基于FXLMS算法的窄带主动噪声控制系统性能分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噪声污染已经成为一个全世界都十分关注的环境问题。传统被动噪声控制方法能够在宽范围内对高频噪声进行很好的抑制,高频特性好,但对低频噪声抑制效果不佳甚至无能为力。相对于传统被动噪声控制方法,主动噪声控制(ActiveNoiseControl–ANC)方法具有良好的低频特性,非常适用于控制低频谐波噪声。这类噪声常产生于旋转设备或具有往复运动的装置。谐波噪声其能量集中于有限的频率,是典型、常见的窄带噪声。在ANC领域,将用于控制窄带噪声的系统称之为窄带ANC系统。社会和经济的发展,对工业设备、运输设备等的需求不断增加,由此带来的噪声污染不可忽视。由于在抑制低频窄带噪声方面的有效性,窄带ANC系统备受关注。
     对窄带ANC系统性能的深刻理解和掌握,必须建立在对系统性能细致深入的分析基础之上;另一方面,深入的系统性能分析能够为我们提供系统进一步改进的理论依据并指引改进方向。本文以统计最小均方(LMS)理论为分析基础,对基于滤波-X最小均方(Filtered-XLMS:FXLMS)算法的窄带ANC系统展开详尽深入的性能分析。这里所谓的性能分析是指对系统进行随机分析或统计分析,即从统计意义上分析算法的收敛性甚至稳态特性。论文主要创新性研究工作体现在如下几个方面:
     (1)对于含次级通道在线辨识的窄带前馈ANC系统,系统自激是一种降低辅助噪声信号对系统性能的影响的有效方法。然而,利用自激提高系统性能的机理并不明确,尚缺乏理论上的说明。本文针对一种利用自激提高性能的含次级通道在线辨识的窄带前馈ANC系统,从其控制滤波器权值估计误差出发,建立控制系统性能的差分方程。利用统计理论和现代信号处理理论解算差分方程,进而对系统展开了详尽深入的性能分析,包括动态性能和稳态性能分析,给出了自激促进系统性能提高的理论说明,同时分析出影响系统性能的关键环节。
     (2)在窄带前馈ANC系统中,若非声学传感器或参考信号发生器存在一定的误差,将导致参考信号频率与目标噪声频率失调或不匹配(FrequencyMismatch– FM)。对于线性系统,即使很小的FM也能导致系统无法有效消除目标噪声。考虑实际系统中没有复数运算的物理实现,且噪声频率成分往往比较丰富,本文从实数域和时间域针对存在小量FM的窄带前馈ANC系统进行了统计性分析,并考察了多频率情形。从平均意义上初步探讨了FM对窄带前馈ANC系统性能的影响,同时给出了系统的稳定边界及其与FM的关系。
     (3)当反馈ANC系统用于消除窄带噪声时,由于参考信号是通过内部估计产生,不存在FM问题。与前馈系统相比,反馈系统鲁棒性要差。但控制算法相对简单且结构紧凑,反馈系统的应用仍然很广泛。对于反馈系统,反馈结构的存在使得反馈ANC系统性能的分析难以开展。受上述窄带前馈ANC系统性能分析思路和方法的启发,本文从新的角度对用于抑制窄带噪声的反馈ANC系统进行了深入的性能分析。推导出了系统内部各信号离散傅立叶系数(DiscreteFourier Coefficient– DFC)间的内在关系,分析得到了控制滤波器权值稳态解的特性。据此,建立基于控制滤波器权值的差分方程,结合统计理论和现代信号处理理论解算该差分方程,获取了系统动态性能。
     (4)为了验证自激在提高窄带前馈ANC系统性能方面的有效性,本文设计了一维管道ANC实验系统,并基于高速数字信号处理器(DSP)对利用自激的窄带前馈ANC系统进行了实现,开展了一些管道内低频窄带噪声主动控制实验。实验内容涵盖单频率通道和双频率通道噪声的控制,实验结果充分说明了利用自激可以有效提高窄带前馈ANC系统抑制噪声的能力。
As an environmental problem, acoustic noise pollution has garnered significant atten-tion worldwide. The traditional passive noise control techniques can effectively suppresshigh-frequency acoustic noises in a wide frequency band, and they have excellent high-frequency characteristics. However, they are ineffective or powerless in suppressing thosenoises with low frequency. In contrast with the passive noise control approaches, activenoise control (ANC) techniques have excellent low-frequency characteristic, which isideal for suppressing low-frequency harmonic acoustic noises. Harmonic acoustic noisesare usually generated by rotating machines and devices with reciprocating motion. Sincethe energy of harmonic acoustic noises concentrates at specific frequencies, they are akind of typical and common narrowband noises. In ANC field, the system used for atten-uating narrowband noises is the so-called narrowband ANC system. The developmentsof society and economy require more industrial, transportation, and other equipments.Such requirement directly results in a more serious noise pollution problem, which can-not be ignored. The narrowband ANC system has garnered significant attention for itseffectiveness in reducing low-frequency narrowband noises.
