二阶非线性光学频率转换两模量子场耦合系统的时间演化与量子起伏
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二阶非线性光学频率转换系统(即二阶参量过程)是产生可调谐相干辐射、压缩真空态、压缩相干态、压缩数态以及其它非经典态的一种强有力的工具。它主要由二次谐波产生、和频产生、差频产生、光参量振荡等构成。一般来说,在同一块晶体中至多有一种参量过程能产生出足以察觉得到的非线性光学效应。产生这种现象的原因是:只有参与相互作用的耦合光波满足能量守恒和相位匹配的条件,才能有效地实现非线性相互作用;而通常在一块晶体中不会有多于一种的参量过程满足这样苛刻的限制条件。所以,过去人们主要仅需面对单个独立的参量过程。随着准相位匹配技术的发展,今天人们可以通过合理设计准周期极化序列使晶格具有合适的倒格矢,可同时满足耦合参量过程中的各参量过程的准相位匹配条件,在一块光学超晶格中可同时实现多个参量过程。这就使得我们在理论上进一步研究由多个参量过程组成的一般二阶非线性参量过程具有一定的实际意义。本文首先对非线性光学频率转换技术的发展以及光的压缩态的研究进展进行了一个简短的回顾,接着对电磁场的量子化,光的几个基本量子态、单光子装置和双光子装置的主要性质,以及一般二阶非线性参量过程的哈密顿算符的推导过程进行了简要的概述。为了求解复杂的含时系统,对Lewis–Riesenfeld量子不变量理论进行了深入的讨论。在此基础上,我们运用Lewis–Riesenfeld量子不变量理论,重点研究了几个较复杂的二阶非线性光学频率转换两模量子场耦合系统的时间演化规律与量子起伏性质;并获得如下主要结论:
     1.采用Lewis–Riesenfeld量子不变量理论,研究了(哈密顿量包含任意含时驱动
Second-order nonlinear optical frequency conversion system (i.e. second-order parametric process) is a powerful tool for generating tunable coherent radiation, squeezed vacuum state, squeezed coherent state, squeezed Fock state and other kinds of nonclassical states of light. It mainly consists of harmonic generation, sum-frequency generation, difference-frequency generation, optical parametric oscillation and etc. In general, typically no more than one of these nonlinear optical processes will be present with any appreciable intensity in a nonlinear crystal. The reason for this behavior is that the nonlinear interaction can efficiently implemented only if the photon energy conservation and phase matching conditions are satisfied, and usually these conditions cannot be satisfied for more than one parametric process. So in the past, one mainly needs to treat single parametric process. With the development of the Quasi-phase matching technology, today we can realize efficiently several parametric processes in a quasiperiodic optical superlattice. It is valuable to study further the general second-order parametric processes.
     In this paper the development of nonlinear optical frequency conversion technique and the advances in researches for squeezed states are reviewed at first, then the quantization of the electromagnetic field, the properties of the basis quantum states, a one-photon device and a two- photon device, the effect of some simple nonlinear processes as well as the Hamiltonians describing the general second-order parametric processes are also described. In order to solve the complex time-dependent system, the Lewis–Riesenfeld invariant theory is discussed. Depending on these bases, we place the emphasis on exploration of the time evolution and quantum fluctuation for the complex second-order nonlinear optical frequency conversion
引文
[1] 母国光,战元令编,沈寿春校.光学[M].北京:人民教育出版社,1978:269.
    [2] J.W.顾德门著,詹达三等译.傅里叶光学导论[M].北京:科学出版社,1976:33-84.
    [3] 黄婉云编.傅里叶光学教程[M].北京:北京师范大学出版社,1985:78-102.
    [4] 厉江帆,姜宗福,黄春佳等.球面波照射下的夫朗和费衍射公式的修正及其成立条件[J].量子电子学报,2003,20(5):537-543.
    [5] M.玻恩等著,杨葭荪等译校.光学原理(上册) [M].北京:科学出版社,1978: 499-503.
    [6] Max Born and Emil Wolf. Principle of Optics, sixth (corrected) edition [M]. Cambridge University Press,1997:382∽385.
    [7] 厉江帆,姜宗福,黄春佳等.夫朗和费衍射公式的一般公式[J].大学物理, 2003, 22(11):9-14
    [8] A.W.罗曼著,虞祖良,金国藩译.光学信息处理[M].北京:清华大学出版社,1987: 132-147.
    [9] 孙桂林.夫朗禾费衍射测量的正确度[J].光学技术,1995(2):36-39.
    [10] 孙桂林.再论夫朗禾费衍射测量的准确度[J].应用激光,1996,16(5):215-217.
    [11] 孙兆奇,曹卓良.用夫朗和费衍射法测定微粒直径[J].激光杂志,1998,19 (3): 30-37
    [12] 厉江帆等.用夫朗禾费衍射测量微小物体的尺寸[J].应用激光,1995,15 (6): 274-276.
    [13] 厉江帆等.夫朗禾费近似和夫朗禾费衍射测量的准确度[J].光学技术, 2001, 27(5):472-476.
    [14] 厉江帆,李光华,黄春佳等.衍射花样及其近似处理[J].应用激光,2000,20 (1):16-20.
    [15] 厉江帆,姜宗福,单树民等.用夫朗和费衍射法测定微粒直径的准确度[J].应用激光, 2003,23(3):100-104.
    [16] T. H. Maiman. Simulated Optical Radiation in Ruby[J]. Nature, 1960,187, 493-494.
    [17] 国家自然科学基金委员会.自然科学学科发展战略调研报告 光物理学[M].1994
    [18] P.A.M. Dirac, Proc. Roy. Soc. (London) A. 1927,114, 243
    [19] R.J. Glauber, Photon Correlations[J]. Phys. Rev. Letters 1963,10(3): 84
    [20] R.J. Glauber, The Quantum Theory of Optical Coherence[J]. Phys. Rev. 1963,130(6):2529
    [21] R.J. Glauber,Coherent and Incoherent States of the Radiation Field[J]. Phys. Rev. 1963, 131, 2766
    [22] U. M. Titulaer and R.J.Glauber, Correlation functions for coherent fields[J]. Phys. Rev. 1965,140 B676–82
    [23] P.A. Franken, A. E. Hill, C. W. Peters and G. Weinreich, Generation of Optical Harmonics [J]. Phys Rev. Lett., 1961, 7(4):118-119.
    [24] J. A. Armstrong, N. Bloembergen,J. Ducuing and P. S. Pershan, Interactions between Light Waves in a Nonlinear Dielectric [J]. Phys. Rev. 1962,127(6): 1918-1939.
    [25] 彭金生,李高翔著.近代量子光学导论[M].北京:科学出版社,1996:165-205.
