捻转血矛线虫胰岛素样信号传导通路重要基因结构与功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捻转血矛线虫(Haemonchus contortus)是寄生于反刍动物皱胃的寄生线虫,呈全球性分布,感染严重可导致幼畜的死亡,造成巨大的经济损失。由于缺乏有效的疫苗,针对寄生线虫病的控制主要依赖于抗蠕虫药,但是长期过度的使用抗蠕虫药已经造成抗药性的产生以及动物产品及环境药物残留问题。新药物和有效疫苗的研发因此越来越受到关注,而这必须对线虫的分子生物学有深入的了解。通过选择寄生线虫生活史中的关键过渡阶段作为研究对象,不仅能够帮助了解其生长发育的分子调控机制,而且也为防控寄生线虫病提供理论依据。一些重要的寄生线虫(包括猪蛔虫、马来丝虫、犬恶丝虫、捻转血矛线虫、罗拉丝虫和美洲板口线虫)在基因组和转录组取得的进展为分子生物学的研究提供了很好的平台。然而,体外培养和有效的基因操作技术缺乏严重阻碍了基因功能的研究。和秀丽新杆线虫(C. elegans)存在类似的滞育阶段(dauer),两者在生物学上存在诸多的相似性。首先秀丽新杆线虫同属于第五家族与H.contortus亲缘关系近,对外界环境有很强抵抗性,dauer可存活几个月并可以恢复发育完成生活史,与之相似,毛圆线虫(Strongylid)也存在类似的发育阶段(iL3),对外界环境有很强抵抗力,不摄取食物可存活数月。基于生物学上的相似性,一些学者提出了‘'dauer hypothesiS"(?)"Daf-c'’假说,认为寄生线虫三期幼虫阶段和C.elegans的dauer由相似的分子调控机制共同调节。C. elegans作为模式生物,对其发育生物学和分子生物学的研究处于前沿。研究发现dauer机制主要由胰岛素样信号通路调控,包括胰岛素样受体DAF-2,磷脂酰肌醇3-激酶AGE-1和AAP-1,3-磷脂酰肌醇依赖性蛋白激酶PDK-1和叉头转录因子DAF-16等。对daf-2,age-1和pdk-1突变会导致daf-c表型的出现,突变daf-16则是daf-d表型。信号通过DAF-2以磷酸化的方式激活AKT-1/2,再负反馈调节DAF-16,在调节生命周期、生长发育和抗逆性中发挥重要的功能作用。尽管对秀丽新杆线虫的dauer调控机制有较深入地了解,但对大多数寄生线虫而言,其发育调节几乎是一无所知。
     因此,本研究通过功能基因组学的方法分离了可能对H. contortus的发育发挥作用的Hc-daf-2.Hc-age-1、Hc-aap-1和Hc-pdk-1四个基因;RNAseq方法分析了基因在H. contortus的各个发育阶段的转录水平变化;异源转基因方法分析了基因启动子在秀丽新杆线虫的表达模式,基因救援法分析了基因的功能特点,从而在分子水平上对H. contortus的滞育发育(iL3)有更加深入的认识。
     (1)胰岛素样受体(Hc-DAF-2)结构与功能的研究
     采用兼并引物的方法分离Hc-daf-2基因的EST序列,在此基础上通过RACE, Genome Walker和Long-range PCR获得全长cDNA,gDNA和上游启动子序列。Hc-DAF-2与DAF-2家族基因高度同源,存在保守的结构功能域,并且存在与人胰岛素受体一致的蛋白水解位点(RKRR),推测与形成胰岛素受体复合物相关。Hc-daf-2在各个发育阶段都可转录,在感染性的L3期表达丰度明显上调。Hc-daf-2和Ce-daf-2启动子的表达模式,在C. elegans头感器神经位置表达具有相似性。另外,通过基因救援法发现Hc-daf-2基因对C. elegans daf-2缺失株(CB1370)能够呈现部分救援的效果。
     (2)磷脂酰肌醇3-激酶(PI3Ks)结构与功能的研究
     编码PI3K两个亚单位的基因Hc-age-1和Hc-aap-1与AGE-1和AAP-1家族具有很高的同源性,并且具有保守的结构功能区。转录水平分析发现Hc-age-1口Hc-aap-1基因在各个发育期都表达,在虫卵期、感染性L3期和雌性成虫期表达上调。启动子的表达模式研究,发现Hc-age-1和Hc-aap-1启动子驱动GFP在C.elegans肠道表达丰富,而Ce-age-1和Ce-aap-1在神经和肠道均有表达,更侧重于神经。在哺乳动物、果蝇和C.elegnns中,AGE-1和AAP-1会结合成二聚体构成PI3K激酶,为了研究Hc-age-1和Hc-aap-1是否会发生聚合,通过酵母双杂交的方法发现两者在酵母系统中能够高亲和力结合。基因救援法分析发现Hc-age-1基因对C.elegans age-1缺失株CY246没有呈现救援作用。(3)3-磷脂酰肌醇依赖性蛋白激酶(Hc-PDK-1)结构与功能的研究
     Hc-pdk-1与Ce-pdk-1基因有很高的同源性(46%),存在保守的功能区激酶催化区和PH区。PH区是一大类蛋白的功能调节区,在细胞信号转导以及细胞骨架功能中有重要作用。转录水平分析发现Hc-pdk-1在各个发育阶段均表达。转基因分析Hc-pdk-1和Ce-pdk-1基因启动子表达模式,Hc-pdk-1启动子表达在C.elegans的肠道组织,Ce-pdk-1主要表达在头部神经,咽部和肠道,两者在肠道部位存在一定的相似性。
     总之,这些发现有助于在分子水平上了解H.contortus发育的调控机制,特别是对从自由生活阶段向寄生生活的过渡阶段的调控作用。
Haemonchus contortus is an abomasum-infected parasitic nematode that can lead to important disease of grazing sheep worldwide, causing weight reduction, death and enormous economic loss. As there is no effective vaccine available, treatment of parasitic nematode infections relies heavily on anthelmintics. However, the widespread use of these anthelmintics has resulted in serious resistance and drug residue problems worldwide. Therefore, it is imperative to develop new intervention strategies. One of the possibilities is the rational design of anti-parasite drugs and/or vaccines, built on the deep understanding of the biological and developmental processes in these parasites. For instance, for parasitic nematodes, clear insights into the developmental transition from free-living to parasitic stages might identify key switches as new drug targets.