     To obtain insightful expressions that significantly enhance and enrich our understand-ing of the narrowband ANC system behavior, we have to execute in-depth and detailedanalysis on the performance of the system. On the other hand, in-depth and detailed anal-ysis will provide us theoretical foundation and guidance for further modifying the system.On the basis of statistical least mean square (LMS) theory, this dissertation investigatesperformances of narrowband ANC system based on the filtered - X LMS (FXLMS) algo-rithm in detail and in depth. The so-called performance analysis here means statistical orstochastic analysis of the system, that is, we statistically analyze the convergence and evensteady-state performance of the algorithm. The main contributions of this dissertation areconcluded in order as follows:
     (1) For a narrowband feedforward ANC system with online secondary-path modeling,system-self-excitation setup is an effective approach to be used to reduce the in?uenceof the auxiliary noise signal on the performance of the system. However, so far, themechanism that leads to a system’s performance improvement using self-excitation is not clear, and the corresponding analytical and theoretical explanations are still missing.With such a system whose performance is improved by using self-excitation being tar-geted, we established the difference equations governing performance of the system interms of estimation errors of the control filter weights. After deriving the difference equa-tions through applying statistics and modern signal processing theories, we analyticallyinvestigated dynamics and steady-state performance of the system in detail and in depth.We finally provided theoretical proofs and explanations for the system’s performance im-provement caused by self-excitation and figured out the key factors which in?uence suchperformance.
     (2) In a narrowband feedforward ANC system, the nonacoustic sensor or the referencesignal generator usually contains errors, which will result in frequencies of the referencesignal that are not identical to the frequencies of the primary noise. That is, frequencymismatch (FM) may exist between the reference signal and primary noise. If the FM,even it is very small, exists in the system, the narrowband noises being targeted couldnot be reduced effectively. With the consideration that there is no physical realization ofcomplex operations in real-life applications where multi-tone noise is usually contained,this dissertation provides statistical analysis of the narrowband feedforward ANC systemin presence of small FM as well as containing multi tones in the real and time domains.We preliminary investigated the in?uence of the FM on the performance of the narrow-band feedforward ANC system in the mean sense. Stability bounds and the relationshipsbetween such bounds and the FM were also provided.
     (3) When a feedback ANC system is used to cancel narrowband noise, there will beno FM since the reference signal is synthesized internally. The feedback ANC systemis of less robustness in comparison to the feedforward system. However, the feedbacksystem has been applied widely for its relatively simple control algorithm and compactstructure. The feedback structure equipped in a feedback ANC system makes it difficult toinvestigate the performance of the system. With the inspirations obtained from the aboveideas and analytical techniques applied to investigate the narrowband feedforward ANCsystems, this dissertation provides performance analysis of the feedback ANC system fornarrowband noises cancellation in depth from a new viewpoint. We developed the internalrelationships of discrete Fourier coefficients (DFCs) among signals in the system and con-sequently obtained the steady-state characteristics of the control filter weights. With such preliminary analytical results, we established the difference equations based on the con-trol filter weights themselves. Using statistics and modern signal processing theories, werecursively derived the difference equations, and then analytically investigated dynamicsof the feedback ANC system being targeted in detail.
     (4) To verify the effectiveness of self-excitation in improving the performance of thefeedforward narrowband ANC system, we designed a one-dimensional tube as the exper-imental system in this dissertation. Based on high-speed digital signal processor (DSP),the narrowband feedforward ANC system with self excitation was implemented and rep-resentative experiments of low-frequency narrowband noises cancellation in the tube wereconducted. Our experiments included single-tone and double-tone noise cancellation.The experimental results proofs the capability of the feedforward narrowband ANC sys-tem in suppressing narrowband noises, and it can be effectively promoted by using self-excitation.
引文
1 S. M. Kuo, D. R. Morgan. Active Noise Control Systems: Algorithms and DSPImplementations[M]. New York: Wiley, 1996.
    2 E. J. Eriksson, M. C. Allie, C. D. Bremigan, et al. Active Noise Control and Speci-fications for Fan Noise Problems[C]//Proc. Noise-Con. 1988:273–278.
    3 K. Eghtesadi, W. K. W. Hong, H. G. Leventhall. Economics of Active Attenuationof Noise in Ducts[C]//Proceedings of Internoise. 1984:447–452.
    4 K. Eghtesadi, W. K. W. Hong, H. G. Leventhall. Energy Conservation by ActiveNoise Attenuation in Ducts[J]. Noise Control Engineering Journal, 1986, 27:90–94.
    5 C. H.汉森, S. D.斯奈德著,仪垂杰译.噪声和振动的主动控制[M].北京:科学出版社,2002:404–406.
    6 G. E. Warnaka. Applications of Active Noise Control[C]//Proc. Noise-Con.1987:399–404.
    7 S. S. Wise, C. R. Depies, S. H. Dineen. Case Histories of Active Noise Control onIndustrial Fans and Air Handlers Used for Heating, Ventilating, and Air Condition-ing[C]//Proc. Inter-noise. 1992:307–312.
    8 E. J. Eriksson, M. C. Allie, C. D. Bremigan, et al. The Use of Active Noise Controlfor Industrial Fan Noise[C]//Proc. ASME Winter Annual Meeting. 1988.
    9 M. Takahashi, T. Kuribayashi, K. Asami, et al. Electric Sound Cancellation in Air-Conditioning Duct System[C]//Proc. Inter-noise. 1986:607–610.