    [26] E H Kennard, Zur Quantenmechanik einfacher Bewegungstypen [J].Z. Phys. 1927, 44: 326–52
    [27] K. Husimi, Miscellanea in elementary quantum mechanics: I[J]. Prog. Theor. Phys. 1953, 9: 238–44
    [28] J. Pleba′nski, Classical properties of oscillator wave packets l[J]. Bul. Acad. Pol. Sci. 1954, 2: 213–17
    [29] L. Infeld and J. Pleba′nski, On a certain class of unitary transformations[J]. Acta Phys. Pol. 1955,14: 41–75
    [30] J. Pleba′nski, On certain wave packets[J]. Acta Phys. Pol. 1955,14:275–93
    [31] J. Pleba′nski, Wave functions of a harmonic oscillator[J]. Phys. Rev. 1956, 101: 1825–6
    [32] M. M. Miller and E. A. Mishkin, Characteristic states of the electromagnetic radiation field[J]. Phys. Rev. 1966, 152: 1110–14
    [33] E. Y. C. Lu, New coherent states of the electromagnetic field[J] Lett. Nuovo Cimento.1971,2: 1241–4
    [34] I. Bialynicki-Birula, Solutions of the equations of motion in classical and quantum theories[J]. Ann. Phys., NY. 1971,67:252–73
    [35] R Jackiw, Minimum uncertainty product, number-phase uncertainty product, and coherent states[J]. J. Math. Phys. 1968,9:339–46
    [36] D. Stoler, Equivalence classes of minimum uncertainty packets[J]. Phys. Rev. D 1970,1: 3217–19
    [37] D. Stoler, Equivalence classes of minimum uncertainty packets: II[J]. Phys. Rev. D. 1971,4: 1925–6
    [38] P P Bertrand, K Moy and E A Mishkin Minimum uncertainty states γ and the states n γof the electromagnetic field[J].Phys. Rev. D 1971,4: 1909–12
    [39] H. P. Yuen. Two-photon coherent states of the radiation field [J] Phys. Rev. A, 1976(6), 13: 2226-2243
    [40] H. P. Yuen and J. H. Shapiro. Optical communication with two-photon coherent states-part I: Quantum-state propagation and quantum-noise reduction[J]. IEEE Trans. Inf. Theory, 1978, 24: 657-68.
    [41] J N Hollenhorst, Quantum limits on resonant-mass gravitational-radiation detectors[J]. Phys. Rev. D 1979,19: 1669–79
    [42] C M Caves, K S Thorne, and et al, On the measurement of a weak classical force coupled to a quantum mechanical oscillator: I. Issue of principle[J]. Rev. Mod. Phys. 1980,52: 341–92
    [43] V.V.Dodonov, V.I. Man’ko and V. N. Rudenko Nondemolition measurements in gravity wave experiments[J]. Sov. Phys. –JETP 1980,51: 443–50
    [44] C. M. Caves. Quantum-mechanical noise in an interferometer [J]. Phys. Rev. D,1981,23(8): 1693–1708
    [45] L. P. Grishchuk and M. V. Sazhin, Squeezed quantum states of a harmonic oscillator in the problem of gravitational-wave detector [J].Sov. Phys. –JETP 1984,57: 1128–35
    [46] R. S. Bondurant and J. H. Shapiro Squeezed states in phase-sensing interferometers[J]. Phys. Rev. D. 1984, 30(12): 2548–56
    [47] D. F. Walls. Squeezed states of light [J]. Nature, 1983, 306:141-146.
    [48] C. K. Hong and L. Mande. Generation of higher-order squeezing of quantum electromagnetic fields [J]. Phys. Rev. A, 1985, 32(2):974-982.
    [49] M. Hillery. Amplitude-squared squeezing of the electromagnetic field [J]. Phys. Rev. A, 1987, 36(8):3796-3802.
    [50] Z. M. Zhang, et al., A new kind of higher-order squeezing of radiation field [J]. Phys .Lett. A, 1990, 150:27.
    [51] J. A. Bergou, et al. Minimum uncertainty states for amplitude-squred squeezing: Hermite polynomial states [J]. Phys. Rev .A, 1991, 43(1):515–520.
    [52] 董传华.高阶压缩的另一种定义[J].光学学报, ,16(1996):1543
    [53] C.M. Caves and B.L. Shumaker. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states [J]. Phys. Rev. A, 1985, 31(5): 3068-3092.
    [54] M. Hillery. Sum and difference squeezing of the electromagnetic field [J]. Phys. Rev .A , 1989,40(6):3147–3155.
    [55] M. S. Kim, Photon number distribution for squeezed mumber states and squeezed thermal states [J]. Opt. Commun., 1989, 72(1-2): 99-103.
    [56] C. C. Gerry, Correlated two-mode SU(1,1) coherent states: nonclassical properties [J]. J. Opt. Soc. Am. B, 1991, B8 (3):685-690.
    [57] 宋同强, 冯剑, 徐炳振,王文正. 对相干态与两个原子的相互作用过程中原子与场的动力学特性[J]. 物理学报, 1995, 44(9): 1418-1425
    [58] 黄春佳,周明,厉江帆等. 虚光场对双模压缩真空场中原子量子特性的影响[J]. 物理学报, 2000,49(8):1490-1494
    [59] 黄春佳,周明,厉江帆等. 双模压缩真空场与耦合双原子相互作用系统中光场的量子特性[J]. 物理学报, 2000,49(11):2159-2164
    [60] 黄春佳,厉江帆,周明. 双模压缩真空场与耦合双原子相互作用系统原子布局数的时间演化特性[J]. 原子与分子物理学报. 2000,17(4):669-676
    [61] 黄春佳,厉江帆,周明. 双模压缩真空场与两能级原子相互作用系统中光场的压缩特性[J]. 光学学报. 2001,21(8):923-928
    [62] 黄春佳,厉江帆,贺慧勇, 压缩真空场与耦合双原子 Raman 相互作用过程中光场的量子特性[J].物理学报, 2001,50(3):473-477
    [63] 黄春佳,厉江帆,周明等. 虚光场对双模压缩真空场与原子相互作用系统中光子统计性质的影响[J]. 物理学报, 2001,50(10):1920-1924
    [64] 黄春佳,周明,厉江帆,贺慧勇, 单模辐射场与耦合双原子相互作用系统中场熵的压缩特性[J].物理学报, 2002,51(4):805-808
    [65] 黄春佳, 贺慧勇, 厉江帆, 周明, Tavis-Cummings 模型中原子间偶极相互作用对场熵演化特性的影响[J].物理学报, 2002,51(5):805-808
    [66] 杨志勇, 侯洵.一种双模叠加态光场的两种非线性高阶压缩效应[J].光子学报, 1998, 27(4): 289-299
    [67] 侯洵, 杨志勇. 第Ⅰ类两态叠加多模叠加态光场的非线性高阶压缩特性研究[J]. 光子学报, 1998,27 (10): 865-879
    [68] 杨志勇,侯洵. 第Ⅱ类两态叠加多模叠加态光场的非线性高阶压缩特性研究[J].光子学报, 1998, 27(11): 961-974
    [69] 杨志勇, 侯洵. 多模辐射场的广义非线性高阶差压缩—N 次方 X 压缩的一般理论[J]. 光子学报, 1998,27(12): 1065-1069
    [70] 杨志勇, 侯洵. 量子体系中的时域压缩—频域展宽正、逆效应及其非经典性[J].光子学报, 1998,27 (9): 769-777
    [71] 杨志勇,侯洵. 再论时域的量子化及其物理本质[J].光子学报, 1998, 27(12): 1057-1064
    [72] R. E. Slusher, L. W. Hollberg et al, Observation of squeezed states generated by four-wave mixing in an optical cavity [J]. Phys. Rev. Lett, 1985, 55(22): 2409-2412.