     The characterization of the nuclear genomes and transcriptomes of some key parasitic nematodes, including Ascaris suum, Brugia malayi, Dirofilaria immitis, Haemonchus contortus, Loa loa and Necator americanus, provides a solid foundation for investigating developmental processes using complementary molecular (i.e. genetic, genomic, proteomic and metabolomic) tools. However, a lack of effective genetic and genomic tools for some parasitic nematodes and an inability to maintain their entire life cycle in the laboratory hampers detailed functional studies. In contrast, Caenorhabditis elegans can be readily maintained in the laboratory and used to explore fundamental processes and mechanisms, such as dauer formation. This free-living nematode belongs to clade V and is relatively closely related to H. contortus. Published information also indicates similarity in dauer induction and recovery between C. elegans and strongylids. The dauer state occurs in C. elegans when the nematode encounters unfavorable environmental conditions, including high temperature, starvation and/or crowding. The dauer form can survive for several months and resume development to reproductive adults when the environmental conditions improve. Consistent with C. elegans, strongylid nematodes have a similar infective L3(iL3), which is resistant to unfavorable conditions and does not feed because it is enveloped by a sheath. The "dauer hypothesis" or "daf-c paradigm" holds that the resumption of iL3development in parasitic nematodes is developmentally and functionally analogous to the recovery from dauer in C. elegans and is governed by similar molecular mechanisms. Dauer development in C. elegans is regulated by several signalling pathways, including an insulin/IGF-1-like signaling pathway, which contains a number of components, such as the insulin-like receptor kinase DAF-2, the PI3kinase AGE-1,3-phosphoinositide dependent protein kinase PDK-1and the FOXO-class transcription factor DAF-16. Mutations in the daf-2, age-1and pdk-1genes result in dauer constitutive (daf-c) phenotypes, whereas mutations in daf-16give dauer-defective (daf-d) phenotypes. Signalling through DAF-2activates AKT-1/2by phosphorylation, which, in turn, negatively regulates DAF-16, which functions as a central mediator of multiple biological processes, including longevity, development and stress resistance.(1) The structural and functional characterizations of the insulin-like receptor(Hc-daf-2)
     Using a PCR-based approach, we identified and characterized a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2displays significant sequence homology to insulin receptors in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2is consistent with that of the human insulin receptor (HIR), suggesting that it is involved in the formation of the insulin-receptor complex. The Hc-daf-2gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the infective third-stage (iL3) compared with other stages. To compare patterns of expression between Hc-daf-2and Ce-daf-2, reporter constructs fusing the Ce-daf-2or Hc-daf-2promoter to sequence encoding the green fluorescent protein (GFP) were micro injected into the N2strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2.(2) The structural and functional characterizations of the phosphatidykinositol3-kinase
     PI3K (Hc-AGE-1and Hc-AAP-1)