    10 M. Takahashi, R. Gotohda, T. Yamadera, et al. Broadband Active Noise Control ofAir-Conditioning Duct Systems in Auditoriums[C]//Proc. Int. Symp. Active Con-trol of Sound Vib. 1991:273–278.
    11 M. A. Simpson, T. M. Luong, M. A. Swinbanks, et al. Full Scale DemonstrationTests of Cabin Noise Reduction Using Active Noise Control[C]//Proc. Inter-noise.1989:459–462.
    12 C. M. Dorling, G. P. Eatwell, S. M. Hutchins, et al. A Demonstration of ActiveNoise Reduction in an Aircraft Cabin[J]. J. Sound Vib., 1989, 128(2):358–360.
    13 L. J. Oswald. Reduction of Diesel Engine Noise Inside Passenger CompartmentsUsing Active, Adaptive Noise Cancellation[C]//Proc. Inter-noise. 1984:483–488.
    14 S. J. Elliott, I. M. Stothers, P. A. Nelson, et al. The Active Control of Engine NoiseInside Cars[C]//Proc. Inter-noise. 1988:987–980.
    15 A. M. McDonald, S. J. Elliott, M. A. Stokes. Active Noise and Vibration Con-trol Within the Automobile[C]//Proc. Int. Symp. Active Control of Sound Vib.1991:147–156.
    16 Y. Kurata, N. Koike. Adaptive Active Attenuation of Interior Car Noise[C]//Proc.Int. Symp. Active Control of Sound Vib. 1991:297–302.
    17 X. Dian, R. J. Bernhard. Spatial Extent of Active Noise Control in an AutomotiveVehicle[C]//Proc. Noise-Con. 1991:245–252.
    18 C. F. Ross. The Control of Noise Inside Passenger Vehicles[C]//Proc. Recent Ad-vances in Active Control of Sound Vib. 1991:667–681.
    19 D. Guicking, M. Bronzel, W. Bohm. Active Adaptive Noise Control inCars[C]//Proc. Recent Advances in Active Control of Sound Vib. 1991:657–670.
    20 S. Ise, H. Yano, H. Tachibana. Application of Active Control to Noise Bar-rier[C]//Proc. Int. Symp. Active Control of Sound Vib. 1991:309–314.
    21 A. Omoto, K. Fujiwara. Basic Study of Actively Controlled Noise Barrier[C]//Proc.Inter-noise. 1991:513–516.
    22 A. Omoto, K. Fujiwara. A Study of an Actively Controlled Noise Barrier[J]. J.Acoust. Soc. Am., 1993, 94(4):2173–2180.
    23 G. P. Eatwell. The Use of the Silent Seat in Aircraft Cabins[C]//Proc. Recent Ad-vances in Active Control of Sound Vib. 1991:302–310.
    24 C. Carme. A New Filtering Method by Feedback for ANC at the Ear[C]//Proc.Inter-noise. 1988:1083–1086.
    25 I. Veit. A Lightweight Headset with an Active Noise Compensation[C]//Proc. Inter-noise. 1988:1087–1090.
    26 P. D. Wheeler, D. Smeatham. On Spatial Variability in the Attenuation Performanceof Active Hearing Protectors[J]. Appl. Acoust., 1992, 36:159–162.
    27 D. Guicking. On the Invention of Active Noise Control by Paul Lueg[J]. Journal ofthe Acoustical Society of America, 1990, 87(5):2251–2254.
    28陈克安.有源噪声控制[M].北京:国防工业出版社, 2003:1–17.
    29 P. Lueg. Process of Silencing Sound Oscillations[J]. German Patent DRP No.655508, 1933.
    30 P. Lueg. Process of Silencing Sound Oscillations[J]. US Patent No. 2043416, 1936.
    31李毅民.有源噪声控制技术[J].声学学报, 1988, 13(5):336–342.
    32刘恩泽,严济宽,陈端石.噪声主动控制系统研究概况及发展趋势[J].噪声与振动控制,1999, (3):2–6.
    33陈端石,关元洪.噪声主动控制研究的发展与动向[J].应用声学, 2001,20(4):1–5.
    34徐永成,温熙森,陈循,等.有源消声技术及应用评述[J].国防科技大学学报,2001, 23(2):119–124.
    35 H. F. Olson, E. G. May. Electronic Sound Absorber[J]. J. Acoust. Soc. Am., 1953,25(4):1130–1136.
    36 H. F. Olson. Electronic Control of Noise, Vibration, and Reverberation[J]. J.Acoust. Soc. Am., 1956, 28(1):966–972.
    37 W. B. Conover. Fighting Noise with Noise[J]. Noise Control Engineering Journal,1956, 2:78–82.
    38 N. Hesselmann. Investigation of Noise Reduction on a 100kVA Transformer Tankby Means of Active Methods[J]. Applied Acoustics, 1978, 11:27–34.
    39 C. F. Ross. Experiments on the Active Control of Transformer Noise[J]. Journal ofSound and Vibration, 1978, 61(4):473–480.
    40 O. L. Angevine. Active Acoustic Attenuation of Electric TransformerNoise[C]//Proceedings of Inter-Noise. 1981:303–306.