    [73] M. D. Levenson, R. M. Shelby et al., Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber[J]. Phys. Rev. A, 1985, 32(3):1550–1562.
    [74] L. A. Wu, H. J. Kimble et al, Generation of Squeezed States by Parametric Down Conversion [J]. Phys. Rev. Lett., 1986, 57(20): 2520–2523.
    [75] Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables [J]. Phys. Rev. Lett. 1992, 68(25): 3663–3666.
    [76] 彭堃墀,黄茂全,刘晶等.双?獬⊙顾跆氖笛檠芯縖J].物理学报,1993,42(7), 1079
    [77] K. C. Peng, Ling-an Wu, and H. J. Kimble, Frequency-stabilized Nd: YAG laser with high output power[J]. 1985, Applied Optics, 24(7): 935.
    [78] K. C. Peng, Q. Pan, H. Wang, Y. Zhang, H. Su, C. D. Xie. Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a CW-NOPO [J]. Applied Physics B, 1998, 66:755.
    [79] J. R. Gao, F. Y. Cui, C. Y. Xue, C. D. Xie and K.C. Peng, Generation and Application of twin beams from an optical parametric oscillator including α-cut KTP crystal [J]. Optics Letters, 1998, 23(11): 870.
    [80] H. Wang, Y. Zhang, Q. Pan, H. Su, A. Porio, C. D. Xie and K.C. Peng. Experimental Realization of a Quantum measurement for intensity difference fluctuation using beam splitter [J]. Phys. Rev. Lett., 1999, 82(7):1414.
    [81] Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie and K. C. Peng. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier [J]. Phys. Rev. A, 2000, 62(2), 023813.
    [82] J. Zhang and K. C. Peng. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state [J]. Phys. Rev. A 2000,62: 064302.
    [83] J. Zhang, H. Chang, X.J. Jia, H.X. Lei, R.L. Wang, C.D. Xie and K.C. Peng. Suppression of the intensity noise of a laser-diode-pumped single-frequency ring Nd: YVO4-KTP green laser by optoelectronic feedback [J]. Optics Letters, 2001,26(10):695.
    [84] X.Y. Li, Q. Pan, J.T. Jing, J. Zhang, C.D. Xie and K.H. Peng. Quantum dense coding Exploiting a Bright Einstein_Podolsky-Rosen Beam [J]. Phys. Rev. Lett., 2002, 88(4): 047904.
    [85] J.T. Jing, J. Zhang, Y. Yan, F.G. Zhao, C.D. Xie, K.H. Peng. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables [J]. Phys. Rev. Lett., 2003, 90:167903.
    [86] J.T. Jing,C.D. Xie and K.C. Peng. Tripartite Entanglement Swapping of Bright Light Beams [J]. nonlinear optics, quantum optics, 2003, 30: 89-102.
    [87] 荆杰泰,李小英,潘庆.两种连续变量 EPR 关联测量方法的比较[J]. 光学学报,2003, 23(2): 132-136.
    [88] 李小英,荆杰泰,张靖,潘庆,谢常德,彭堃墀. 由 NOPA 产生高质量明亮压缩光及明亮 EPR 光束[J], 物理学报,2002,51,(2):966-972.
    [89] 李小英,荆杰泰,潘庆,谢常德,彭堃墀. LD 泵浦Ⅱ类非临界位相匹配内腔倍频单频 Nd: YAP/KTP激光器的设计[J].中国激光,2001,A28(10):865-869.
    [90] D. F. Walls and P. Zoller. Reduced quantum fluctuations in resonance fluorescence [J]. Phys. Rev. Lett. 1981, 47: 709–711.
    [91] Z. Ficek, R. Tana? and S. Kielich. Squeezed states in resonance fluorescence of two interacting atoms [J]. Opt. Commun. 1983, 46: 23–26.
    [92] H. F. Arnoldus and G. Nienhuis. Conditions for sub-Poissonian photon statistics and squeezed states in resonance fluorescence [J]. Opt. Acta 1983, 30: 1573–1586.
    [93] R. Loudon. Squeezing in resonance fluorescence [J]. Opt. Commun. 1984, 49: 24–28.
    [94] G. Milburn and D. F. Walls. Production of squeezed states in a degenerate parametric amplifier [J]. Opt. Commun.,1981, 39: 401-404.
    [95] B. Yurke. Squeezed-state generation using a Josephson parametric amplifier [J]. J. Opt. Soc. Am. B, 1987,4:1551-1557.
    [96] K. Wódkiewicz and M. S. Zubairy. Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier [J]. Phys. Rev. A ,1983, 27(4): 2003-2007.
    [97] S. Friberg and L. Mandel. Production of squeezed states by combination of parametric down-conversionand harmonic generation [J]. Opt. Commun. 1984, 48:439-442.
    [98] 厉江帆, 黄春佳,姜宗福, 黄祖洪, 含时耦合谐振子系统的时间演化与双模压缩态,物理学报, 2005, 54(2): 522-529.
    [99] L. A. Lugiato and G. Strini. On the squeezing obtainable in parametric oscillators and bistable absorption [J]. Opt. Commun. 1982, 41: 67–70.
    [100] W. Becker, M. O. Scully and M. S. Zubairy. Generation of squeezed coherent states via a free-electron laser [J]. Phys. Rev. Lett., 1982, 48: 475-477.
    [101] C. Sibilia, M. Bertolotti, V. Perinova, J. Perina and A. Luks. Photon antibunching effect and statistical properties of single-mode emission in free-electron lasers [J]. Phys. Rev. A, 1983, 28(1): 328–331.
    [102] S. Rai and S. Chopra. Photon statistics and squeezing properties of a free-electron laser [J]. Phys. Rev. A, 1984,30: 2104–2107
    [103] R. Loudon. Squeezing in two-photon absorption [J]. Opt. Commun. 1984, 49: 67-70.
    [104] Z. M. S. ubairy, M. S. K. Razmi, S. Iqbal and M. Idress. Squeezed states in a multiphoton absorption process [J]. Phys. Lett. A, 1983, 98:168-170.
    [105] L. A. Lugiato, G. Strini and F. DeMartini. Squeezed states in second harmonic generation [J]. Opt. Lett. 1983, 8: 256–258.
    [106] M. Kozierowski and S. Kielich. Squeezed states in harmonic generation of a laser beam [J]. Phys. Lett. A, 1983, 94: 213–216.
    [107] R. S. Bondurant, P. Kumar, J. H. Shapiro and M. Maeda. Degenerate four-wave mixing as a possible source of squeezed-state light [J]. Phys. Rev. A 1984, 30: 343–353.