     We identified and characterized the PI3K catalytic subunit (Hc-AGE-1) and regulatory subunit (Hc-AAP-1) from Haemonchus contortus. The sequence of Hc-AGE-1and Hc-AAP-1show high homology to PI3K in both vertebrates and invertebrates, and contain conserved structural domains. The Hc-age-1and Hc-aap-1genes were transcribed in all life stages of H. contortus, with up-regulation in the eggs, infective third-stage (iL3) and female adults compared with other stages. To compare patterns of expression between Hc-age-1, Ce-age-1and Hc-aap-1, Ce-aap-1, reporter constructs fusing the promoter to sequence encoding the green fluorescent protein (GFP) were microinjected into the N2strain of C. elegans, respectively, and transgenic lines were established and examined. Hc-age-1and Hc-aap-1show the expression pattern in intestine, and Ce-age-1and Ce-aap-1display in intestine and neurons. Yeast two-hybrid system showed the p85binding domain of Hc-age-1and Hc-aap-1can interact with each other strongly. Further study by heterologous genetic complementation in an oge-1-deficient strain of C. elegans (CY246) showed no rescue of function by Hc-age-1.(3) Characterizations of the3-phosphoinositide dependent protein kinase (Hc-PDK-1)
     We identified and characterized the3-phosphoinositide dependent protein kinase from Haemonchus contortus. The Hc-PDK-1shows high homology with Ce-PDK-1(about46%), and contains catalytic kinase domain and PH domain. PH domain is a functional regulator of a group of protein kinases and plays a center role in cell signalling transduction and cytoskeletal function. The Hc-pdk-1genes were transcribed in all life stages of H. contortus. To compare patterns of expression between Hc-pdk-1and Ce-pdk-1, reporter constructs fusing the promoter to sequence encoding the green fluorescent protein (GFP) were microinjected into the N2strain of C. elegans, respectively. The expression location of Hc-pdk-1is in intestine, and Ce-pdk-1is in head neurons, pharynx and intestine.
     Taken together, these findings provide a first insight into the roles of Hc-daf-2/Hc-DAF-2, Hc-age-1/Hc-AGE-1, Hc-aap-1/Hc-AAP-1and Hc-pdk-1/Hc-PDK-1in the biology and development of H. contortus, particularly in the transition to parasitism.
引文
1.沈杰,叶明忠,陈永军,何国声,刘金明,覃发家,严春桥,孙先红.绵羊寄生线虫在体内及牧场上各发育阶段的季节动态研究.中国兽医寄生虫病,1994,2:10-15
    2.李国清.兽医寄生虫学.北京:中国农业出版社,2006,200-201
    3. 汪明.兽医寄生虫学.北京:中国农业出版社,2009,157-158
    4. 严若峰,宋小凯,徐立新,李祥瑞.基于ITS序列的捻转血矛线虫系统进化分析.畜牧兽医学报,2012,43:1117-1122
    5. 宗泽军,汪作民,石剑华,斯钦昭日格,昭日格图.绵羊捻转血矛线虫细颈线虫食道口线虫及其组织期幼虫季节动态观察.中国兽医杂志,1997,23:30-31
    6. Aboobaker AA, Blaxter ML. Functional genomics for parasitic nematodes and platyhelminths. Trends Parasitol, 2004,20:178-184
    7. Alessi DR., Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M. 3-Phosphoinositide-dependent protein kinase-1 (PDK1):structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol, 1997a,7:776-789
    8. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol, 1997b,7:261-269
    9. Aoyama Y, Urushiyama S, Yamada M, Kato C, Ide H, Higuchi S, Akiyama T, Shibuya H. MFB-1, an F-box-type ubiquitin ligase, regulates TGF-beta signalling. Genes Cells,2004,9:1093-1101
    10. Ashton FT, Zhu X, Boston R, Lok JB, Schad GA. Strongyloides stercoralis: Amphidial neuron pair ASJ triggers significant resumption of development by infective larvae under host-mimicking in vitro conditions. Exp Parasitol, 2007,115: 92-97