    41 T. Berge, O. K. O. Pettersen, S. Sorsdal. Active Noise Cancellation of TransformerNoise[C]//Proceedings of Inter-Noise. 1987:537–540.
    42 T. Berge, O. K. O. Pettersen, S. Sorsdal. Active Cancellation of Transformer Noise:Field Measurements[J]. Applied Acoustics, 1988, 23:309–320.
    43 O. L. Angevine. Active Attenuation of the Hum of Large Electric Transform-ers[C]//Proceedings of Inter-Noise. 1992:313–316.
    44 O. L. Angevine. Active Control of Hum from Large Power Transformers: TheReal World[C]//Proceedings of the Sound conference on Recent Advances in Ac-tive Control of Sound and Vibration. 1993:279–290.
    45 C. F. Ross. An Algorithm for Designing a Broadband Active Sound Control Sys-tem[J]. Journal of Sound and Vibration, 1982, 80(3):373–380.
    46 C. F. Ross. An Adaptive Digital Filter for a Broadband Active Sound ControlSystem[J]. Journal of Sound and Vibration, 1982, 80(3):381–388.
    47 A. Roure. Self-Adaptive Broadband Active Sound Control System[J]. Journal ofSound and Vibration, 1985, 101(3):429–441.
    48 B. Widrow, J. R. Glover, J. M. McCool, et al. Adaptive Noise Canceling: Principlesand Applications[J]. Proc. IEEE, 1975, 63(12):1692–1716.
    49 J. C. Burgress. Active Adaptive Sound Control in a Duct: A Computer Simula-tion[J]. J. Acoust. Soc. Am., 1981, 70(3):715–726.
    50 A. T. Akhtar, M. Abe, M. Kawamata. Adaptive Filtering with Averaging-based Al-gorithm for Feedforward Active Noise Control Systems[J]. IEEE Signal ProcessingLetters, 2004, 11(6):557–560.
    51 S. M. Kuo, X. Kong, W. S. Gan. Applications of Adaptive Feedback Active NoiseControl System[J]. IEEE Trans. Control Syst. Technol., 2003, 11(2):216–220.
    52 W. S. Gan, S. Mitra, S. M. Kuo. Adaptive Feedback Active Noise Control Headset:Implementation, Evaluation and its Extensions[J]. IEEE Trans. Consumer Elec-tronics, 2005, 51(3):975–982.
    53 P. G. Georgiou, P. Tsakalides, C. Kyriakakis. Alpha-Stable Modeling of Noise andRobust Time-Delay Estimation in the Presence of Impulsive Noise[J]. IEEE Trans.Multimedia, 1999, 1(3):291–301.
    54 M. Bodson, S. C. Douglas. Adaptive Algorithms for the Rejection of SinusoidalDisturbances with Unknown Frequency[J]. Automatica, 1997, 33(12):2213–2221.
    55 S. Pigg, M. Bodson. Adaptive Algorithms for the Rejection of Sinusoidal Distur-bances Acting on Unknown Plants[J]. IEEE Trans. Control Syst. Technol., 2010,18(4):822–836.
    56 Y. Park, H. S. Kim. Delayed-X Lms Algorithm: An Efficient Anc Algorithm Uti-lizing Robustness of Cancellation Path Model[J]. J. Sound Vib., 1998, 212(5):875–887.
    57 J. Yuan. Adaptive Laguerre Filters for Active Noise Control[J]. Applied Acoustics,2007, 68(1):86–96.
    58 A. A. Milani, I. M. S. Panahi, P. C. Loizou. A New Delayless Subband Adap-tive Filtering Algorithm for Active Noise Control Systems[J]. IEEE Trans. Audio,Speech, and Language Processing, 2009, 17(5):1038–1045.
    59 P. Strauch, B. Mulgrew. Active Control of Nonlinear Noise Processes in a LinearDuct[J]. IEEE Trans. Signal Processing, 1998, 46(9):2404–2012.
    60 P. A. C. Lopes, M. S. Piedade. A Kalman Filter Approach to Active Noise Con-trol[C]//Proc. 2000 European Signal Processing Conf. (EUSIPCO 2000). 2000.
    61 L. Tan, J. Jiang. Adaptive Volterra Filters for Active Control of Nonlinear NoiseProcesses[J]. IEEE Trans. Signal Processing, 2001, 49(8):1667–1676.
    62 J. M. Sousa, C. A. Silva, J. M. G. S. da Costa. Fuzzy Acitve Noise Modeling andControl[J]. International Journal of Approximate Reasoning, 2003, 33(1):51–70.
    63 O. J. Tobias, J. C. M. Bermudez, N. J. Bershad. Mean Weight Behavior of theFiltered-X Lms[J]. IEEE Trans. Signal Processing, 2000, 48(4):1061–1075.
    64 R. W. Jones, B. L. Olsen, B. R. Mace. Comparison of Convergence Characteristicsof Adaptive IIR and FIR Filters for Active Noise Control in a Duct[J]. Appliedacoustics, 2007, 68(7):729–738.
    65 Y. Xiao, A. Ikuta, L. Ma, et al. Stochastic Analysis of the FXLMS-Based Narrow-band Active Noise Control System[J]. IEEE Transactions on Audio, Speech, andLanguage Processing, 2008, 16(5):1000–1014.