    [108] G. J. Milburn, D. F. Walls and M. D. Levenson. Quantum phase fluctuations and squeezing in degenerate four-wave mixing [J]. J. Opt. Soc. Am. B, 1984, 1: 390–394.
    [109] P. Meystre and M. S. Zubairy. Squeezed states in the Jaynes–Cummings model [J]. Phys. Lett. A, 1982,89:390–392
    [110] C. C.Gerry and P. J. Moyer. Squeezing and higher-order squeezing in one-and two-photon Jaynes-Cummings models [J]. Phys Rev. A, 1988, 38(11): 5665–5669.
    [111] 顾樵.双光子 Jaynes-Cummings 模型中的压缩[J].物理学报,1988,37(5):751-759
    [112] W. Vogel, D.G. Welsch. k-photon Jaynes-Cummings model with coherent atomic preparation: Squeezing and coherence[J]. 1989, 40 (12), 7113–7120.
    [113] F L Kien, M. Kozierowski, and Tran Quang. Fourth-order squeezing in the multiphoton Jaynes-Cummings model [J]. Phys. Rev. A , 1988,A 38(1): 263-266.
    [114] 李高翔, 彭金生.高 Q Kerr 介质腔中非简并双光子 Jaynes-Cummings 模型中光场的性质[J ] 物理学报, 1993, 42 (9): 1443-1451.
    [115] C M Caves, B L. Shumaker New formalism for two-photon quantum optics I. Quadrature phases and squeezed states [J]. Phys. Rev. A, 1985, 31(5): 3068-3092.
    [116] B. L. Schumaker and C. M. Caves. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Phys. Rev.A , 1985,31(5): 3093–3111.
    [117] K. Wodkiewicz, J. H. Eberly et al. Coherent stats squeezed fluctuation and the SU(2) and SU(1,1) groups in quantum optics applications. J. Opt. Soc. An. B, 1985, B2 (3):485-466.
    [118] C. C. Gerry et al. Application of SU(1,1) coherent states to the interacton of squeezed light in an anharmonic oscillator. Phys. Rev. A, 1987, 35(5): 2146-2149.
    [119] D.H.E. Gross and U. Brosa. Squeezing of quantal fluctuations [J]. Z. Phys. A, 1980, 294: 217-220.
    [120] L. Mandel. Squeezed states and sub-Poissonian photon statistics [J]. Phys. Rev. Lett. 1982, 49:136–138.
    [121] L. Mandel. Squeezing and photon antibunching in harmonic generation [J]. Opt. Commun., 1982, 42: 437–439
    [122]R. Tana?, S. Kielich. Self-squeezing of light propagating through non-linear optically isotropic media [J]. Opt. Commun. 1983,45: 351-356
    [123] G. J. Milburn. Interaction of a two-level atom with squeezed light [J]. Opt. Acta, 1984, 31: 671-679.
    [124] D. Stoler. Photon antibunching and possible ways to observe it [J]. Phys. Rev. Lett. 1974, 33: 1397–1400
    [125] J. Perina, V. Perinova, J. Kodousek. On the relations of antibunching, sub-Poissonian statistics and squeezing [J]. Opt. Commun. 1984, 49: 210–214.
    [126]H. J. Kimble, M. Dagenais and L. Mandel. Photon antibunching in resonance fluorescence [J]. Phys. Rev. Lett. 1977, 39: 691–695
    [127] H Paul. Photon anti-bunching [J]. Rev. Mod. Phys. 1982, 54: 1061–1102.
    [128] D. F. Smirnov and A. S. Troshin. New phenomena in quantum optics: photon antibunching, sub-Poisson photon statistics, and squeezed states [J]. Sov. Phys.–Usp. 1987, 30: 851–874.
    [129] M. C. Teich and B. E. A. Saleh. Photon bunching and antibunching [J]. Progress in Optics, ed E Wolf (Amsterdam: North-Holland) 1988, 16: 1-104
    [130] G. Dattoli and M. Richetta. FEL quantum theory: comments on Glauber coherence, antibunching and squeezing [J]. Opt. Commun., 1984, 50: 165–168.
    [131] V. V. Dodonov ‘Nonclassical’ states in quantum optics: a ‘squeezed’ Review of the first 75 years [J]. J. Opt. B: Quantum Semiclass Opt., 2002, 4: R1-R33.
    [132]季玲玲,吴令安. 光学超晶格中级联参量过程制备纠缠光子对[J]. 物理学报, 2005, 54(2): 736-741.
    [133] J. F. Li (厉江帆), Z. F. Jiang,F. L. Xiao and C. J. Huang. A general solution for the dynamics of a generalized non-degenerate optical parametric down-conversion interaction by virtue of the Lewis–Riesenfeld invariant theory [J]. J. Phys. A:Math. Gen.,2005,38(20): 4459–4468.
    [134] J. F. Li (厉江帆), F. L. Xiao, Z. F. Jiang and J. Y. Fang. The time evolution and the quantum fluctuation for two forced quantum oscillators with mixing of two modes [J]. J. Phys. A:Math. Gen., 2005, 38(42): 9297-9307.
    [135] H. Y. He, G. H. Li, J. F. Li (厉江帆). Multicomponent Group-Related Coherent States for Lie Group Chain G?K. Commun. Theor. Phys. 2001,36(3):339-344.
    [136]方家元,黄春佳,厉江帆,李秀凤. Kerr 介质中压缩真空场与耦合双原子依赖强度耦合系统原子布居数的时间演化. 原子与分子物理学报,2005,22(1): 63-69.
    [1] J. C. Slater, Microwave Electronics [M]. New York: D. Van Nostrand, 1950.
    [2] A. Yariv, Quantum Electronics[M] ,Wiley: New York, 1975
    [3] D. F. Walls and G. J. Milburn. Quantum Optics [M], Berlin: Springer, 1994
    [4] Luiz Davidovich. Sub-Poissonian processes in quantum optics [J]. Rev. Mod. Phys. 1996, 68(1): 127–173
    [5] M. Brune, S. Haroche, V. Lefevre, et al. Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection [J]. Phys. Rev. Lett. 1990,65(8): 976–979.
    [6] M. Brune, S. Haroche, and J. M. Raimond. Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of “Schr?dinger cat” states[J]. Phys. Rev. A, 1992,45(7): 5193–5214
    [7] 符建,高孝纯,许晶波,邹旭波.光的两种模式间的一种非经典性质的转移[J].物理学报, 1998, 47(4): 606-612
    [8] E. H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen [J]. Z. Phys, 1927, 44:326-52.
    [9] H. Weyl. Theory of Groups and Quantum Mechanics [M].New York: Dutton, 1928: 77, 393.
    [10] G. Iwata. Non-Hermitian operators and eigenfunction expansions [J]. Prog. Theor. Phys. 1951,6: 216–26
    [11] R. J. Glauber. Photon correlations [J]. Phys. Rev. Lett, 1963, 10(3): 84–86.
    [12] J. Schwinger. The theory of quantized fields III [J]. Phys. Rev., 1953, 91(3):728–740.
    [13] P. K. Rashevskiy. On mathematical foundations of quantum electrodynamics [J]. Usp. Mat. Nauk 1958, 13 no 3(81):3-110 (in Russian).
