汽车排气消声器设计技术研究及其专家系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安装排气消声器是控制汽车排气噪声的主要手段。迄今为止,排气消声器性能的精确分析预测和精准设计仍是一个难题,消声器的设计开发需要高度依赖于经验知识,使得其设计工作变得难以把握,令许多设计人员倍感困惑。因此,在国内企业尚未掌握消声器的自主研发核心技术的情况下,突破和掌握汽车排气消声器研发的关键技术,研究和开发消声器设计专家系统,对加快消声器设计技术向产业的转移和推广,具有很大价值和现实意义。
     首先,将试验与仿真分析结合,研究隔板缝隙对消声性能的影响,反流插入管消声器压力损失的规律。研究结果表明:批量生产的消声器隔板形成的缝隙对共振式消声器消声性能有巨大影响;进口管离后壁的距离对压力损失的影响远胜于出口管,即当进口管短于出口管时,可以获得更低的压力损失;进口管离后壁的距离对反流插入管消声器的压力损失影响存在一个临界距离(称为临界壁面距离),如果离后壁的距离小于这个距离会造成压力损失急剧升高,离后壁的距离大于这个距离后压力损失变化很,临界壁面距离与进口管管径相关。这些客观规律的发现,有助于设计时合理地选择参数;同时为消声器设计专家系统储备设计规则和知识。
     其次,针对当前排气消声器性能的综合评价主要停留在基于个人经验和定性评价上的现状,以消声器特性为出发点,建立一系列针对汽车排气噪声、气流特点相适应的量化的性能指标,并通过层次分析法结合专家打分作为各指标加权依据,进行消声器消声性能的定量评价。通过对现有排气消声器传声损失试验结果进行横向比较、验证,表明该评价方法正确可行。
     然后研究消声器设计推理技术,围绕“消声器设计案例知识表达”、“消声器设计案例推理方法”、“消声器设计调整策略”提出了解决方法。特别是提出了一种实现汽车排气消声器内部结构表达的方法和判断消声器内部结构拓扑关系的算法,并提出了消声器设计案例推理结果案例相似度综合评判方法。解决了案例推理和规则推理在消声器设计中的应用难题。
     然后研究基于特征参数化建模技术的排气消声器快速建模方法,并在对商用声学有限元软件二次开发的基础上实现消声器消声性能的自动分析,拓展消声器专家系统应用。
     最后,基于上述研究,开发了集合专家系统、设计工具、分析工具等主要功能,包含排气消声器设计案例、设计知识、评价方法的数据库的汽车排气消声器设计专家系统——“ES2”。应用该系统在两款汽车消声器改进和设计中,其推理得到的消声器通过装车试验表明该系统具有很强的实用价值,设计出的消声器满足工程实际要求。
     上述研究跨车辆工程、人工智能、图形图像处理、管理科学等领域。将综合评价应用于消声器评价,使得消声器设计及其评价更具科学性;将专家系统与消声器设计结合,提高了消声器设计成功率;将参数化设计和自动分析技术融入消声器设计,提高了设计效率。汽车排气消声器设计专家系统在汽车零部件企业的应用,对迅速提高企业消声器设计水平,具有较大的促进作用。
Using exhaust muffler is the main way to control automotive engine exhaust noise.
     To this day, exhaust muffler performance precision prediction and accurate design is still a problem. Its design is still highly dependent on the experience. As a result, the design work of exhaust muffler is harder to grasp and many designers feel so confused. In the case of the domestic enterprises have yet to master the muffler core R&D technique, the development muffler design expert system has a great value to speed up the muffler design technique to transfer and promotion of industrial.
     First of all, by the approach of combination with the experiment and simulation analysis, it develops studies on the effect of a baffle seam on reactive muffler acoustics and the effect of the distance between inlet-tube and back wall in reverse flow extended-tube chamber muffler on pressure drop. It results three key conclusions:①The baffle seam has undermined sound attenuation of resonant muffler or moves its resonant frequency.②In the reverse flow extended-tube chamber muffler, the distance between inlet tube and back wall has a greater impact than the outlet on pressure loss. In other words, if the inlet tube is shorter than the outlet tube, it can get a lower pressure loss.③There exists a critical distance between inlet tube and back wall in the reverse flow extended-tube chamber muffler. Less than this distance can cause pressure drop sharply rise. The critical distance is related to inlet-tube inner diameter. The discovery of objective laws is helpful for designers to choose parameters reasonably, and also reserves design rules and knowledge of the expert system for muffler design.
     Secondly, the performance evaluation of automotive exhaust muffler is still no unified approach and remains in the qualitative evaluation based on personal experience. This leads to the evaluation results arbitrary large and cannot be quantified. According to the present situation, it builds an evaluation system for multi-performance of automotive exhaust mufflers by establishing a series of indexes for each performance of mufflers and finds index's weighting base on Analytic Hierarchy Process (AHP). It shows that the evaluation system is suitable and feasible for multi-performance comparison by using the evaluation system to evaluate the measured results of 5 passenger car mufflers. This evaluation system can be used in comparing different mufflers quantitatively.
     Thirdly, by developing the reasoning technique of muffler design, its proposed solutions for case representation, case reasoning and case revise on muffler design. In particular, it presents a representation method of the internal structure of exhaust muffler, an algorithm for determining of structure topology relations and a means of judging reasoning results similarity. With those studies, it achieves case-based reasoning and rule-based reasoning in muffler design.