    66 Y. Xiao, L. Ma, K. Hasegawa. Properties of the FXLMS-Based Narrowband ActiveNoise Control with Online Secondary-Path Modeling[J]. IEEE Transactions onSignal Processing, 2009, 57(8):2931–2949.
    67 L. J. Eriksson, M. C. Allie. Use of Random Noise for Online Transducer Mod-eling in an Adaptive Active Attenuation System[J]. J. Acoust. Soc. Am., 1989,85(2):797–802.
    68 H. Lan, M. Zhang, W. Ser. An Active Noise Control System Using OnlineSecondary-Path Modeling with Reduced Auxiliary Noise[J]. IEEE Signal Process-ing Letters, 2002, 9(1):16–18.
    69 D. Zhou, V. DeBrunner. A New Active Noise Control Algorithm That Requires NoSecondary Path Identification Based on the SPR Property[J]. IEEE Trans. SignalProcess, 2007, 55(5):1719–1729.
    70 C. Chang, D. Chen. Active Noise Cancellation without Secondary Path Identifica-tion by Using an Adaptive Genetic Algorithm[J]. IEEE Trans. Instrumentation andMeasurement, 2010, 59(9):2315–2327.
    71 Y. Xiao, L. Ma, K. Khorasani. A Robust Narrowband Active Noise Control Systemfor Accommodating Frequency Mismatch[C]//European Signal Processing Confer-ence. 2004:917–920.
    72 Y. Xiao, L. Ma, K. Khorasani, et al. A Filtered-X RLS Based Narrowband ActiveNoise Control System in the Presence of Frequency Mismatch[C]//IEEE Int. Symp.On Circuits and Systems. 2005:260–263.
    73 Y. Xiao, L. Ma, K. Khorasani, et al. A New Robust Narrowband Active NoiseControl System in the Presence of Frequency Mismatch[J]. IEEE Trans. Audio,Speech, and Language Processing, 2006, 14(6):2189–2200.
    74 H. Sakai, Y. Hinamoto. An Exact Analysis of the Lms Algorithm with Tonal Refer-ence Signals in the Presence of Frequency Mismatch[J]. Signal Processing, 2005,85(6):1255–1262.
    75 Y. Hinamoto, H. Sakai. A Filtered-X Lms Algorithm for Sinusoidal ReferenceSignals– Effects of Frequency Mismatch[J]. IEEE signal processing letters, 2007,14(4):259–262.
    76 H. J. Jeon, T. G. Chang, S. M. Kuo. Analysis of Frequency Mismatch in Narrow-band Active Noise Control[J]. IEEE Trans Audio, Speech, and Language Process-ing, 2010, 18(6):1632–1642.
    77马大猷.混响声场的有源控制[J].声学学报, 1991, 16(5):321–329.
    78马大猷.室内有源噪声控制的潜力[J].声学学报, 1993, 18(3):178–185.
    79马大猷.室内断续噪声的有源控制[J].声学学报, 1995, 20(2):106–114.
    80田静.关于单极子次级声源管道有源降噪能量机制的理论分析[J].声学学报,1992,17(5):369–374.
    81赵洪亮,徐健,李晓东,等.一种改进的选频有源噪声控制算法[J].声学学报,2004, 29(6):499–506.
    82赵剑,徐健,李晓东,等.基于多模型的自适应有源噪声控制算法研究[J].振动工程学报,2007,20(6):549–555.
    83杨楠,沙家正,吴启学.单指向性声源的空间有源消声[J].应用声学, 1992,11(5):14–19.
    84季振林,沙家正.气流管道有源消声器声学性能分析[J].南京大学学报(自然科学),1995,31(4):560–567.
    85卢晶,邱小军,徐柏龄.格型自适应零点滤波器在有源噪声控制中的特性分析及其常规算法的比较[J].南京大学学报(自然科学),2004,40(4):438–445.
    86 M. Wu, X. Qiu, G. Chen. An Overlap-Save Frequency-Domain Implementationof the Delayless Subband Anc Algorithm[J]. IEEE Trans. Audio, Speech, andLanguage Processing, 2008, 16(8):1706–1710.
    87 M. Wu, G. Chen, X. Qiu. An Improved Active Noise Control Algorithm withoutSecondary Path Identification Based on the Frequency-Domain Subband Architec-ture[J]. IEEE Trans. Audio, Speech, and Language Processing, 2008, 16(8):1409–1419.
    88 M. Wu, X. Qiu, G. Chen. The Statistic Behavior of Phase Error for Deficient-OrderSecondary Path Modeling[J]. IEEE Signal Processing Letters, 2008, 15:313–316.
    89陈克安,马远良,孙进才.弹性结构封闭空间有源消声理论研究[J].振动工程学报,1993,6(4):342–348.
    90陈克安,马远良.应用于有源消声的间歇自适应RLS算法[J].电子学报, 1995,23(7):83–86.
    91李海英,陈克安,孙进才.自适应有源消声中的FMLMS算法研究及实现[J].声学学报,1997,22(2):145–150.