    [14] J. R. Klauder. The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers [J]. Ann. Phys., NY 1960,11:123–168
    [15] V. Bargmann. On a Hilbert space of analytic functions and an associated integral transform: Part I [J]. Commun. Pure Appl. Math., 1961, 14:187–214.
    [16] E. M. Henley and W. Thirring, Elementary Quantum Field Theory [M], New York: McGraw-Hill, 1962:15.
    [17] R. P. Feynman. An operator calculus having applications in quantum electrodynamics [J]. Phys. Rev. 1951, 84: 108–128.
    [18] R. J. Glauber. Some notes on multiple boson processes [J]. Phys. Rev. 1951, 84:395-400.
    [19] 彭金生,李高翔.近代量子光学导论[M].北京:科学出版社,1996
    [20] D. Stoler, Equivalence Classes of Minimum Uncertainty Packets Phys. Rev. D, 1970, 1(12):3217-3219.
    [21] H. P. Yuen. Two-photon coherent states of the radiation field [J].Phys. Rev. A, 1976, 13: 2226-2243.
    [22] C.M. Caves and B.L. Shumaker. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states [J]. Phys. Rev. A, 1985, 31(5):3068–3092.
    [23] B. L. Schumaker and C. M. Caves. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation [J]. Phys. Rev. A , 1985,31(5): 3093–3111
    [24] R. J. Glauber. Coherent and incoherent states of the radiation field [J]. Phys. Rev. 1963,131: 2766–2788.
    [25] C. M. Caves. Quantum limits on noise in linear amplifiers [J]. Phys. Rev. D, 1982, 26: 1817–1839.
    [1] Y. R. Shen, The Principles of Nonlinear Optics[M]. New York :Wiley, 1984:44-47.
    [2] 沈元壤著,顾世杰译.非线性光学原理(上册) [M],北京:科学出版社,1987:46-51.
    [3] 亚里夫著,刘颂豪,吴存恺,王明常译.量子电子学[M].上海:上海科技出版社,1983:422.
    [4] W. B. Robert Nonlinear Optics [M]. London: Academic Press, 1992: 8-14.
    [5] P.A.Franken,A.E.Hill,C.W.Peters and G.Weinreich, Generation of Optical Harmonics [J]. Phys Rev. Lett., 1961,7(4):118-119.
    [6] 钱士雄,王恭明.非线性光学原理与进展[M]. 上海: 复旦大学出版社, 2001: 83-106.
    [7] S. E. Harris, M. K. Oshman, and R. L. Byer. Observation of Tunable Optical Parametric Fluorescence [J]. Phys. Rev. Lett., 1967,18: 732–734.
    [8] R. L. Byer and S. E. Harris. Power and Bandwidth of Spontaneous Parametric Emission [J]. Phys Rev., 1968,168(3):1064–1068.
    [9] J. Tucker, D. F. Walls. Quantum Theory of the Traveling-Wave Frequency Converter [J]. Phys. Rev., 1969,178(5) : 2036–2043.
    [10] J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan. Interactions between Light Waves in a Nonlinear Dielectric [J]. Phys. Rev. 1962, 127(6): 1918-1939.
    [11] 季玲玲,吴令安.光学超晶格中级联参量过程制备纠缠光子对[J].物理学报,2005,54(2): 736-741.
    [12] H. P. Yuen. Two-photon coherent states of the radiation field [J]. Phys. Rev. A , 1976 , 13(6):2226-2243.
    [13] M. T. Raiford. Degenerate parametric amplification with time-dependent pump amplitude and phase [J]. Phys. Rev. A, 1974,9 (5): 2060–2069.
    [14] W. H. Louisell and A. Yariv. Quantum Fluctuations and Noise in Parametric Processes. I [J]. Phys. Rev. 1961, 124(6): 1646–1654.
    [15] J. P. Gordon, W. H. Louisell, and L. R. Walker. Quantum Fluctuations and Noise in Parametric Processes. II [J]. Phys. Rev. 1963, 129 481-485.
    [16] B. R. Mollow and R. J. Glauber. Quantum Theory of Parametric Amplification. I [J]. Phys. Rev..1967,160(5):1076-1096
    [17] B. R. Mollow and R. J. Glauber. Quantum Theory of Parametric Amplification. II [J]. Phys. Rev. 1967,160(5):1097-1108.
    [18] B. R. Mollow. Quantum Statistics of Coupled Oscillator Systems [J]. Phys. Rev.,1967,162(5): 1256-1273.
    [19] J. Tucker, D. F. Walls. Quantum Theory of Parametric Frequency Conversion [J]. Ann. Phys. (N Y) 1969, 52:1-15.
    [1] H. R. Lewis Jr. Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians [J]. Phys. Rev. Lett., 1967, 18 (13): 510-512.
    [2] H R Jr Lewis, W. B. Riesenfeld. An exact quantum theory of the time-dependent harmonic oscillator and of a charged partical in a time-dependent electromagnetic field [J]. J Math. Phys., 1969, 10(8): 1458-1472.
    [3] 张永德著. 量子力学 [M]. 北京: 科学出版社, 2003: 176, 318, 39.
    [4] Y. D. Zhang, Z. Tang. General theory of linear quantum transformation theory of bargmann-fock space [J]. Nuovo Cimento. B, 1994, 109: 387.
    [5] S. X. Yu, Y. D. Zhang. Linear quantum transformation theory of multi-made boson and its application to calculation of partition function [J]. Commun. Theor. Phys., 1995, 24: 185.
    [6] 徐秀玮,柳盛典,任廷琦. 含时谐振子的演化算符和波函数[J]. 物理学报,1999,48(11): 1601-1604.
    [7] 凌瑞良,冯金福. 阻尼谐振子的严格波函数[J]. 物理学报,1998,47(12):1952-1956.
    [8] 凌瑞良.含时阻尼谐振子的传播子与严格波函数[J]. 物理学报,2001,50(8):1421-1424.
    [9] M. Zahler, Y. Ben-Aryeh. Photon number distribution of detuned squeezed states [J]. Phys. Rev. A, 1991, 43(11): 6368-6378.
    [10] M. Zahler, Y. Ben-Aryeh. Photon number distribution of detuned two-mode vacuum and excited squeezed states [J]. Phys. Rev. A, 1992, 45(5): 3194-3202
    [11] K. Rekdal Per, K. Skagerstam Bo-Sture. Quantum dynamics of non-degenerate parametric amplification [J]. Physica. Scripta., 2000, 61: 296-306
    [12] 范洪义. 量子力学纠缠态表象及应用[M] . 上海:上海交通大学出版社,2001.
    [13] H. Y. Fan, Z. H. Jiang. Dynamics of two forced quantum oscillators with parametric down-conversion interaction solved by virtue of the entangled state representation [J]. . J. Phys. A: Math. Gen., 2004, 37: 2439-2445
    [14] 李翊神,贺劲松. 时间相关谐振子 Schrêdinger 方程的精确解[J].科学通报, 1998, 43(4): 697-700.