     Fourthly, aiming to expand the scope of reasoning in muffler design, it also developed rapid prototyping methods of exhaust muffler by feature-based parametric modeling technique and achieves automatic computing by secondary development of commercial FEM software.
     Finlay, it’s built an expert system for automotive exhaust muffler design which names‘ES2'. The system integrates a collection of functions such as reasoning, design, analysis. And a database with design cases, design knowledge and evaluation methods for muffler design is also included. Using the system for developing two cars’muffler, the measured results show that the system has a strong practical value and the designed muffler meets the practical requirements of engineering.
     The above studies cross vehicle engineering, artificial intelligence, image processing, management science and other fields. Comprehensive evaluation of the application of the muffler evaluation makes the design and evaluation more scientifically. The application of expert system in muffler design improves the design success rate. The techniques of automatic analysis and parametric modeling in the blend of the muffler design make the design more efficient. The Implement of the expert system for muffler design in automobile parts enterprises has practical significance to improve their muffler design level.
引文
[1] Munjal M L. Acoustics of ducts and mufflers with application to exhaust and ventilation system design[M]. New York: Wiley-Interseience, 1987.
    [2]福田基一,奥田襄介.噪声控制与消声设计[M].张成,郭博,王凯恒,译.北京:国防工业出版社, 1982.
    [3] Harrison M. Vehicle refinement: controlling noise and vibration in road vehicles[M]. Warrendale,PA: SAE International, 2003.
    [4] Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet[J]. Journal of Sound and Vibration, 1999,223(2):197-212.
    [5] Denia F D, Selamet A, Fuenmayor F J, et al. Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions[J]. Journal of Sound and Vibration, 2007,302(4-5):1000-1017.
    [6] Norman K R, Selamet A, Novak J M. Perforated muffler manifold catalyst[J]. Journal of Sound and Vibration, 1998,218(4):711-734.
    [7] Dickey N S, Selamet A, Novak J M. Multi-pass perforated tube silencers: A computational approach[J]. Journal of Sound and Vibration, 1998,211(3):435-447.
    [8] Selamet A, Radavich P M. The effect of length on the acoustic attenuation performance of concentric expansion chambers: An analytical, computational and experimental investigation[J]. Journal of Sound and Vibration, 1997,201(4):407-426.
    [9] Selamet A, Ji Z L. Diametral plane-wave analysis for short circular chambers with end offset inlet/outlet and side extended inlet/outlet[J]. Journal of Sound and Vibration, 1998,214(3):580-587.
    [10] Selamet A, Denia F D. Acoustic behavior of short elliptical chambers with end central inlet and end offset or side outlet[J]. Journal of Sound and Vibration, 2001,245(5):953-959.
    [11] Selamet A, Ji Z L, Radavich P M. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: II. Comparison with experimental and computational studies[J]. Journal of Sound and Vibration, 1998,213(4):619-640.
    [12] Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: I. Analytical approach[J]. Journal of Sound and Vibration, 1998,213(4):601-614.
    [13] Selamet A, Denia F D, Besa A J. Acoustic behavior of circular dual-chamber mufflers[J].Journal of Sound and Vibration, 2003,265(5):967-985.
    [14] Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with single-inlet and double-outlet[J]. Journal of Sound and Vibration, 2000,229(1):3-19.
    [15] Rao K N, Munjal M L. Noise reduction with perforated three-duct muffler components.[J]. Sadhana - Academy Proceedings in Engineering Sciences, 1986,9(pt 4):255-269.
    [16] Munjal M L. Analysis and design of mufflers - An overview of research at the Indian Institute of Science[J]. Journal of Sound and Vibration, 1998,211(3):425-433.
    [17] Easwaran V, Munjal M L. Plane wave analysis of conical and exponential pipes with incompressible mean flow[J]. Journal of Sound and Vibration, 1992,152(1):73-93.
    [18] Gupta V H, Easwaran V, Munjal M L. A modified segmentation approach for analyzing plane wave propagation in non-uniform ducts with mean flow[J]. Journal of Sound and Vibration, 1995,182(5):697-707.
    [19] Munjal M L. Plane wave analysis of side inlet/outlet chamber mufflers with mean flow[J]. Applied Acoustics, 1997,52(2):165-175.
    [20] Munjal M L, Behera B K, Thawani P T. Transfer matrix model for the reverse-flow, three-duct, open end perforated element muffler[J]. Applied Acoustics, 1998,54(3):229-238.
    [21] Munjal M L. Analysis and design of pod silencers[J]. Journal of Sound and Vibration, 2003,262(3):497-507.
    [22] Kar T, Munjal M L. Generalized analysis of a muffler with any number of interacting ducts[J]. Journal of Sound and Vibration, 2005,285(3):585-596.
    [23] Venkatesham B, Tiwari M, Munjal M L. Transmission loss analysis of rectangular expansion chamber with arbitrary location of inlet/outlet by means of Green's functions[J]. Journal of Sound and Vibration, 2009,323(3-5):1032-1044.
    [24] Panigrahi S N, Munjal M L. Plane wave propagation in generalized multiply connected acoustic filters[J]. Journal of the Acoustical Society of America, 2005,118(5):2860-2868.
