2002,26:61-77.
    [20][日]福田基一,奥田襄介.噪声控制与消声设计[M].北京:国防工业出版社,1982.
    [21]马大猷.声学手册[M].北京:科学出版社,1983.
    [22]刘杰.汽车排气系统数值分析方法的研究.博士后.上海:同济大学,2004.
    [23]王其中,高理福.结构因素对消声器性能的影响[J].西南林学院学报,2000,3,15(1).
    [24]唐永琪等.汽车排气消声器性能计算中的气流与温度因素[J].合肥工业大学学报,2002,6:327-331.
    [25]Munjal ML.Acoustics of ducts and mufflers[M].Ne York:Wiley Interscience,1987.
    [26]袁兆成,丁万龙等.用边界元法研究排气消声器的消声特性[J].设计研究计算,2005(7):5-7.
    [27]刘诗俊.变分法、有限元和外推法[M].中国铁道出版社,1986.
    [28]苏家铎等.泛函数与变分法[M].中国科技技术大学出版社,1993.
    [29]林辉江.内燃机排气消声器主要参数的选择(一)[J].内燃机,2001(4):12-14.
    [30]林辉江.内燃机排气消声器主要参数的选择(二)[J].内燃机,2001(5):3-5.
    [31]周龙保,高宗英.内燃机学[M].北京:机械工业出版社,2003.
    [32]朱孟华.内燃机振动与噪声控制[M].北京:国防工业出版社,1995.
    [33]钱人一.汽车发动机噪声控制[M].上海:同济大学出版社,1997.
    [34]黄雄键.汽车发动机综合治理.[J]内燃机,2001(5):39-41.
    [35]何渝生.汽车噪声控制[M].北京机械工业出版社,1999.
    [36]董金英.不同强度噪声对有发脑电功能指数的影响.第一届声学学术会议.
    [37]黄立斌,俞济梁,姜修尚.用传递矩阵法计算消声器插入损失的理论探讨[J].重庆环境科学,1993,8,15(4):16-20.
    [38]刘晓玲,张晓辉.消声系统结构参数对噪声的影响[J].四川工业学院学报,1999,18(4):54-61.
    [39]季振林.直通穿孔管消声器声学性能计算及分析[J].哈尔滨工程大学学报,2005,6,26(3):302-306.
    [40]钱人一.汽车发动机噪声控制[M].上海:同济大学出版社:1997,9.
    [41]郑健.消声器结构与气动力性能的改进[J].力学与实践,1994,16(2):37-39.
    [42]薛茂,王晓宁,赵晓丹.微穿孔板吸声结构计算及其应用[J].江苏大学学报,2002,9,23(5):44-48.
    [43]马大猷.微穿孔板吸声结构的理论和设计[J].中国科学,1975(1):38-50.
    [44]马大猷.微穿孔板声阻抗的直接准确测量[J].声学学报,1983,8(5):257-261.
    [45]马大猷.微穿孔板结构的设计[J].声学学报,1988,13(3):174-180.
    [46]张明发,薛莉莉.微穿孔板声学结构及其应用[J].噪声与振动控制,1996,8(4):24-29.
    [47]蔡超,宫镇,赵剑等.拖拉机抗性消声器声学子结构声传递矩阵研究[J].农业机械学报,1994,6,25(2):65-71.
    [48]Fukuda M,Okuda J.A Study on Characteristics of Cavity type M ufflers(2nd Report).Bulletion of JSME,1970,13(55):96-104.
    [49]Sullivan J W Modelling of Engine Exhaust System Noise,Paper Presented at ASM E Winter Conference,Atlanta,Georgia,1977:161-169.
    [50]Doige A G,rhawani P T.Muffler Performance From Transmission M atrices.Noise-con 79:245-254.
    [51]Young C I J,Crocker M J.Prediction of Transmission Loss in Mufflers by the Finite Element Method.J Acoust Soc.AM 1975,57(1):144-148.
    [52]Crocker M J.Interna]Combustion Engine Exhaust Muffling.Noise—con 77 proceedings.Hampton,VA:331-358
    [53]Erlksson L J,Thawani P T,Hoops R H Acoustical Design and Evaluation of Silencers.Sound andVibration,1983(7)20-27.
    [54]赵松龄.抗性消声器中的声传播[J].同济大学科技情报站,1983(4).
    [55]刘丽萍,朱振杰.探讨消声器结构对气流再生噪声的影响[J].环境工程,2004,12,22(6)54-56.