    11. Atchley WR, Fitch WM. A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA,1997,94:5172-5176
    12. Awasthi S, Bundy DA, Savioli L. Helminthic infections. BMJ, 2003,327:431-433.
    13. Bacaj T, Tevlin M, Lu Y, Shaham S. Glia are essential for sensory organ function in C. elegans. Science, 2008,322:744-747
    14. Bargmann CI, Hartwieg E, Horvitz HR. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell, 1993,74:515-527
    15. Bargmann CI, Horvitz HR. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 1991,7:729-742
    16. Bargmann CI, Horvitz HR. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science, 1991,251:1243-1246
    17. Bass J, Chiu G, Argon Y, Steiner DF. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol, 1998,141:637-646
    18. Baugh LR, Kurhanewicz N, Sternberg PW. Sensitive and precise quantification of insulin-like mRNA expression in Caenorhabditis elegans. PLoS One, 2011,6: el8086
    19. Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics, 2000,155: 85-104
    20. Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR, van Aalten DM. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J, 2002,21:4219-4228
    21. Blaxter M. Caenorhabditis elegans is a nematode. Science, 1998,282:2041-2046
    22. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK. A molecular evolutionary framework for the phylum Nematoda. Nature,1998, 392:71-75
    23. Blaxter ML, Raghavan N, Ghosh I, Guiliano D, Lu W, Williams SA, Slatko B, Scott AL. Genes expressed in Brugia malayi infective third stage larvae. Mol Biochem Parasitol, 1996,77:77-93
    24. Boyle JP, Yoshino TP. Gene manipulation in parasitic helminths. Int J Parasitol, 2003,33:1259-1268
    25. Brand A, Hawdon JM. Phosphoinositide-3-OH-kinase inhibitor LY294002 prevents activation of Ancylostoma caninum and Ancylostoma ceylanicum third-stage infective larvae. Int J Parasitol,2004,34:909-914
    26. Bravo DA, Gleason JB, Sanchez RI, Roth RA, Fuller RS. Accurate and efficient cleavage of the human insulin proreceptor by the human proprotein-processing protease furin. Characterization and kinetic parameters using the purified, secreted soluble protease expressed by a recombinant baculovirus. J Biol Chem,1994,269: 25830-25837
    27. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling:a hard Akt to follow. Trends Biochem Sci,2001,26:657-664
    28. Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem, 1981,50:349-383
    29. Britton C, Murray L. A cathepsin L protease essential for Caenorhabditis elegans embryogenesis is functionally conserved in parasitic nematodes. Mol Biochem Parasitol, 2002,122:21-33
    30. Britton C, Murray L. Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes. Int J Parasitol, 2006,36:651-659
    31. Britton C, Redmond DL, Knox DP, McKerrow JH, Barry JD. Identification of promoter elements of parasite nematode genes in transgenic Caenorhabditis elegans. Mol Biochem Parasitol,1999,103:171-81
    32. Biirglin TR, Lobos E, Blaxter ML. Caenorhabditis elegans as a model for parasitic nematodes. Int J Parasitol,1998,28:395-411
    33. Burset M, Seledtsov I A, Solovyev VV. Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res, 2000,28:4364-4375
    34. Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem, 2005,280:33076-33082
    35. Cahill CM, Tzivion G, Nasrin N, Ogg S, Dore J, Ruvkun G, Alexander-Bridges M. Phosphatidylinositol 3-kinase signalling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem, 2001,276: 13402-13410
    36. Cantley LC. The phosphoinositide 3-kinase pathway. Science,2002,296:1655-1657
    37. Cassada, R.C., and Russell, R.L. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol, 1975,46:326-342
    38. Castelletto ML, Massey HC JR, Lok JB. Morphogenesis of Strongyloides stercoralis infective larvae requires the DAF-16 ortholog FKTF-1. PLoS Pathog, 2009,5: e1000370
    39. Chen N, Xu MJ, Nisbet AJ, Huang CQ, Lin RQ, Yuan ZG, Song HQ, Zhu XQ. Ascaris suum:RNAi mediated silencing of enolase gene expression in infective larvae. Exp Parasitol, 2011,127:142-146
    40. Ciche TA, Sternberg PW. Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. BMC Dev Biol, 2007,7:101
    41. Coburn CM, Bargmann CI. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron, 1996,17:695-706
    42. Coburn CM, Mori I, Ohshima Y, Bargmann CI. A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans:a distinct pathway for maintenance of sensory axon structure. Development, 1998,125: 249-258
    43. Cornils A, Gloeck M, Chen Z, Zhang Y, Alcedo J. Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development, 2011,138:1183-1193
    44. Crook M, Grant WN. Dominant negative mutations of Caenorhabditis elegans daf-7 confer a novel developmental phenotype. Dev Dyn, 2013,242:654-664
    45. Davis RE, Parra A, LoVerde PT, Ribeiro E, Glorioso G, Hodgson S. Transient expression of DNA and RNA in parasitic helminths by using particle bombardment. PNAS USA,1999,96:8687-8692