    [25]黄其柏.计及气流和线性温度梯度的内插管扩张式消声器理论研究[J].声学技术, 1998,17(2):50-53.
    [26]沈颖刚,范钱旺,翁家庆,等.计及气流的同轴穿孔管排气消声器消声性能的研究[J].噪声与振动控制, 2008(1).
    [27]唐永琪,陈朝阳,胡立臣.汽车消声器性能计算中的气流与温度因素[J].合肥工业大学学报(自然科学版), 2000,23(3):327-331.
    [28] Gladwell G M L. A variational formulation of damped acousto structural vibration problems[J]. Journal of Sound and Vibration, 1966,4(2):172-186.
    [29] Gladwell G M L, Zimmermann G. On energy and complementary energy formulations of acoustic and structural vibration problems[J]. Journal of Sound and Vibration, 1966,3(3):233-241.
    [30] Young C I J, Crocker M J. Prediction of transmission loss in mufflers by the finite element method[J]. Journal of the Acoustical Society of America, 1975,57(1):144-148.
    [31] Craggs A. A finite element method for modelling dissipative mufflers with a locally reactive lining[J]. Journal of Sound and Vibration, 1977,54(2):285-296.
    [32] Craggs A. Finite element method for damped acoustic systems: an application to evaluate the performance of reactive mufflers [J]. Journal of Sound and Vibration, 1976,48(3):377-392.
    [33] Ross D F. A finite element analysis of parallel-coupled acoustic systems using subsystems[J]. Journal of Sound and Vibration, 1980,69(4):509-518.
    [34] Ross D F. A finite element analysis of perforated component acoustic systems[J]. Journal of Sound and Vibration, 1981,79(1):133-143.
    [35] Kagawa Y, Yamabuchi T, Mori A. Finite element simulation of an axisymmetric acoustic transmission system with a sound absorbing wall[J]. Journal of Sound and Vibration, 1977,53(3):357-374.
    [36] Peat K S. Acoustical impedance at discontinuities of ducts in the presence of a mean flow[J]. Journal of Sound and Vibration, 1988,127(1):123-132.
    [37]蔡超,宫镇,王仲章.轴对称抗性消声器四端子参数有限单元法求解[J].江苏工学院学报, 1986,7(3):50-62.
    [38]陆森林,刘红光.内燃机排气消声器性能的三维有限元计算及分析[J].内燃机学报, 2003,21(5):346-350.
    [39] Oda M, Yamamoto M, Suwa J. Prediction of Transmission Loss for Motorcycle Muffler[C]. SAE Paper,No.1999-01-3256, 1999.
    [40] Tanaka T, Fujikawa T, Abe T, et al. Method for the analytical prediction of insertion loss of a two-dimensional muffler model based on the transfer matrix derived from the boundary element method[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1985,107(1):86-91.
    [41] Ji Z L, Ma Q, Zhang Z H. A boundary element scheme for evaluation of four-pole parameters of ducts and mufflers with low mach number non-uniform flow[J]. Journal of Sound and Vibration, 1995,185(1):107-117.
    [42]季振林.穿孔管阻性消声器消声性能计算及分析[J].振动工程学报, 2005,18(4):453-457.
    [43] Onorati A, Montenegro G, D'Errico G. Prediction of the attenuation characteristics of ic engine silencers by 1-D and multi-D simulation models[C].SAE Paper,No.2006-01-1541, 2006.
    [44]颜伏伍,杨伦,刘志恩,等. GT-Power软件的微型车消声器设计与优化[J].内燃机工程, 2010,31(2):64-67.
    [45]罗虹,王伟戈,邓兆祥,等.汽车排气消声器内部流场和声场数值分析[J].重庆大学学报(自然科学版), 2006,29(8):66-69.
    [46]张智辉,陈军,王树宗,等.消声器内部流场的数值模拟[J].振动与冲击, 2006,25(6):21-24.
    [47] Wagh S, Sen S, Iyer G, et al. Development of exhaust silencer for improved sound quality and optimum back pressure[C]. SAE Paper,No.2010-01-0388, 2010.
    [48] Panigrahi S N, Munjal M L. Backpressure considerations in designing of cross flow perforated-element reactive silencers[J]. Noise Control Engineering Journal, 2007,55(6):504-515.
    [49]胡效东.基于CFD仿真和试验的抗性消声器研究[D].济南:山东大学, 2007.
    [50]张德满,李舜酩,门秀花.单缸发动机消声器压力损失的CFD研究[J].华南理工大学学报(自然科学版), 2010,38(3).
    [51] Middelberg J M, Barber T J, Leong S S, et al. Computational fluid dynamics analysis of the acoustic performance of various simple expansion chamber mufflers: Proceeding of Acoustics 2004, Gold Coast,Australia, 2004[C].
    [52]董红亮,邓兆祥,姜艳军,等.内燃机排气消声器多物理场分析及改进设计[J].内燃机工程, 2008,29(1):61-64.
    [53]胡效东,周以齐,方建华,等.穿孔和非穿孔消声器压力损失研究[J].机械设计与研究, 2007,23(2):110-112.
    [54]刘晨,季振林,郭小林,等.汽车排气消声器结构形式对压力损失的影响[J].汽车工程, 2008,30(12):1113-1116.