    92陈克安,王进军,尹雪飞.次级通路特性及对有源控制算法的影响[J].振动工程学报,2005,18(4):480–485.
    93陈克安,尹雪飞.应用于多通道有源控制的自适应组合逆算法[J].信号处理,2006, 22(3):366–369.
    94胡涵,于海勋,陈克安.一种基于在线建模的自适应有源噪声控制快速算法[J].电子测量技术,2007,30(8):48–53.
    95柳琦,陈克安,胡涵.封闭空间内的多模型自适应有源前馈噪声控制[J].电声技术,2008,32(3):76–82.
    96黎中伟,吕跃飞,吴亚峰,等.自适应陷波器滤波-X LMS算法稳定性分析[J].西北工业大学学报,1995,13(2):270–275.
    97任辉,黎中伟,吴亚峰,等.主动噪声控制声学通道的实验辨识[J].应用声学,1997, 16(3):36–40.
    98吴亚峰,黎中伟,任辉,等.多通道有源噪声控制系统设计[J].西北工业大学学报,2001,19(2):212–215.
    99吴亚峰.三维闭空间主动噪声控制的实验研究[J].振动与冲击, 2001,20(4):33–35.
    100吴亚峰,李江红,戴杏珍.螺桨飞机舱内噪声地面模拟及其主动控制[J].噪声与振动控制,2001,(1):33–35.
    101吴亚峰,黎中伟,任辉.应用于主动噪声控制的实时DSP系统[J].振动与冲击,2002,21(2):91–93.
    102常振臣,王登峰,郑联珠,等.车内噪声主动控制系统设计与试验研究[J].公路交通科技,2003,20(6):75–78.
    103王登峰,刘学广,刘宗魏,等.基于发动机转速的车内有源消声控制策略和自适应算法[J].公路交通科技,2004,21(10):126–129.
    104刘学广,王登峰,刘宗魏,等.车内多次级声源自适应有源消声研究[J].农业机械学报,2005,36(2):27–30.
    105刘宗魏,王登峰,姜吉光,等.用主动噪声控制法改善车内声品质[J].吉林大学学报(工学版),2008,38(2):258–262.
    106刘学广.车内低频噪声多次级声源有源消声系统研究[D].长春:吉林大学,2004.
    107刘宗巍.车内噪声品质建模分析与自适应主动控制研究[D].长春:吉林大学,2007.
    108张强,靳晓雄,华春雷,等.车内噪声自适应有源控制系统建模与仿真[J].机械设计与研究,2009,25(4):62–66.
    109 C. Hua, X. Jin, W. Pei, et al. Research on Automobile Cabin Noise Prediction Basedon Artificial Neural Network[C]//Proceedings of the 2nd International Conferenceof Bionic Engineering– ICBE’08. 2008:243–249.
    110 C. Hou, W. Peng, X. Jin, et al. Hardware-in-loop Simulation of Active Noise Con-trol in Car Cabins[C]//Proceedings of International Conference on Information En-gineering and Computer Science, 2009– ICIECS 2009. 2009:1–5.
    111鲍雪山,王杰,徐新盛.两参考输入复滤波NLMS主动噪声控制系统性能分析[J].噪声与振动控制,2006,(3):99–103.
    112鲍雪山,徐新盛,吴英姿.一种新的具有信噪比处理增益的前馈型ANC系统设计[J].振动与冲击,2007,26(11):36–40.
    113吴英姿,鲍雪山,徐新盛,等.基于峰值预滤波次级通道在线建模的主动噪声控制系统[J].振动与冲击,2008,27(1):89–92.
    114吴英姿,鲍雪山,徐新盛.应用频域ICA对参考输入进行预处理的ANC系统[J].振动与冲击,2008,27(8):81–84.
    115伭炜,鲍雪山,徐新盛.一种改进型FX结构在线建模有源噪声抵消系统[J].振动与冲击,2008,27(4):78–81.
    116李想,鲍雪山,王建国.基于抗串扰自适应噪声抵消器的参考输入预处理ANC系统[J].振动与冲击, 2008, 27(10):111–114.
    117 G. Jin, T. Yang, Y. Xiao, et al. A Simultaneous Equation Method-based OnlineSecondary Path Modeling Algorithm for Active Noise Control[J]. Journal of Soundand Vibration, 2007, 303(3-5):455–474.
    118朱海潮,施引,黄映云,等.气流管道有源降噪研究[J].应用声学, 1995,14(1):13–18.
    119朱海潮,施引.空间有源消声实验研究[J].应用声学, 1996, 15(3):12–17.
    120于华民,朱海潮,施引.基于非最小相位系统自适应逆控制的有源消声研究[J].振动工程学报,2003,16(3):331–334.
    121于华民,朱海潮,施引.一种自适应逆控制管道有源消声系统及其实现[J].振动与冲击,2004,23(4):116–118.
    122 J. Ni, F. Li. A Variable Step-Size Matrix Normalized Subband Adaptive Filter[J].IEEE Trans. Audio, Speed, and Language Processing, 2010, 18(6):1290–1299.
    123孙旭,陈端石.基于无限脉冲响应滤波器的自适应滤波E型有源噪声控制算法[J].声学学报,2003,28(2):171–176.