    [15] 曾谨言. 量子力学(卷Ⅰ,Ⅱ)[M],第三版,科学出版社,2000
    [16] S. S. Mizrahi, The geometrical phase: An approach through the use of invariants [J]. Phys. Lett., A, 1989, 138(9): 465-468.
    [17] X. C. Gao, J. B. Xu and T. Z. Qian. Geometric phase and the generalized invariant formulation [J]. Phys. Rev. A, 1991, 44(11): 7016-7021.
    [18] X. C. Gao, J. Gao, T. Z. Qian and J. B. Xu. Quantum-invariant theory and the evolution of a quantum scalar field in Robertson-Walker flat spacetimes [J]. Phys. Rev. D, 1996, 53(8): 4374-4381.
    [19] 李伯臧 , 张凌云 , 张向东 . 关于量子不变量及其与量子相位关系的几点注记 [J]. 物理学报 , 1997,46(11) :2081-2094.
    [20] 赖云忠, 梁九卿. 哈密顿算符是 SU(1,1)和 SU(2)算子含时线性组合量子系统的时间演变及厄密不变量[J]..物理学报, 1996,45(5) :738-746.
    [21] J. B. Xu, Y. H. Yu. Time evolution of the time-dependent harmonic oscillator [J]. Commun. Theor. Phys, 1998, 29: 385-388.
    [22] X. Gao, J. B. Xu, T. Z. Qian. The exact solution for the generalized time-dependent harmonic oscillator and its adiabatic limit [J]. Ann. Phys.(N Y), 1990,204: 23
    [23] M. V. Berry. Quantal phase factor accompanying adiabatic changes [J]. Proc R Lond, 1984, A 392: 45-57.
    [24] A. Sphapare, F. Wilczek. Geometric phase in physics [M]. Singapore: World Scientific, 1989.
    [25] Y. Aharonov, J. Anandan. Phase change during a cyclic quantum evolution [J]. Phys Rev Lett, 1987, 58: 1593-1596.
    [26] J. Samuel, R. Bhandari. General setting for Berry’s phase [J]. Phys Rev Lett, 1988, 60: 2339-2442.
    [27] I. Mendas. Pancharatnam phase for ordinary and generalize squeezed state [J]. Phys Rev, 1997, A 55: 1514-1517.
    [28] Y. D. Zhang, G. Badurek, H. Rauch, et al. Spin evolution of a neutral particle in an oscillating magnetic field [J]. Phys Lett, 1994, A 188: 225-231.
    [29] A. G. Wang, V. C. Rakhecha. Comment on“spin evolution of a neutral particle in an oscillatingmagnetic field”[J]. Phys Lett A, 1994,196:139-140.
    [30] H. Y. Fan, H. R. Zaidi. Time-dependent invariant for the quadratic Hamiltonian and the stable squeezed states [J]. Can J Phys,1987, 65 : 525-526
    [31] D. A. Morales. Correspondence between Berry’s phase and Lewis’s phase for quadratic Hamiltonians [J]. J Phys, 1988 , A21 :L889-L892
    [32] S. S. Mizrahi. The geometrical phase : an approach through the use of invariants [J]. Phys Lett, 1989 , A138 : 465-468
    [33] X. C. Gao, J. B. Xu, T. Z. Qian. Geometric phase and the generalized invariant formulation [J]. Phys Rev , 1991 , A44 : 7016-7021
    [34] J. Y. Zeng, Y. A. Lei. Connection between the Berry phase and the Lewis phase [J]. Phys Lett , 1996 , A215 : 239-244.
    [35] 符建,高孝纯,许晶波,邹旭波. 光的两种模式间的一种非经典性质的转移[J]. 物理学报,1998, 47(4): 606-612
    [36] 符建,高孝纯,许晶波,邹旭波. 与不变量有关的幺正变换方法和含时均匀电场中的量子 Dirac 场的演化[J].物理学报, 1999,48(6): 1011-1022.
    [37] 高孝纯,高隽,符建. 量子不变量理论与离子在联合量子阱中的运动[J].物理学报,1996 ,45(6):912-923.
    [38] 李伯臧,张凌云,张向东. 循环量子系统中状态演化的 Bloch 定理和同步几何相位的统一[J].物理学报,1997, 46(2): 227-237
    [39] 李伯臧,侯邦品,余万伦. Berry 型量子纯态与 Berry 型量子系统[J].物理学报,1998,47(5): 712-717
    [40] 刘登云. 具有含时频率和边界条件的谐振子量子态的 Berry 相位[J].物理学报,1998, 47(8): 1233-1240
    [41] 沈建其,朱红毅,李军. 用不变量理论精确求解中子自旋与引力的相互作用[J]. 物理学报, 2001, 50(10): 1884-1887.
    [42] 沈建其,朱红毅,施申蕾. 单模光子在光纤中运动的极化及几何相因子[J].物理学报, 2002, 51(3): 536-540.
    [43] 朱红毅,沈建其. 一般三生成元含时系统的精确解[J].物理学报, 2002,51(7): 1448-1452.
    [44] 徐海磊,沈建其,陈一新. 双阱结构含时量子输运的微扰论及输运方程[J].物理学报, 2003, 52(6): 1372-1378.
    [45] 党兰芬. 含时谐振子系统的时间演化及压缩态[J].物理学报, 1998, 47(7): 1071-1777
    [46] 李华钟,关于 Lewis2Riesenfeld 相位和量子几何相位[J]. 物理学报, 2004,53(6): 1463-1466.
    [47] 李玲,李伯臧,梁九卿. 动边界量子含时谐振子系统的 Lewis-Riesenfeld 相位与 Berry 相位 [J]. 物理学报, 2001,50(11): 2077-2082.
    [48] J. Q. Shen, S. H. Xiao, Q. Wu. Exact expression for decoherence factor in the time-dependent generalized Cinj model[J]. Chin. Opt. Lett.,2003, 1(3): 183-186.
    [49] 高孝纯,高隽,符建. 与不变量有关的幺正变换方法和三次量子化宇宙波函数的演 [J]. 高能物理与核物理,1996 20(3): 226-233.
    [50] 厉江帆,黄春佳,姜宗福,黄祖洪. 含时耦合谐振子系统的时间演化与双模压缩态[J]. 物理学报, 2005,54(2): 522-529.
    [51] J. F. Li (厉江帆), Z. F. Jiang, F. L. Xiao and C. J. Huang. A general solution for the dynamics of a generalized non-degenerate optical parametric down-conversion interaction by virtue of the Lewis–Riesenfeld invariant theory [J]. J. Phys. A:Math. Gen., 2005, 38(20): 4459–4468
    [52] J. F. Li (厉江帆), F. L. Xiao, Z. F. Jiang and J. Y. Fang. The time evolution and the quantum fluctuation for two forced quantum oscillators with mixing of two modes [J]. J. Phys. A:Math. Gen., 2005, 38(42): 9297-9307.
    [1] D. Stoler. Equivalence Classes of Minimum Uncertainty Packets [J]. Phys. Rev. D, 1970, 1(12): 3217-3219.