    [55]邓兆祥,向飞,李沛然,等.扩张比对扩张式消声器压力损失影响的分析[J].汽车工程, 2011,33(3):231-235.
    [56]方建华,周以齐,胡效东,等.扩张式消声器的流体仿真及空气动力性能研究[J].系统仿真学报, 2009,21(20):6399-6404.
    [57]胡效东,周以齐,方建华.单双腔抗性消声器压力损失CFD研究[J].中国机械工程, 2006,17(24):2567-2572.
    [58]黄继嗣,季振林.同轴抗性消声器声学和阻力特性的数值计算与分析[J].噪声与振动控制, 2006,26(5):91-95.
    [59] Lee S, Ih J. Effect of non-uniform perforation in the long concentric resonator on transmission loss and back pressure[J]. Journal of Sound and Vibration, 2008,311(1-2):280-296.
    [60] Payri F, Torregrosa A J, Broatch A, et al. Pressure loss characterisation of perforated ducts[C]. SAE Paper,No.980282, 1998.
    [61]苗勇毅,杨世文.双穿孔管消声器分析研究[J].机械工程与自动化, 2009,157(6):53-55.
    [62] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978,2(6):429-444.
    [63]汪培庄.模糊数学简介(Ⅰ)[J].数学的实践与认识, 1980(2).
    [64]汪培庄.模糊数学简介(Ⅱ)[J].数学的实践与认识, 1980(3).
    [65]汪培庄.模糊数学及其应用[J].河南师大学报(自然科学版), 1983(2).
    [66] Saaty T L. The analytic hierarchy process : planning, setting priorities, resource allocation[M]. New York: McGraw-Hill, 1980.
    [67]邓聚龙.灰色系统[M].北京:国防工业出版社, 1985.
    [68]邓聚龙.灰色控制系统[J].华中工学院学报, 1982(3).
    [69] Booker L B, Goldberg D E, Holland J H. Classifier systems and genetic algorithms[J]. Artificial Intelligence, 1989,40(1-3):235-282.
    [70]李传斌.基于模糊综合评判的汽车制动性能评价[J].机械工程师, 2010(1):76-77.
    [71]陈熔,安二中.汽车前视野的可拓评价方法及应用[J].常州工学院学报, 2003,16(4):39-42.
    [72]熊鹰,陈国华.发动机总体方案的模糊综合评价[J].柴油机设计与制造, 1999(3):25-29.
    [73]杨靖,李克.内燃机使用性能评价新方法[J].客车技术与研究, 2003(5):4-6.
    [74]柳楠,崔厚玺.应用模糊物元理论建立天然气发动机性能状态评价模型[J].科学技术与工程, 2008(18):5297-5299.
    [75]陆明,王耀华,史长根,等.内燃机综合性能指标的一种加权评价法[J].解放军理工大学学报:自然科学版, 2000,1(4):69-72.
    [76]于共增,吴铃海,周建军.汽车离合器操纵舒适度的模糊综合评价研究[J].机电工程, 2009,26(3):69-72.
    [77]龚培康,冉振亚.汽车制动系统的模糊综合评价[J].汽车技术, 1991(10):14-16.
    [78] Uenishi K, Fujihashi K, Imai H. A seat ride evaluation method for transient vibrations[C]. SAE Paper,No.2000-01-0641, 2000.
    [79]庞剑,谌刚,何华.汽车噪声与振动[M].北京:北京理工大学出版社, 2006.
    [80]何渝生,邓兆祥,陈朝阳.汽车噪声控制[M].北京:机械工业出版社, 1999.
    [81]黎志勤,黎苏.汽车排气系统噪声与消声器设计[M].北京:中国环境科学出版社, 1991.
    [82] Pang J, Kurrle P, Qatu M, et al. Attribute analysis and criteria for automotive exhaust systems[C].SAE Paper,No.2003-01-0221,2003.
    [83]杨诚,周科,陈旭.发动机壳体辐射噪声预测[J].江苏大学学报(自然科学版), 2010(4):393-396.
    [84]贾继德.客车内外噪声控制关键技术及工程应用研究[D].合肥:合肥工业大学, 2007.
    [85]姜鹏明,富喜,吴帮玉.汽车消声器优化设计与综合评价指数[J].汽车工程, 2008,30(3):247-254, 230.
    [86]夏珩,郑四发,郝鹏,等.汽车消声器多工况综合性能的评价方法[J].农业机械学报, 2009,40(4):33-37.
    [87] Zheng S, Hao P, Xia H, et al. Dynamic comprehensive performance of mufflers under different vehicle running conditions[C]. SAE Paper,No. 2010-01-0901, 2010.
    [88] Han H, Chae S, Kim Y. Analytical design of muffler based on transmission loss calculation[C]. SAE Paper,No. 2000-01-0311, 2000.
    [89]李林凌,黄其柏,连小珉,等.汽车消声器设计方法与评价指标分析[J].农业机械学报, 2007,38(5):32-36.
    [90] Barbieri R, Barbieri N. Finite element acoustic simulation based shape optimization of a muffler[J]. Applied Acoustics, 2006,67(4):346-357.
    [91] Chang Y C, Chiu M C, Cheng M M. Optimum design of perforated plug mufflers using a neural network and a genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009,223(4):935-952.
    [92] Schank R C, Abelson R P. Scripts, Plans, goals and understanding: an inquiry into human knowledge structures[M]. Hillsdale, NJ: L. Erlbaum, 1977.