    46. Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, Ribeiro JM, Saif S, Levin JZ, Fan L, Zeng Q, Russ C, Wortman JR, Fink DL, Birren BW, Nutman TB. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nat Genet, 2013,45:495-500
    47. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature,1984,307:521-527
    48. Dupuy D, Bertin N, Hidalgo CA, Venkatesan K, Tu D, Lee D, Rosenberg J, Svrzikapa N, Blanc A, Carnec A, Carvunis AR, Pulak R, Shingles J, Reece-Hoyes J, Hunt-Newbury R, Viveiros R, Mohler WA, Tasan M, Roth FP, Le Peuch C et al. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol, 2007,25:663-668
    49. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 2006,7:606-619
    50. Estevez M, Attisano L, Wrana JL, Albert PS, Massague J, Riddle DL. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature,1993,365:644-649
    51. Evans T, Chapple N. The animal heath market. Nat Rev Drug Discov, 2002,1: 937-938
    52. Fernandez AM, Kim JK, Yakar S, Dupont J, Hernandez-Sanchez C, Castle AL, Filmore J, Shulman GI, Le Roith D. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev, 2001,15:1926-1934
    53. Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J. The Drosophila insulin receptor homolog:a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J, 1995,14:3373-3384
    54. Ford L, Guiliano DB, Oksov Y, Debnath AK, Liu J, Williams SA, Blaxter ML, Lustigman S. Characterization of a novel filarial serine protease inhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite. J Biol Chem, 2005,280:40845-40856
    55. Ford L, Zhang J, Liu J, Hashmi S, Fuhrman JA, Oksov Y, Lustigman S. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PloS Negl Trop Dis, 2009,3:e377
    56. Fukushige et al 1998. The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev Biol, 1998,198:286-302
    57. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics, 1988,118:75-86
    58. Frodin M, Gammeltoft S. Role and regulation of 90 KDa ribosomal S6 Kinase (RSK) in signal transduction. Mol Cell Endocrinol, 1999,151:65-77
    59. Gaidarov I, Smith ME, Domin J, Keen JH. The class II phosphoinositide 3-kinase C2a is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell,2001,7:443-449
    60. Gaudet J, Mango SE. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science, 2002,295:821-825
    61. Geary TG, Sangster NC, Thompson DP. Frontiers in anthelmintic pharmacology. Vet Parasitol, 1999,84:275-295
    62. Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc Natl Acad Sci USA,2007,104:7809-7814
    63. Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell, 2001,1:841-851
    64. Geldhof P, Murray L, Couthier A, Gilleard JS, McLauchlan G, Knox DP, Britton C. Testing the efficacy of RNA interference in Haemonchus contortus. Int J Parasitol, 2006,36:801-810
    65. Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics, 1998,150: 129-155
    66. Georgi LL, Albert PS, Riddle DL. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell, 1990,61:635-645
    67. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M et al. Draft genome of the filarial nematode parasite Brugia malayi. Science, 2007,317: 1756-1760
    68. Gillan V, Maitland K, McCormack G, Him NA, Devaney E. Functional genomics of hsp-90 in parasitic and free-living nematodes. Int J Parasitol, 2009,39:1071-1081
    69. Gilleard JS. The use of Caenorhabditis elegans in parasitic nematode research. Parasitology,2004,1:S49-70
    70. Githigia SM, Thamsborg SM, Munyua WK, Maingi N. Impact of gastro-intestinal helminths on production in goats in Kenya. Small Rum Res, 2001,42:21-29
    71. Gottlieb S, Ruvkun G. daf-2, daf-16 and daf-23:genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics, 1994,137: 107-120
    72. Grant WN, Skinner SJ, Newton-Howes J, Grant K, Shuttleworth G, Heath DD, Shoemaker CB. Heritable transgenesis of Par astrongyloides trichosuri: a nematode parasite of mammals. Int J Parasitol, 2006,36:475-83
    73. Gustafson TA, He W, Craparo A, Schaub CD, O'Neill TJ. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol, 1995,15:2500-2508
    74. Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J, 1995,9:576-596
    75. Hashmi S, Britton C, Liu J, Guiliano DB, Oksov Y, Lustigman S. Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. J Biol Chem,2002,277:3477-3486
    76. Hawdon JM, Schad GA. Albumin and a dialyzable serum factor stimulate feeding in vitro by third-stage larvae of the canine hookworm Ancylostoma caninum. J Parasitol. 1991,77:587-591
    77. Hawdon JM, Schad GA. Ancylostoma caninum:glutathione stimulates feeding in third-stage larvae by a sulfhydryl-independent mechanism. Exp Parasitol, 1993,77: 489-491
    78. Hawdon JM, Jones BF, Hoffman DR, Hotez PJ. Cloning and characterization of Ancylostoma-secreted protein. A novel protein associated with the transition to parasitism by infective hookworm larvae. J Biol Chem, 1996,271:6672-6678
    79. Hawkins PT, Anderson KE, Davidson K, Stephens LR. Signalling through Class Ⅰ PI3Ks in mammalian cells. Biochem Soc Trans,2006,34:647-62
    80. Hebert DN, Foellmer B, Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J, 1996,15:2961-2968