    124饶柱石,罗超,耿厚才,等.复杂封闭空间有源消声系统的建模新方法[J].振动工程学报,2003,16(4):415–419.
    125宫赤坤,仇立选,单世宝.多通道自适应有源噪声控制研究[J].噪声与振动控制,2008,(1):33–35.
    126宫赤坤,张从敏.基于卡尔曼滤波的有源噪声自适应逆控制[J].噪声与振动控制,2008,(3):96–99.
    127张晓宇,仪垂杰.基于神经网络的有源噪声控制实验研究[J].噪声与振动控制,2009,(2):66–68.
    128张晓宇,仪垂杰.多通道反馈主动噪声分布控制系统的实现[J].噪声与振动控制,2009,(3):59–62.
    129张兴华,任雪梅.基于2阶Renyi熵的自适应主动噪声控制[J].控制理论与应用,2009,26(12):1401–1404.
    130张兴华,任雪梅,黄鸿.自适应非线性FIR主动噪声控制[J].北京理工大学学报,2010,30(5):532–536.
    131 X. Zhang, X. Ren. A Novel Active Noise Control Using Neural Networks withoutthe Secondary Path Identification[C]//Proceedings of the 8th World Congress onIntelligent Control and Automation, 2010. 2010:5037–5041.
    132吴斌,费仁元,周大森,等.基于神经网络的动反馈管道有源消声系统声学通道辨识[J].机械工程学报,2002,38(2):100–103.
    133刘太文,伊善贞,费仁元.自适应有源消声次级源安装角度优化试验与研究[J].北京工业大学学报,2004,30(3):274–277.
    134 Y. Zhou, Q. Zhang, X. Li, et al. Analysis and DSP Implementation of an ANCSystem Using a Filtered-Error Neural Network[J]. Journal of Sound and Vibration,2005, 285(1-2):1–25.
    135 Q. Zhang, W. S. Gan, Y. Zhou. Adaptive Recurrent Fuzzy Neural Networks forActive Noise Control[J]. Journal of Sound and Vibration, 2006, 296(4-5):935–948.
    136张涛,周亚丽,张奇志. Filter-S LMS算法的非线性有源噪声控制的研究[J].噪声与振动控制,2008,(2):62–65.
    137李爱琴,张奇志,周亚丽.非线性逆控制在有源噪声控制的应用[J].噪声与振动控制,2008,(2):66–68.
    138 L. Bai, Q. Yin. A Modified NLMS Algorithm for Adaptive Noise Cancella-tion[C]//IEEE International Conference on Acoustics Speech and Signal Processing(ICASSP), 2010. 2010:3726–3729.
    139 S. J. Elliott, P. A. Nelson. Active Noise Control[J]. IEEE Signal Processing Maga-zine, 1993, 10(4):12–35.
    140 D. R. Morgan. An Analysis of Multiple Correlation Cancellation Loops with aFilter in the Auxiliary Path[J]. IEEE Trans. Acoust., Speech, Signal Processing,1980, 28(4):454–467.
    141 S. D. Snyder, C. H. Hansen. The Effect of Transfer Function Estimation Er-rors on the Filtered-X LMS Algorithm[J]. IEEE Trans. Signal Processing, 1994,42(4):950–953.
    142 E. Bjarnason. Algorithms for Active Noise Cancellation without Exact Knowledgeof the Error-path Filter[C]//IEEE Int. Symp. on Circuits and Systems. 1994:573–576.
    143 Y. Kajikawa, Y. Nomura. Active Noise Control System without Secondary PathModel[C]//Electron. Commun. Jap. 2000, Part III, vol. 83:47–55.
    144 Y. Kajikawa, Y. Nomura. Active Noise Control without a Secondary Path Modelby Using a Frequency-Domain Simultaneous Perturbation Method with VariablePerturbation[C]//IEEE Int. Conf. Acoustics, Speech, and Signal Processing. 2003,vol. V:580–583.
    145 K. Fujii, M. Muneyasu, J. Ohga. Active Noise Control System Using the Si-multaneous Equation Method without the Estimation of Error Path Filter Coeffi-cients[C]//Electron. Commun. Jap. 2002, Part III, vol. 85:101–108.
    146 A. Sano, Y. Ohta. Adaptive Active Noise Control without Secondary Path Identifi-cation[C]//IEEE Int. Conf. on Acoustics, Speech, and Signal Processing. 2003, vol.VI:213–216.
    147 Y. Ohta, T. Kohno, H. Ohmori, et al. Direct Fully Adaptive Active Noise ControlAlgorithms without Identification of Secondary Path Dynamics[C]//IEEE Int. Conf.on Control Applications. 2002:453–458.
    148 S. K. Phooi, M. Zhihong, H. R. Wu. Nonlinear Active Noise Control Using Lya-punov Theory and Rbf Network[C]//IEEE Signal Processing Society Workshop onNeural Networks for Signal Processing X. 2002:916–925.
    149 S. Veena, S. Narasimhan. Improved Active Noise Control Performance Based onLaguerre Lattice[J]. Signal Processing, 2004, 84(4):695–707.
    150 K. Rajgopal, S. Venkataraman. A Delayless Adaptive IFIR Filterbank Structurefor Wideband and Narrowband Active Noise Control[J]. Signal Processing, 2006,86(11):3421–3431.