    [93] Schank R C. Dynamic memory : a theory of reminding and learning in computers and people[M]. Cambridge: Cambridge University Press, 1982.
    [94] Janet L. K. Reconstructive memory: A computer model[J]. Cognitive Science, 1983,7(4):281-328.
    [95] Lebowitz M. Memory-based parsing[J]. Artificial Intelligence, 1983,21(4):363-404.
    [96] Bareiss J E R. Protos: a unified approach to concept representation, classification, and learning[D]. Austin,TI: The University of Texas at Austin, 1988.
    [97] Aamodt A, Plaza E. Case-based reasoning: foundational issues, methodological variations, and system approaches[J]. AI Communications, 1994,7(1):39-59.
    [98]郭艳红,邓贵仕.基于事例的推理(CBR)研究综述[J].计算机工程与应用, 2004(21):1-5.
    [99]吴良刚,高阳,张金隆.一种面向对象的事例知识表示方法和事例库组织[J].管理信息系统, 1999(7):11-14.
    [100]周艳平.基于案例推理的水库调度[D].长沙:中南大学, 2005.
    [101] Minsky M.A Framework for Representing Knowledge, AIM-306[R]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1974.
    [102]丁剑飞,何玉林,李成武.基于本体的分布式CBR设计系统[J].计算机工程, 2007,33(21):183-185.
    [103] Li B, Shi Z. Case retrieval based on memory network: Proceedings of the IFIP TC12/WG12.3 International Workshop on Automated Reasoning, Amsterdam, The Netherlands, 1992[C]. North-Holland Publishing Co..
    [104] Arya S, Mount D M, Netanyahu N S, et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions[J]. Journal of the ACM, 1998,45:891-923.
    [105]郭四海,冯珊,李锋.基于案例推理的虚拟样机概念设计支持系统[J].华中科技大学学报(自然科学版), 2004(3):71-73.
    [106] Suh M S, Jhee W C, Ko Y K, et al. A case-based expert system approach for quality design[J]. Expert Systems with Applications, 1998,15(2):181-190.
    [107]杨振刚. CBR ANN智能决策支持方法及应用[D].广州:华南理工大学, 2007.
    [108] Jeng B C, Liang T. Fuzzy indexing and retrieval in case-based systems[J]. Expert Systems with Applications, 1995,8(1):135-142.
    [109] Cobb C L, Agogino A M. Case-based reasoning for evolutionary MEMS design[J]. Journal of Computing and Information Science in Engineering, 2010,10(3).
    [110] Gardingen D, Ian W. A case-based reasoning system for HVAC sales support on the web[J]. Knowledge Based Systems, 1999,12(5-6):207-214.
    [111] Wills A, Watson I. Building a case-based reasoner for clinical decision support: 8th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2004: Trends in Artificial Intelligence, August 9, 2004 - August 13, 2004, Auckland, New zealand, 2004[C]. Berlin: Springer.
    [112] Cheetham W. Tenth anniversary of the plastics color formulation tool[J]. AI Magazine, 2005,26(3):51-62.
    [113] Cheetham W, Goebel K. Appliance call center: A successful mixed-initiative case study[J]. AI Magazine, 2007,28(2):89-100.
    [114]张代胜,王悦,陈朝阳.融合实例与规则推理的车辆故障诊断专家系统[J].机械工程学报, 2002,38(7):91-95.
    [115] Butler R, Jackman B. Wireless gateway for intelligent diagnostics[C]. SAE Paper,No.2005-01-1433, 2005.
    [116] Vong C, Wong P. Case-based adaptation for automotive engine electronic control unit calibration[J]. Expert Systems with Applications, 2010,37(4):3184-3194.
    [117]陈纲,石晓祥,陈军,等.基于知识的汽车覆盖件可制造性评价系统[J].上海交通大学学报, 2003,37(7):1123-1127.
    [118] Wang H, Rong Y K. Case based reasoning method for computer aided welding fixture design[J]. Computer-Aided Design, 2008,40:1121-1132.
    [119] Wang H, Rong Y K, Li H, et al. Computer aided fixture design: recent research and trends[J]. Computer-Aided Design, 2010,42(12):1085-1094.
    [120] Zhang J, Yao C. Mixed inference combining CBR and RBR in the intellectualized CAD system of automotive welding jig: 2010 International Conference on Computer Application and System Modeling, ICCASM 2010, October 22, 2010 - October 24, 2010, Shanxi, Taiyuan, China, 2010[C]. IEEE Computer Society.
    [121] Tsai Y, You C, Lin J, et al. Knowledge-based engineering for process planning and die design for automotive panels[J]. Computer-Aided Design and Applications, 2010,7(1):75-87.
    [122]葛如海,江强,刘德仿,等.基于混合集成推理的汽车玻璃检具设计研究[J].机械设计与制造, 2010(10):254-256.
    [123] Chen G, Zhou J, Cai W, et al. A framework for an automotive body assembly process design system[J]. CAD Computer Aided Design, 2006,38(5):531-539.
    [124] Morgan A P, Cafeo J A, Godden K, et al. The general motors variation-reduction adviser: deployment issues for an AI application[J]. AI Magazine, 2005,26(3):19-28.