    81. Hernandez-Sanchez C, Mansilla A, de Pablo F, Zardoya R. Evolution of the insulin receptor family and receptor isoform expression in vertebrates. Mol Biol Evol, 2008, 25:1043-1053
    82. Hertweck M, Gobel C, Baumeister R. C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell, 2004, 6:577-588
    83. Hotez P, Hawdon J, Schad GA. Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans Daf-c paradigm. Parasitol Today, 1993,9:23-26
    84. Hu M, Lok JB, Ranjit N, Massey HC Jr, Sternberg PW, Gasser RB.2010. Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). Int J Parasitol, 40:405-415
    85. Hu PJ. Dauer. WormBook:the online review of C. elegans biology, 2007:1-19
    86. Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J, 1997,16:5572-5581
    87. Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A, McKay S, Okada HM, Pan J, Schulz AK, Tu D, Wong K, Zhao Z, Alexeyenko A, Burglin T, Sonnhammer E et al. High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol, 2007,5:e237
    88. Hussein AS, Kichenin K, Selkirk ME. Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. Mol Biochem Parasitol, 2002,122:91-94
    89. Islam MK, Miyoshi T, Yamada M, Tsuji N. Pyrophosphatase of the roundworm Ascaris suum plays an essential role in the worm's molting and development. Infect Immun,2005,73:1995-2004
    90. Issa Z, Grant WN, Stasiuk S, Shoemaker CB. Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. Int J Parasitol, 2005,35:935-940
    91. James CE, Hudson AL, Davey MW. Drug resistance mechanisms in helminthes:is it survival of the fittest? Trends par asitol, 2009,25:328-335
    92. Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, Yang L, Zeng N, Xu X, Xiong Z, Chen F, Wu X, Zhang G, Fang X, Kang Y, Anderson GA, Harris TW, Campbell BE, Vlaminck J, Wang T et al. Ascaris suum draft genome. Nature, 2011,479:529-533
    93. Jia K, Albert PS, Riddle DL. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development, 2002,129:221-231
    94. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development, 2004,131:3897-3906
    95. Junio AB, Li X, Massey HC Jr, Nolan TJ, Todd Lamitina S, Sundaram MV, Lok JB. Strongyloides stercoralis:cell- and tissue-specific transgene expression and co-transformation with vector constructs incorporating a common multifunctional 3' UTR. Exp Parasitol,2008,118:253-265
    96. Kalinna BH, Brindley PJ. Manipulating the manipulators:advances in parasitic helminth transgenesis and RNAi. Trends Parasitol, 2007,23:197-204
    97. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases:implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol, 2001,17:615-675
    98. Kazlauskas A, Cooper JA. Phosphorylation of the PDGF receptor beta subunit creates a tight binding site for phosphatidylinositol 3 kinase. EMBO J, 1990,9: 3279-3286
    99. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature,1993,366:461^464
    100.Kim H, Kadowaki H, Sakura H, Odawara M, Momomura K, Takahashi Y, Miyazaki Y, Ohtani T, Akanuma Y, Yazaki Y et al. Detection of mutations in the insulin receptor gene in patients with insulin resistance by analysis of single-stranded conformational polymorphisms. Diabetologia, 1992.35:261-266
    lOl.Kimura KD, Riddle DL, Ruvkun G. The C. elegans DAF-2 insulin-like receptor is abundantly expressed in the nervous system and regulated by nutritional status. Cold Spring Harb Symp Quant Biol, 2011,76:113-120
    102.Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 1997,277: 942-946
    103.Klass M, Hirsh D. Non-ageing developmental variant of Caenorhabditis elegans. Nature,1976,260:523-525
    104.Knox DP, Geldhof P, Visser A, Britton C. RNA interference in parasitic nematodes of animals: a reality check? Trends Parasitol, 2007,23:105-107
    105.Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron, 1996,17:707-718
    106.Konrad C, Kroner A, Spiliotis M, Zavala-Gongora R, Brehm K. Identification and molecular characterisation of a gene encoding a member of the insulin receptor family in Echinococcus multilocularis. Int JParasitol, 2003,33:301-312
    107.Kotze AC, Bagnall NH. RNA interference in Haemonchus contortus: suppression of b-tubulin gene expression in L3, L4 and adult worms in vitro. Mol Biochem Parasitol, 2006,145:101-110
    108.Kwa MSG, Veenstra JG, Van Dijk M, Roos MH. β-Tubulin from the parasitic nematode Haemonchus contortus modulates drug resistance in Caenorhabditis elegans. J Mol Biol, 1995,246:500-510
    109.Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol, 2013,14:R88
    110.Lang F, Cohen P. Regulation and physiological roles of serum- and glucocortcoid-induced protein kinase isoforms. Sci STKE, 2001,2001:rel7
    111.Lee SS, Kennedy S, Tolonen AC, Ruvkun G DAF-16 target genes that control C. elegans life-span and metabolism. Science, 2003,300:644-647
    112.Lendner M, Doligalska M, Lucius R, Hartmann S. Attempts to establish RNA interference in the parasitic nematode Heligmosomoides polygyrus. Mol Biochem Parasitol, 2008,161:21-31.