    [2] H. P. Yuen. Two-photon coherent states of the radiation field [J]. Phys. Rev. A, 1976(6), 13: 2226-2243.
    [3] C. M. Caves. Quantum-mechanical noise in an interferometer [J]. Phys. Rev. D, 23(8): 1693–1708.
    [4] J. N. Hollenhorst. Quantum limits on resonant-mass gravitational-radiation detectors [J]. Phys. Rev. D, 1979, 19(6):1669–1679.
    [5] L.P. Grishchuk and M. V. Sazhin. Squeezed quantum states of a harmonic oscillator in the problem of gravitational-wave detector [J]. Sov. Phys. –JETP, 1984, 57:1128-1135.
    [6] C. M. Caves, K. S. Thorne and et al. On the measurement of a weak classical force coupled to a quantum mechanical oscillator: I. Issue of principle [J]. Rev. Mod. Phys. 1980,52:341-92
    [7] R. S. Bondurant and J. H. Shapiro. Squeezed states in phase-sensing interferometers [J]. Phys. Rev. D, 1984,30(12):2548-2556.
    [8] D. F. Walls. Squeezed states of light [J]. Nature, 1983, 306:141-146.
    [9] C. K. Hong and l. L. Mande. Generation of higher-order squeezing of quantum electromagnetic fields [J]. Phys. Rev. A, 1985, 32(2):974-982.
    [10] M. Hillery. Amplitude-squared squeezing of the electromagnetic field [J]. Phys. Rev. A, 1987, 36(8):3796-3802.
    [11] Z. M. Zhang, et al., A new kind of higher-order squeezing of radiation field [J]. Phys .Lett. A, 1990, 150:27.
    [12] J. A. Bergou, et al. Minimum uncertainty states for amplitude-squred squeezing: Hermite polynomial states [J]. Phys. Rev .A, 1991, 43(1):515–520.
    [13] 董传华.高阶压缩的另一种定义[J].光学学报, ,16(1996):1543
    [14] M. Hillery. Sum and difference squeezing of the electromagnetic field [J]. Phys. Rev .A , 1989,40(6):3147–3155.
    [15] M. S. Kim, Photon number distribution for squeezed mumber states and squeezed thermal states [J]. Opt. Commun., 1989, 72(1-2): 99-103.
    [16] C. C. Gerry, Correlated two-mode SU(1,1) coherent states: nonclassical properties [J]. J. Opt. Soc. Am. B, 1991, B8 (3):685-690.
    [17] S. Friberg and L. Mandel. Production of squeezed states by combination of parametric down-conversionand harmonic generation [J]. Opt. Commun. 1984, 48:439-442.
    [18] S. M. Barnett and S. J. D. Phoenix. Entropy as a measure of quantum optical correlation [J] Phys. Rev. A, 1989,40(5): 2404-2409
    [19] Arvind, B. Dutta, N. Mukunda and R. Simon. Two-mode quantum systems: Invariant classification of squeezing transformations and squeezed states [J]. Phys. Rev. A, 1995, 52(2): 1609-1620.
    [20] R. Ghosh, C. K. Hong, Z. Y. Ou, and L. Mandel. Interference of two photons in parametric down conversion [J]. Phys. Rev. A, 1986, 34(5): 3962–3968
    [21] Z. Y. Ou, L. J. Wang, and L. Mandel. Vacuum effects on interference in two-photon down conversion [J]. Phys. Rev. A, 1989, 40(3): 1428-1435.
    [22] Adel Joobeur, Bahaa E. A. Saleh and Malvin C. Teich. Spatiotemporal coherence properties of entangled light beams generate d by parametric down-conversion [J]. Phys. Rev. A, 1994, 50(4): 3349-3361.
    [23] A. Joobeur, B. E. A. Saleh, T. S. Larchuk and M. C. Teich. Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment Phys. Rev. A, 1996, 53(6): 4360-4371.
    [24] M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko. Theory of two-photon entanglement in type-II optical parametric down-conversion [J]. Phys. Rev. A, 1994, 50(3): 5122–5133.
    [25] P. W. Milonni and H. Fearn and A. Zelinger. Theory of two-photon down-conversion in the presence of mirrors [J]. Phys. Rev. A, 1996, 53(6): 4556–4566.
    [26] [22] A Casado, A Fernadez-Rueda, T Marshall, R Risco-Delgado and A Zelinger. Fourth-order interference in the Wigner representation for parametric down-conversion experiments [J]. Phys. Rev. A, 1997, 55(5): 3879–3890.
    [27] W. P. Grice and I. A. Walmsley. Spectral information and distinguishability in type-II down-conversion with a broadband pump [J]. Phys. Rev. A, 1997, 56(2): 1627–1634.
    [28] G. Milburn and D. F. Walls. Production of squeezed states in a degenerate parametric amplifier [J]. Opt. Commun.,1981, 39: 401-404.
    [29] C.M. Caves and B.L. Shumaker. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states [J]. Phys. Rev. A, 1985, 31(5): 3068-3092.
    [30] M. Zahler, Y. Ben-Aryeh. Photon number distribution of detuned squeezed states [J]. Phys. Rev. A, 1991, 43(11): 6368-6378.
    [31] 党兰芬. 含时谐振子系统的时间演化及压缩态[J].物理学报, 1998, 47(7): 1071-1777
    [32] M. Zahler, Y. Ben-Aryeh. Photon number distribution of detuned two-mode vacuum and excited squeezed states [J]. Phys. Rev. A, 1992, 45(5): 3194-3202
    [33] K. Rekdal Per, K. Skagerstam Bo-Sture. Quantum dynamics of non-degenerate parametric amplification[J]. Physica. Scripta., 2000, 61: 296-306
    [34] D. F. Walls and G. J. Milburn. Quantum Optics, Berlin: Springer, 1994
    [35] H. Y. Fan, Z. H. Jiang. Dynamics of two forced quantum oscillators with parametric down-conversion interaction solved by virtue of the entangled state representation [J]. J. Phys. A: Math. Gen., 2004, 37: 2439-2445
    [36] 厉江帆, 黄春佳,姜宗福, 黄祖洪, 含时耦合谐振子系统的时间演化与双模压缩态,物理学报,2005,54(2):522-529.
    [37] J. F. Li (厉江帆), Z. F. Jiang, F. L. Xiao and C. J. Huang. A general solution for the dynamics of a generalized non-degenerate optical parametric down-conversion interaction by virtue of the Lewis–Riesenfeld invariant theory [J]. J. Phys. A:Math. Gen.,2005,38: 4459–4468.
    [38] Dodonov V V. ‘Nonclassical’ states in quantum optics: a ‘squeezed’ Review of the first 75 years [J]. J. Opt. B: Quantum Semiclass Opt., 2002, 4: R1-R33.
    [39] P. Carruthers and M. M. Nieto. Coherent states and the forced quantum oscillator [J]. Amer. J. Phys., 1965, 33, 537-544.
    [40] H. R. Lewis Jr. Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians [J]. Phys. Rev. Lett., 1967, 18 (13): 510-512.