    151 C. Chang, F. Luoh. Enhancement of Active Noise Control Using Neural-BasedFiltered-X Algorithm[J]. Journal of Sound and Vibration, 2007, 305(1-2):348–356.
    152 M. Zhang, H. Lan, W. Ser. On Comparison of Online Secondary-Path ModelingMethods with Auxiliary Noise[J]. IEEE Trans. Speech Audio Processing, 2005,13(4):618–628.
    153 Y. Hinamoto, H. Sakai. Analysis of the Filtered-X LMS Algorithm and a RelatedNew Algorithm for Active Noise Control of Multitonal Noise[J]. IEEE Trans. Au-dio, Speech, and Language Processing, 2006, 14(1):123–130.
    154 W. S. Gan, S. M. Kuo. Integrated Active Noise Control Communication Head-sets[C]//The 2003 International Symposium on Circuits and Systems– ISCAS’03.2003:IV–353–IV–356.
    155 S. M. Kuo, S. Mitra, W. S. Gan. Active Noise Control System for HeadphoneApplications[J]. IEEE Trans. Control Systems Technology, 2006, 14(2):331–335.
    156 R. Castan?e′-Selga, R. S. S. P. na. Active Noise Hybrid Time-Varying Control for Mo-torcycle Helmets[J]. IEEE Trans. Control Systems Technology, 2010, 18(3):602–612.
    157 K. P. Raghunathan, S. M. Kuo, W. S. Gan. Active Noise Control for Motor-cycle Helmets[C]//2010 International Conference on Green Circuits and Systems(ICGCS). 2010:170–174.
    158 R. Serizel, M. Moonen, J. Wouters, et al. Integrated Active Noise Control andNoise Reduction in Hearing Aids[J]. IEEE Trans. Audio, Speech, and LanguageProcessing, 2010, 18(6):1137–1146.
    159 A. Gonzalez, M. Ferrer, M. d. Diego, et al. Sound Quality of Low-Frequency andCar Engine Noises after Active Noise Control[J]. Journal of Sound and Vibration,2003, 265(3):663–679.
    160 L. Wang, W. S. Gan, Y. K. Chong. New Equalizing Scheme of Active Noise Equal-ization System in Automobile Cabin[C]//The 2007 IEEE International Conferenceon Multimedia and Expo. 2007:1203–1206.
    161 A. Montazeri, J. Poshtan, M. H. Kahaei. Analysis of the Global Reduction ofBroadband Noise in a Telephone Kiosk Using a MIMO Modal ANC System[J].International Journal of Engineering Science, 2007, 45(2-8):679–697.
    162 K. Beemanpally, K. R. Pottim, S. M. Kuo. Multi-channel Hybrid Active NoiseControl System for Infant Incubators[C]//2010 IEEE International Conference onElectro/Information Technology (EIT). 2010:1–8.
    163 G. Kreisselmeier. An Indirect Adaptive Controller with a Self-excitation Capabil-ity[J]. IEEE Trans. Automatic Control, 1989, 34(5):524–528.
    164 S. Haykin. Adaptive Filter Theory[M]. 3rd ed., Englewood Cliffs, NJ: PrenticeHall, 1996.
    165 P. S. R. Diniz著,刘郁林等译.自适应滤波算法与实现(第二版)[M].北京:电子工业出版社,2004.
    166叶其孝,沈永欢.实用数学手册(第2版)[M].科学出版社, 2006:476–478.
    167 Y. Xiao, Y. Tadokoro, K. Shida. Adaptive Algorithm Based on Least Mean ??–Power Error Criterion for Fourier Analysis in Additive Noise[J]. IEEE Trans. SignalProcessing, 1999, 47(4):1172–1181.
    168 B. Widrow, S. D. Stearns. Adaptive Signal Processing[M]. Upper Saddle River,NJ: Prentice Hall, 1985.
    169 L. J. Eriksson. Recursive Algorithms for Active Noise Control[C]//Proc. Int. Symp.Active Control of Sound Vib. 1991:137–146.
    170 D. Graupe, A. J. Efron. An Output-whitening Approach to Adaptive Active NoiseCancellation[J]. IEEE Trans. Circuits and Systems, 1991, 38(11):1306–1313.
    171 T. K. Yeung, S. F. Yau. A Feedback Anc System Using Adaptive Lattice Fil-ters[C]//Proc. 1998 IEEE Int. Sym. Circuits Syst. 1998, V:186–189.
    172 A. V. Oppenheim, E. Weinstein, K. C. Zangi, et al. Single-sensor Active NoiseCancellation[J]. IEEE Trans. Speech and Audio Processing, 1994, 2(2):285–290.
    173 W. S. Gan, S. M. Kuo. An Integrated Audio and Active Noise Control Headsets[J].IEEE Trans. Consumer Electronics, 2002, 48(2):242–247.
    174 Y. G. Y. Song, S. M. Kuo. A Robust Hybrid Feedback Active Noise CancellationHeadset[J]. IEEE Trans. Speech and Audio Processing, 2005, 13(4):607–617.
    175杜功焕,朱哲民,龚秀芬.声学基础[M].南京大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700