    113.Li W, Kennedy SG, Ruvkun G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev, 2003,17:844-858
    114.Li X, Massey HC Jr, Nolan TJ, Schad GA, Kraus K, Sundaram M, Lok JB. Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements. Int J Parasitol, 2006,36:671-679
    115.Lok JB. Nucleic acid transfection and transgenesis in parasitic nematodes. Parasitology,2012,139:574-588
    116.Lustigman S, Zhang J, Liu J, Oksov Y, Hashmi S. RNA interference targeting cathepsin L and Z-like cysteine proteases of Onchocerca volvulus confirmed their essential function during L3 molting. Mol Biochem Parasitol, 2004,138:165-170
    117.Massari ME, Murre C. Helix-loop-helix proteins:regulators of transcription in eucaryotic organisms. Mol Cell Biol, 2000,20:429-40
    118.Massey HC Jr, Ranjit N, Stoltzfus JD, Lok JB. Strongyloides stercoralis daf-2 encodes a divergent ortholog of Caenorhabditis elegans DAF-2. Int J Parasitol, 2013,43:515-520
    119.Maule AG, McVeigh P, Dalzell JJ, Atkinson L, Mousley A, Marks NJ. An eye on RNAi in nematode parasites. Trends Parasitol, 2011,27:505-513
    120.McColl G, Rogers AN, Alavez S, Hubbard AE, Melov S, Link CD, Bush AI, Kapahi P, Lithgow GJ. Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans, Cell Me tab,2010,12:260-272
    121.McKay SJ, Johnsen R, Khattra J, Asano J, Baillie DL, Chan S, Dube N, Fang L, Goszczynski B, Ha E, Halfnight E, Hollebakken R, Huang P, Hung K, Jensen V, Jones SJ, Kai H, Li D, Mah A, Marra M et al. Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb Symp Quant Biol, 2003,68:159-169
    122.Mello CC, Kramer J M, Stinchcomb D, Ambros V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J, 1991,10:3959-3970
    123.Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, Rutter WJ. Insulin-like growth factor II receptor as a multifunctional binding protein. Nature, 1987,329:301-307
    124.Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature,1996, 382:536-539
    125.Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell, 2006,124:1209-1223
    126.Moxham CP, Duronio V, Jacobs S. Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. JBiol Chem, 1989,264:13238-13244
    127.Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature,2003,424:277-283
    128.Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev, 2001,22:818-835
    129.Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, Accili D, Parada LF. Testis determination requires insulin receptor family function in mice. Nature, 2003,426:291-295
    130.Nielsen H, Engelbrecht J, Brunak S, von Heijne G A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int JNeural Syst, 1997,8:581-599
    131.Nikolaou S, Gasser RB. Propects for exploring molecular development processes. Int J Parasitol, 2006,36:859-868
    132.Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA,2005, 102:14238-14243
    133.Odorizzi G, Babst M, Emr SD. Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci, 2000,25:229-235
    134.Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature,1997,389:994-999
    135.Oldham S, Hafen E. Insulin/IGF and target of rapamycin signaling:a TOR de force in growth control. Trends Cell Biol, 2003,13:79-85
    136.Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev, 1999,13:1438-1452
    137.Paradis S, Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev,1998,12:2488-2498
    138.Pashmforoush M, Chan SJ, Steiner DF. Structure and expression of the insulin-like peptide receptor from amphioxus. Mol Endocrinol, 1996,10:857-866
    139.Patterson GI, Koweek A, Wong A, Liu Y, Ruvkun G. The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev, 1997,11:2679-2690
    140.Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, Liu LX, Doberstein SK, Ruvkun G. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev, 2001,15: 672-686
    141.Rajan TV, Paciorkowski N, Kalajzic I, McGuiness C. Ascorbic acid is a requirement for the morphogenesis of the human filarial parasite Brugia malayi. J Parasitol, 2003,89:868-870
    142.Riddle DL, Albert PS. Genetic and Environmental Regulation of Dauer Larva Development, in:Riddle, D.L., (Ed.), C. elegans Ⅱ, Cold Spring Harbor press, plainview, NY, pp,1997,739-768
    143.Riddle DL, Swanson MM, Albert PS. Interacting genes in nematode dauer larva formation. Nature,1981,290:668-671
    144.Robinson KA, Lopes JM. SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nucleic Acids Res, 2000,28:1499-505
    145.Rogers WP, Sommerville RI. The infective stage of nematode parasites and its significance in parasitism. Adv Parasitol,1963,1:109-177
    146.Ruvkun G, Hobert O. The taxonomy of developmental control in Caenorhabditis elegans. Science, 1998,282:2033-2041
    147.Samarasinghe B, Knox DP, Britton C. Factors affecting susceptibility to RNA interference in Haemonchus contortus and in vivo silencing of an H11 aminopeptidase gene. Int J Parasitol, 2010,41:51-59
    148.Schackwitz WS, Inoue T, Thomas JH. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron, 1996,17:719-728
    149.Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2000,103:211-225.