    [56]周昌林.轻型车排气消声器结构设计与试验研究[J].噪声与振动控制,1992,6,(3):22-25.
    [57]黄其柏,夏薇.内燃机排气消声元件声学传递特性研究[J].内燃机学报,1991,9(3):233-240.
    [58]蒋德明.高等内燃机学[M].西安交通大学出版社,1986.
    [59]盛美萍等.噪声与振动控制技术基础[M].北京:科技出版社,2001.
    [60]黄其柏,杨叔子.计及气流和线性温度梯度的内燃机穿孔声管排气消声器研究[J].内燃机学报,1993,11(1):77-82.
    [61]曹明让.内插管式消声器结构优化与试验研究.农业机械学报,2003,11,34(6):22-24.
    [62]张振良,王树荣,阮登芳等.共振型进气消声器腔体尺寸对其共振频率影响研究[J].噪声与振动控制,2003,4(2):38-41.
    [63]徐兀.汽车振动和噪声控制[M].北京人民交通出版社,1987.
    [64]杨维平,朱德滨.内燃机排气消声器声传递矩阵分析及计算机辅助设计[J].西南林学院学报,1996,6,16(2)109-114.
    [65]赵新明.内燃机排气消声器试验研究[J].拖拉机与农用运输 车,1995(1):27-30.
    [66]蓝军,史绍熙,郝志勇.发动机排气消声器传声特性的计算研究[J].内燃机学报,2000,19(3):275-278.
    [67]方丹群.噪声控制[M].北京:北京出版社,1986.
    [68]郑忠才,马洪芳,王秀叶等.发动机新型阻抗复合式排气消声器的设计与试验研究[J].2003,6(2):6-15.
    [69]方丹群.空气动力性噪声与消声器[M].科学出版社,1978.
    [70]张宏波,葛蕴珊,杨登峰等.基于传递矩阵方法的排气消声器计算机辅助设计[J].北京理工大学学报,2004,5,24(5):392-402.
    [71]白书战,王浩国,王伟等.小型柴油机排气消声器的设计.山东内燃机,2002,12(4):15-18.
    [72]王昭男,黄丕佑.平面波理论在实用型直通消音器分析之应用[J].国立台湾大学台大工程学刊,民国九十一年十月,八十六期:33-40.
    [73]乔钢.扩张室式消声器的声学模型及设计[J].哈尔滨师范大学自然科学学报,2004,20(3):41-44.
    [74]M.L.Munjal.A simple numerical method for three dimensional analysis simple expansion chamber mufflers of rectangular as well as circular crosssection with a stationary medium,Journal of Sound and Vibration,1987,116(2):71-88.
    [75]J.Igarashiand and M.Arai,Fundamental of acoustic silencers Aeronautical Research Institue,University of Tokyo,Report No.351,1960:17-31.
    [76]蔡超,宫镇.抗性排气消声器声学特性的试验研究[J].振动工程学报,1994,6,7(2):190-194.
    [77]杜扬,郑志刚,卢丹等.抗性排气消声器插入损失的计算[J].拖拉机与农用运输车,2002(3):14-16.
    [78]赵松龄,盛胜我.抗性消声器中含穿孔管时的声传递矩阵[J].声学技术,2000,19(1):2-5.
    [79]蔡超,宫镇,赵剑.抗性消声器中穿孔板结构的声传递特性[J].江苏工学院学报,1990,11(4):41-46.
    [80]张碧泉,吴国梁.抗性消声器插人损失的传递矩阵计算方法[J].噪声与 振动控制,1999,12(6):25-27.
    [81]刘丽萍,朱振杰.探讨消声器结构对气流再生噪声的影响[J].环境工程,2004,12,22(6):54-56.
    [82]Ghosh P B,Chaudhary J T,Banerjee T K.控制柴油机噪声的消声器的研制[J].国外内燃机,2000(4):51-57.
    [83]周建国.柴油机排气噪声的产生机理及排气消声器设计[J].山东交通学院学报,2002,12,10(4):26-28.
    [84]胡立臣.汽车发动排气消声器性能的计算机模拟研究[J].兵工学报,1998(1):1-12.
    [85]Mackey D O,Blair G P,Fleck K.Correlation of Simulated and Measured Noise Emission Using a Combined 1D/3D Computational Technique[C].SAE Paper 970801,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700