    [125]刘媛媛,李迪,逯志勇.汽车车身内部布置事例推理系统研究与应用[J].拖拉机与农用运输车, 2010,37(1):72-74.
    [126]毕新雯,李迪,唐玲,等.汽车内部布置事例推理系统研究[J].农业装备与车辆工程, 2006(3):30-33.
    [127]宋久鹏.汽车方案设计智能决策支持系统的开发技术研究[D].成都:西南交通大学, 2002.
    [128]朱晓杰.汽车总体方案设计智能决策支持系统的开发技术研究[D].北京:中国农业大学, 2005.
    [129]张红旗.汽车前轴的快速设计系统[D].合肥:合肥工业大学, 2002.
    [130]童福安.基于实例的汽车关键零部件设计系统研究与应用[D].重庆:重庆大学, 2009.
    [131]董益亮.基于知识的产品变型设计技术及其实例化研究[D].重庆:重庆大学, 2003.
    [132]蔡超.拖拉机排气消声器CAD软件一体化驱动方法[J].拖拉机与农用运输车, 1994(4):23-26.
    [133]于雅丽.消声器设计专家系统的研制[D].重庆:重庆大学, 2007.
    [134]王国明.摩托车消声器集成设计分析系统研究[D].重庆:重庆大学, 2009.
    [135]王国明,贺岩松,杨振东.基于UG的排气消声器模块开发及应用[J].农业装备与车辆工程, 2008(2):39-40.
    [136]陈朝阳,胡立臣.车用消声器性能预测与软件开发[J].拖拉机与农用运输车, 1997(3):22-27.
    [137]杜扬,郑志刚,卢丹,等.抗性排气消声器插入损失的计算[J].拖拉机与农用运输车, 2002(3):14-17.
    [138]张宏波,葛蕴珊,杨登峰,等.基于传递矩阵方法的排气消声器计算机辅助设计[J].北京理工大学学报, 2004,24(5):392-394.
    [139] Boudoy M, Jaskulski J.An optimization tool for exhaust system design with respect to tail pipe noise reduction[C].SAE Paper, No.2003-01-1646, 2003.
    [140]石媛媛.管道消声系统仿真技术研究[D].哈尔滨:哈尔滨工程大学, 2009.
    [141] Barron R F. Industrial noise control and acoustics[M]. New York: Marcel Dekker, 2003.
    [142] Selamet A, Denia F D, Besa A J. Acoustic behavior of circular dual-chamber mufflers[J]. Journal of Sound and Vibration, 2003,265(5):967-985.
    [143]季振林.直通穿孔管消声器声学性能计算及分析[J].哈尔滨工程大学学报, 2005,26(3):302-306.
    [144]石玲,沈颖刚,范钱旺.计及气流的同轴穿孔管排气消声器消声性能的研究[J].噪声与振动控制, 2008(1):108-110.
    [145]黄其柏,师汉民,杨叔子,等.计及气流和线性温度梯度的内燃机穿孔声管排气消声器研究[J].内燃机学报, 1993,11(1):77-82.
    [146]张晓东,杜江,欧阳华,等.稳定气流对不同类型消声器气动-声学性能影响的实验研究[J].噪声与振动控制, 2008(4):141-144.
    [147] Siano D, Bozza F, Auriemma F. Pros and cons of using different numerical techniques for transmission loss evaluation of a small engine muffler[C]. SAE Paper, No.2010-32-0028, 2010.
    [148]刘晨,季振林,胡志龙.高温气流对穿孔管消声器声学性能的影响[J].汽车工程, 2008,30(4):330-334.
    [149]董红亮,邓兆祥,来飞.考虑温度影响的消声器声学性能分析及改进[J].振动工程学报, 2009,22(1):70-75.
    [150]赵海军,邓兆祥,李沛然.穿孔管式消声单元气流再生噪声总功率模型[J].振动与冲击, 2011,30(8):118-122.
    [151]邓兆祥,赵海军,赵世举,等.穿孔管消声单元气流再生噪声产生机理[J].内燃机学报, 2009,27(5):452-457.
    [152] Pang J, Rebandt R, Knapp G, et al. Flow excited noise analysis of exhaust[C] .SAE Paper, No.2005-01-2352, 2005.
    [153]刘丽萍,肖福明.扩张室式消声器气流噪声的试验研究[J].机械工程学报, 2002,38(1):98-100.
    [154]叶旭明,周兆元,曲贞江.汽车消音器隔板锁定新工艺[J].锻压技术, 2004(3):39-40.
    [155]何琳,朱海潮,邱小军,等.声学理论与工程应用[M].北京:科学出版社, 2007.
    [156]褚志刚,徐少华,卢喜,等.基于传递函数的消声器传声损失测量技术研究[J].振动与冲击, 2009,28(7):203-207.
    [157] ASTM. ASTM E2611-09 Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method[S]. West Conshohocken, PA: ASTM International, 2009.
    [158]赵海军,邓兆祥,杨杰,等.插入管消声器传声损失数值计算方法对比及参数分析[J].内燃机工程, 2008,29(6):65-69.
    [159]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社, 2001.
    [160]毕嵘,刘正士,王慧,等.多腔共振式消声器的声学特性分析[J].农业机械学报, 2008,39(10):48-51.
    [161] Launder B E, Spalding D B. Lectures in mathematical models of turbulence[M]. London: Academic Press, 1972.