    [41] H R Jr Lewis, W. B. Riesenfeld. An exact quantum theory of the time-dependent harmonic oscillator and of a charged partical in a time-dependent electromagnetic field [J]. J Math. Phys., 1969, 10(8): 1458-1472.
    [42] 彭金生.李高翔著.近代量子光学导论.北京:科学出版社,1996:56,192.
    [43] 郑忠喜,李淑红,刘文森.带腔损耗的参数振子的时间演化与压缩[J]. 量子光学学报,2003,9(1):16-19.
    [44] 符建,高孝纯,许晶波,邹旭波. 光的两种模式间的一种非经典性质的转移[J]. 物理学报,1998, 47(4): 606-612.
    [20] 钱士雄,王恭明.非线性光学原理与进展 [M]. 上海: 复旦大学出版社, 2001: 83-106.
    [21] W. B. Robert Nonlinear Optics [M]. London: Academic Press, 1992: 8-14.
    [22] J. Tucker, D. F. Walls. Quantum Theory of the Traveling-Wave Frequency Converter [J]. Phys. Rev., 1969,178(5) : 2036–2043.
    [23] W. H. Louisell and A. Yariv. Quantum Fluctuations and Noise in Parametric Processes. I [J]. Phys. Rev. 1961, 124(6): 1646–1654.
    [24] J. P. Gordon, W. H. Louisell, and L. R. Walker. Quantum Fluctuations and Noise in Parametric Processes. II [J]. Phys. Rev. 1963, 129 481-485.
    [25] B. R. Mollow. Quantum Statistics of Coupled Oscillator Systems [J]. Phys.Rev.,1967,162(5): 1256-1273.
    [26] M. C. Oliveira, S. S. Mizrahi and V. V. Dodonov. Information transfer in the cource of a quantum interaction [J]. J. Opt. B: Quant. Semiclass. Opt. 1999, 1: 610-617.
    [27] J. Tucker, D. F. Walls. Quantum Theory of Parametric Frequency Conversion [J]. Ann. Phys. (N Y) 1969, 52:1-15.
    [28] D. Jaque , J. Capmany, G. SoléJ. Red , green , and blue laser light from a single Nd∶YAl3 (BO3)4 crystal based on laser oscillation at 1.3μm[J].. Appl . Phys. Lett . , 1999 , 75 (3):325-327.
    [29] 徐平,赵刚,杜燕等.绿光抽运准周期光学超晶格产生红光与蓝光的研究[J]. 光 学 学 报, 2004,24(6):808-812.
    [30] Dodonov V V. ‘Nonclassical’ states in quantum optics: a ‘squeezed’ Review of the first 75 years [J]. J. Opt. B: Quantum Semiclass Opt., 2002, 4: R1-R33.
    [31] 季玲玲,吴令安.光学超晶格中级联参量过程制备纠缠光子对[J].物理学报,2005,54(2): 736-741.
    [32] J. F. Li (厉江帆), F. L. Xiao, Z. F. Jiang and J. Y. Fang. The time evolution and the quantum fluctuation for two forced quantum oscillators with mixing of two modes [J]. J. Phys. A:Math. Gen., 2005, 38(42): 9297-9307.
    [33] H. P. Yuen. Two-photon coherent states of the radiation field [J]. Phys. Rev. A, 1976(6), 13: 2226-2243.
    [34] C. M. Caves. Quantum-mechanical noise in an interferometer [J]. Phys. Rev. D, 23(8): 1693–1708.
    [35] 符建,高孝纯,许晶波,邹旭波. 光的两种模式间的一种非经典性质的转移[J]. 物理学报,1998, 47(4): 606-612
    [36] P. Carruthers and M. M. Nieto. Coherent states and the forced quantum oscillator [J]. Amer. J. Phys., 1965, 33, 537-544.
    [37] H. R. Lewis Jr. Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians [J]. Phys. Rev. Lett., 1967, 18 (13): 510-512.
    [38] H R Jr Lewis, W. B. Riesenfeld. An exact quantum theory of the time-dependent harmonic oscillator and of a charged partical in a time-dependent electromagnetic field [J]. J Math. Phys., 1969, 10(8): 1458-1472.
    [20] D. F. Walls and G. J. Milburn. Quantum Optics, Berlin: Springer, 1994
    [39] P. Carruthers and M. M. Nieto. Coherent states and the forced quantum oscillator [J]. Amer. J. Phys., 1965, 33, 537-544.
    [40] M. T. Raiford. Degenerate parametric amplification with time-dependent pump amplitude and phase [J]. Phys. Rev. A, 1974,9 (5): 2060–2069.
    [41] H. P. Yuen. Two-photon coherent states of the radiation field [J]. Phys. Rev. A,1976, 13(6): 2226-2243.
    [42] 党兰芬. 含时谐振子系统的时间演化及压缩态[J].物理学报, 1998, 47(7): 1071-1777.
    [43] W. H. Louisell and A. Yariv. Quantum Fluctuations and Noise in Parametric Processes. I [J]. Phys. Rev. 1961, 124(6): 1646–1654.
    [44] J. P. Gordon, W. H. Louisell, and L. R. Walker. Quantum Fluctuations and Noise in Parametric Processes. II [J]. Phys. Rev. 1963,129 481-485.
    [45] B. R. Mollow and R. J. Glauber. Quantum Theory of Parametric Amplification. I [J]. Phys. Rev.1967,160(5):1076-1096
    [46] B. R. Mollow and R. J. Glauber. Quantum Theory of Parametric Amplification. II [J]. Phys. Rev. 1967,160(5):1097-1108.
    [47] B. R. Mollow. Quantum Statistics of Coupled Oscillator Systems [J]. Phys. Rev.,1967,162(5): 1256-1273.
    [48] J. Tucker, D. F. Walls. Quantum Theory of Parametric Frequency Conversion [J]. Ann. Phys. (N Y) 1969, 52:1-15.
    [49] J. Tucker, D. F. Walls. Quantum Theory of the Traveling-Wave Frequency Converter [J]. Phys. Rev., 1969,178(5) : 2036–2043.
    [50] 厉江帆, 黄春佳,姜宗福, 黄祖洪, 含时耦合谐振子系统的时间演化与双模压缩态,物理学报, 2005, 54(2): 522-529.
    [51] J. F. Li (厉江帆), Z. F. Jiang,F. L. Xiao and C. J. Huang. A general solution for the dynamics of a generalized non-degenerate optical parametric down-conversion interaction by virtue of the Lewis–Riesenfeld invariant theory [J]. J. Phys. A:Math. Gen.,2005,38(20): 4459–4468.
    [52] J. F. Li (厉江帆), F. L. Xiao, Z. F. Jiang and J. Y. Fang. The time evolution and the quantum fluctuation for two forced quantum oscillators with mixing of two modes [J]. J. Phys. A:Math. Gen., 2005, 38(42): 9297-9307.
    [53] 符建,高孝纯,许晶波,邹旭波. 光的两种模式间的一种非经典性质的转移[J]. 物理学报,1998, 47(4): 606-612
    [54] 彭金生,李高翔著.近代量子光学导论.北京:科学出版社,1996:165-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700