    150.Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, Hall RS, Mondal A, Howe AC, Pell J, Hofmann A, Boag PR, Zhu XQ, Gregory TR, Loukas A, Williams BA, Antoshechkin I, Brown CT, Sternberg PW, Gasser RB. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol, 2013,14:R89
    151.Shao H, Li X, Nolan TJ, Massey HC Jr, Pearce EJ, Lok JB. Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines. PLoS Pathog, 2012,8:e1002871
    152.Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003,113:685-700
    153.Song C, Gallup JM, Day TA, Bartholomay LC, Kimber MJ. Development of an in vivo RNAi protocol to investigate gene function in the filarial nematode, Brugia malayi. PLoS Pathog, 2010,6:e1001239
    154.Soos MA, Siddle K. Immunological relationships between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem J, 1989, 263:553-563
    155.Sparrow LG, McKern NM, Gorman JJ, Strike PM, Robinson CP, Bentley JD, Ward CW. The disulfide bonds in the C-terminal domains of the human insulin receptor ectodomain. J Biol Chem,1997,272:29460-29467
    156. Stein R. Prospects of phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr Relat Cancer, 2001,8:237-248
    157.Stoltzfus JD, Massey HC Jr, Nolan TJ, Griffith SD, Lok JB. Strongyloides stercoralis age-1:a potential regulator of infective larval development in a parasitic nematode. PLoSOne, 2012a,7:e38587
    158.Stoltzfus, J.D., Minot, S., Berriman, M., Nolan, T.J., Lok, J.B., RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop Dis, 2012b,6:e1854
    159.Tachu B, Pillai S, Lucius R, Pogonka T. Essential role of chitinase in the development of the filarial nematode Acanthocheilonema viteae. Infect Immun, 2008, 76:221-228
    16O.Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nature Rev Mol Cell Biol, 2006,7:85-96
    161.Tang YT, Gao X, Rosa BA, Abubucker S, Hallsworth-Pepin K, Martin J, Tyagi R, Heizer E, Zhang X, Bhonagiri-Palsikar V, Minx P, Warren WC, Wang Q, Zhan B, Hotez PJ, Sternberg PW, Dougall A, Gaze ST, Mulvenna J, Sotillo J et al. Genome of the human hookworm Necator americanus. Nat Genet,2014,46:261-269
    162.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011,28:2731-2739
    163.Thomas JH, Birnby DA, Vowels JJ. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics, 1993, 134:1105-1117
    164.Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22:4673-4680
    165.Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao YC, Tsubokawa M et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature, 1985,313:756-761
    166.Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, et al. Insulin-like growth factor I receptor primary structure:comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J, 1986,5:2503-2512
    167.Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phosphoinositide 3-kinases:a conserved family of signal transducers. Trends Biochem Sci, 1997,22: 267-272
    168.Vassilakos A, Cohen-Doyle MF, Peterson PA, Jackson MR, Williams DB. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J, 1996,15:1495-1506
    169.Vogt B, Carrascosa JM, Ermel B, Ullrich A, Haring HU. The two isotypes of the human insulin receptor (HIR-A and HIR-B) follow different internalization kinetics. Biochem Biophys Res Commun, 1991,177:1013-1018
    170.Volarevic S, Thomas G. Role of S6 phosphorylation and S6 kinase in cell growth. Prog Nucleic Acid Res Mol Biol, 2001,65:101-127
    171. Vowels JJ, Thomas JH. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics, 1992,130:105-23
    172.Vowels JJ, Thomas JH. Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. Genetics, 1994,138:303-316
    173.Visser A, Geldhof P, de Maere V, Knox DP, Vercruysse J, Claerebout E. Efficacy and specificity of RNA interference in larval life-stages of Ostertagia ostertagi. Parasitology,2006,133:777-783
    174.Wang Z, Zhou XE, Motola DL, Gao X, Suino-Powell K, Conneely A, Ogata C, Sharma KK, Auchus RJ, Lok JB, Hawdon JM, Kliewer SA, Xu HE, Mangelsdorf DJ. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc Natl Acad Sci,2009,106:9138-43
    175.Wes PD, Bargmann CI. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature, 2001,410:698-701
    176.White MF, Livingston JN, Backer JM, Lauris V, Dull TJ, Ullrich A, Kahn CR. Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell, 1988,54:641-649
    177.Wilden PA, Kahn CR, Siddle K, White MF. Insulin receptor kinase domain autophosphorylation regulates receptor enzymatic function. J Biol Chem, 1992,267: 16660-16668
    178.Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci U SA,2007,104:10565-10570.
    179.Wolkow CA, Munoz MJ, Riddle DL, Ruvkun G. Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem, 2002,277:49591-49597
    180.Xu MJ, Chen N, Song HQ, Lin RQ, Huang CQ, Yuan ZG, Zhu XQ. RNAi-mediated silencing of a novel Ascaris suum gene expression in infective larvae. Parasitol Res, 2010,107:1499-1503
    181.Yamamoto T, Davis CG, Brown MS, Schneider WJ, Casey ML, Goldstein JL, Russell DW. The human LDL receptor:a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell, 1984,39:27-38
    182.Yen K, Narasimhan SD, Tissenbaum HA. DAF-16/Forkhead box O transcription factor:many paths to a single Fork (head) in the road. Antioxid Redox Signal, 2011, 14:623-634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700