    [162]全国声学标准化技术委员会噪声分委员会. GB/T 4760-1995声学消声器测量方法[S].北京:中国标准出版社, 1995.
    [163]阮登芳.共振式进气消声器设计理论及其应用研究[D].重庆:重庆大学, 2005.
    [164] Mohanty A R, Pattnaik S P.An optimal design methodology for a family of perforated mufflers[C]. SAE Paper,No. 2005-26-053,2005.
    [165] Yadav P S, Muthukumar A, Kiran V V P, et al. Optimized design of silencer~an integrated approach[C]. SAE Paper,No. 2007-26-037, 2007.
    [166]李继锋,陈剑,文智明.复杂穿孔管结构消声器消声性能研究[J].汽车技术, 2010(1):17-20.
    [167]范钱旺,沈颖刚,石玲,等.汽车排气消声器的试验研究及频谱分析[J].汽车技术, 2008(7):39-43.
    [168]姜恩伟.轿车消声器性能模拟研究及优化[D].长春:吉林大学, 2008.
    [169] Brand J, Garcia P, Wiemeler D. Surface radiated noise of exhaust systems - calculation and optimization with CAE[C]. SAE Paper, No. 2004-01-0407, 2004.
    [170]卢兆刚,郝志勇,杨陈,等.基于模态分析及优化设计技术的低噪声齿轮室罩的设计[J].振动与冲击, 2010,29(10):239-243.
    [171]王平.直喷式共轨柴油机燃烧噪声的研究[D].大连:大连理工大学, 2008.
    [172] Lee I J, Selamet A, Huff N T, et al. Design of a hybrid exhaust silencing system for a production engine[C]. SAE Paper,No. 2005-01-2349, 2005.
    [173]中国机械工业联合会. GB/T 4759-2009内燃机排气消声器测量方法[S].北京:中国标准出版社, 2009.
    [174] Mazda Motor Corporation.MEST-T-VN100310-A Mazda test procedure[S]. Hiroshima: Mazda Motor Corporation, 2000.
    [175]高树新,鲁毅飞,汪立明.军车综合评价中指标的一致化模型研究[J].汽车工程, 2010,32(10):919-922.
    [176]郭亚军.综合评价理论、方法及应用[M].北京:科学出版社, 2007.
    [177]张立军,袁能文.线性综合评价模型中指标标准化方法的比较与选择[J].统计与信息论坛, 2010,25(8):10-15.
    [178]郭亚军,易平涛.线性无量纲化方法的性质分析[J].统计研究, 2008,25(2):8.
    [179]裴玉龙,王永岗,杨光,等.评价交通系统与城市发展适应性的改进层次分析算法[J].吉林大学学报(工学版), 2008,38(1):42-47.
    [180]王圃,张晋,华佩,等.改进层次分析-多级模糊评判的给水处理工艺优选模型[J].土木建筑与环境工程, 2010,32(2):102-107.
    [181] Pophali G R, Chelani A B, Dhodapkar R S. Optimal selection of full scale tannery effluent treatment alternative using integrated AHP and GRA approach[J]. Expert Systems with Applications, 2011,38(9):10889-10895.
    [182] Benitez J, Delgado-Galvan X, Izquierdo J, et al. Achieving matrix consistency in AHP through linearization[J]. Applied Mathematical Modelling, 2011,35(9):4449-4457.
    [183]杜栋,庞庆华,吴炎.现代综合评价方法与案例精选[M].北京:清华大学出版社, 2008.
    [184] Wang Y, Chin K. A linear programming approximation to the eigenvector method in the analytic hierarchy process[J]. Information Sciences, 2011,181(23):5240-5248.
    [185] Kriegsman M, Barletta R. Building a Case-Based Help Desk Application[J]. IEEE Expert: Intelligent Systems and Their Applications, 1993,8:18-26.
    [186]袁小红,王珏.基于事例的推理:综述与分析[J].模式识别与人工智能, 1995,8(12):18-31.
    [187] Coyle L, Hayes C, Cunningham P. Representing cases for CBR in XML[J]. Expert Update, 2003,6(2):7-13.
    [188] Pal S K, Mitra P. Case generation using rough sets with fuzzy representation[J]. IEEE Transactions on Knowledge and Data Engineering, 2004,16(3):292-300.
    [189]杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计, 2008,29(3):710-712.
    [190] Riesbeck C K, Schank R C. Inside case-based reasoning[M]. Hillsdale, N.J.: Lawrence Erlbaum Associates, Pubs., 1989.
    [191] Mario L, Burkhard H. Case-based reasoning technology: from foundations to applications[M]. Berlin: Springer, 1998.
    [192] Pal S K, Shiu S C K. Foundations of soft case-based reasoning[M]. New York: Wiley, 2004.
    [193] Pahl G, Beitz W, Wallace K. Engineering design[M]. London: Design Council, 1984.
    [194] Pahl G, Beitz W, Wallace K. Engineering design: a systematic approach.[M]. Berlin: Springer, 1996.
    [195] Rezayat M. Knowledge-based product development using XML and KCs[J]. CAD Computer Aided Design, 2000,32(5):299-309.
    [196] Haque B U, Belecheanu R A, Barson R J, et al. Towards the application of case based reasoning to decision-making in concurrent product development (concurrent engineering)[J]. Knowledge-Based Systems, 2000,13(2):101-112.
    [197] Gupta K M, Montazemi A R. Empirical evaluation of retrieval in case-based reasoning systems using modified cosine matching function[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 1997,27(5):601-612.
    [198] Fan L, Kumar S A. XML-based representation in a CBR system for fixture design[J]. Computer-Aided Design and Applications, 2005,2(1-4):339-348.
    [199] Khanum A, Mufti M, Javed M Y, et al. Fuzzy case-based reasoning for facial expression recognition[J]. Fuzzy Sets and Systems, 2009,160(2):231-250.
    [200] Smyth B, Keane M T, Cunningham P. Hierarchical case-based reasoning integrating case-based and decompositional problem-solving techniques for plant-control software design[J]. IEEE Transactions on Knowledge and Data Engineering, 2001,13(5):793-812.
    [201]常春光.案例推理原理及其在钢铁生产动态调度中的应用[M].北京:北京师范大学出版社, 2010.
    [202]宋欣,郭伟,王志勇.基于实例推理的可倾瓦推力轴承方案设计[J].计算机集成制造系统, 2009(8):1478-1483.
    [203] Matelli J A, Bazzo E, Da Silva J C. Development of a case-based reasoning prototype for cogeneration plant design[J]. Applied Energy, 2011,88(9):3030-3041.
    [204]施伟斌,孙未未,施伯乐. XML数据的结构化处理方法[J].计算机研究与发展, 2002(7).
    [205]李沛然,邓兆祥,叶常景.汽车NVH试验数据管理系统关键技术研究[J].振动与冲击, 2010,29(2):163-166.
    [206]全国声学标准化技术委员会声学基础分委员会. GB/T 3238-1982声学量的级及其基准值[S].北京:中国标准出版社, 1982.
    [207]齐敏,李大健,郝重阳.模式识别导论[M].北京:清华大学出版社, 2009.
    [208]代荣,何玉林,杨显刚,等.摩托车智能设计的实例推理与规则推理集成应用研究[J].中国机械工程, 2008,19(11):1363-1368.
    [209]李高正,师汉民.基于事件推理的零件几何知识量与成本估算[J].华中科技大学学报(自然科学版), 2006,34(6):67-70.
    [210]胡晓.基于摩托车总体设计的可重用技术研究[D].重庆:重庆大学, 2006.
    [211]吴文虎,王建德.图论的算法与程序设计[M].北京:清华大学出版社, 1997.
    [212] Gross J L, Yellen J. Handbook of graph theory[M]. Boca Raton: CRC Press, 2004.
    [213]潘双夏,张帅,等.基于工程约束的产品参数化建模策略研究[J].计算机辅助设计与图形学学报, 2001,13(9):840-845.
    [214]李浩,谢庆生.基于特征的参数化造型的思想[J].贵州工业大学学报(自然科学版), 1999,28(6):5-9.
    [215]李迎光,周儒荣,黄翔,等.基于主参数信息模型的多实例库设计[J].计算机辅助设计与图形学学报, 2004,16(1):134-137.
    [216] Touma C, Gotsman C. Triangle mesh compression: Proceedings Graphics Interface 98, 1998[C].
    [217] Jones W. Beginning DirectX 9[M]. Boston, MA: Thomson, Course Technology, 2004.
    [218] Bowyer A. Computing dirichlet tessellations[J]. The Computer Journal, 1981,24(2):162-166.
    [219] Watson D F. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes [J]. The Computer Journal, 1981,24(2):167-172.
    [220] Klein R. Construction of the constrained delaunay triangulation of a polygonal domain: CAD Systems Development: Tools and Methods [Dagstuhl Seminar, 1995], London, UK, 1997[C]. Berlin: Springer.
    [221] Sapidis N, Perucchio R. Delaunay triangulation of arbitrarily shaped planar domains[J]. Computer Aided Geometric Design, 1991,8(6):421-437.
    [222]李斌龙.汽车制动专家系统推理机的建立及人机界面的设计[D].长春:吉林大学, 2007.
    [223]柯君,邓兆祥,李沛然.基于DirectX的模态试验数据显示控件设计[J].机械设计与制造, 2010(1):54-56.
    [224]林丽,冉振亚,张杨,等. VB环境下的三维模型可视化技术研究[J].现代制造工程, 2010(10):65-68.
    [225] Comer D E.用TCP/IP进行网际互连(第一卷):原理、协议与结构[M].林瑶,张娟,王海,译. 5版.北京:电子工业出版社, 2007.
    [226] Microsoft Corporation.Overview of automation[EB/OL]. http://msdn.microsoft.com.
    [227] LMS.Virtual.Lab documentation [M/CD].Leuven:LMS International, 2010.
    [228] Dassult systems. CAA V5 visual basic help[M/CD].Dassult systems, 2004.
    [229]彭辉.船体三维建模应用技术研究[D].哈尔滨:哈尔滨工程大学, 2007.
    [230] Lee I. Acoustic characteristics of perforated dissipative and hybrid silencers[D]. Columbus,OH: The Ohio State University, 2005.
    [231]贾维新.发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D].杭州:浙江大学, 2008.
    [232] Ih J, Kim H, Lee S, et al. Prediction of intake noise of an automotive engine in run-up condition[J]. Applied Acoustics, 2009,70(2):347-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700