三江源自然保护区土壤微生物结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是生态系统的重要成员,是土壤中最活跃的部分,它们在土壤中的数量与分布一定程度上反映出土壤肥力状况与植物营养的密切关系,同时也反映土壤、植被和气候等综合因素对土壤微生物的影响。因此土壤微生物多样性的保护和研究对系统生态保护具有重要意义。三江源自然保护区位于青海省南部,属于青藏高原腹地,海拔垂直差异明显,具有独特的自然地理环境,是我国面积最大、海拔最高、生物多样性最丰富和生态最敏感的国家级自然保护区,为开展全球变化相关研究提供了理想的实验场所。青藏高原高寒草原生态系统具有十分重要的生态地位,因其所处环境严酷、生态脆弱,在全球变化,特别是在人为干扰等因素的综合影响下,已呈现出严重的退化态势。研究三江源自然保护区高寒草原土壤微生物群落结构与功能,揭示其生态分布和区域特异性,为评价三江源自然保护区的生态环境、了解全球变化对三江源自然保护区土壤微生物的影响以及三江源自然保护区保护策略的制定提供科学依据。
     本研究采用传统分离培养方法对三江源自然保护区高寒草原生物多样性固定监测样地的土壤中主要微生物类群的数量进行研究,探讨其与土壤酶、微生物量碳氮和生态因子的相关性;采用末端限制性酶切片段长度多态性分析(T—RFLP)分子生物学技术对硝化基因(amoA)、反硝化基因(nirK和nosZ)、土壤细菌群落进行研究。同时探讨了不同海拔高度土壤微生物群落结构与功能的多样性及其主要影响因子。其主要研究结果如下:
     1.为了揭示青藏高原高寒草地土壤微生物活性组成和微生物量碳氮情况,同时探讨气候变化对土壤微生物的影响,以青藏高原腹地三江源自然保护区高寒草原土壤为研究对象,选择土壤质地、植被类型基本一致,海拔高度不同(3400-4200m)的4个样地,分析测定了土壤微生物(细菌、真菌、放线菌和部分生理功能微生物群)数量、土壤微生物量(碳、氮)、土壤酶(纤维素酶、蛋白酶、脲酶用、蔗糖酶)活性。结果表明:研究区域均含有较丰富的土壤有机碳和养分,微生物数量多少为细菌>放线菌>真菌,主要功能微生物菌群数量为氨化细菌>好气性固氮菌>硝化细菌>亚硝化细菌,样地间的微生物生物量碳氮含量差异显著。相关性分析表明,除与亚硝酸细菌具有弱正相关性外,海拔高度与其它因子均具有负相关性,其中与细菌和氨化细菌具有极显著负相关性,与好气性固氮菌和硝酸细菌具有显著负相关性。因此,温度的升高可能明显的影响了三江源地区高寒草原的土壤微生物活性。
     2.研究证明应用Ultra clean soil DNA Isolation Kit直接从土壤中提取DNA的方法是一种快速、高效、稳定的方法,该方法无需特殊仪器,整个过程可在较短的时间内完成;为检测土壤微生物的群落结构、微生物的多样性和功能微生物的代谢途径研究提供了一种可行的方法。
     3.采用T—RFLP方法对三江源高寒草地海拔垂直海拔梯度分布下的5个样地土壤中硝化(amoA)微生物多样性及群落分布进行了研究,结果表明,硝化菌群在相临样地间相似率较高,推测地理距离可能是影响硝化菌群多样性分布的主要因素。硝化菌群多样性在样地ZD-1最高,样地GH最低:而且对硝化菌T—RFs多样性指数H′与土壤生物地理化学因子进行相关性分析,结果也发现amoA基因多样性指数H′与海拔高度表现出极其显著的正相关;由此可推断温度升高对硝化细菌多样性有一定的影响。
     4.本研究首次应用nirK和nosZ基因,通过T—RFLP技术探讨三江源自然保护区内高寒草地海拔垂直地理生态分布带中5个样地的反硝化微生物多样性和群落结构。结果表明,反硝化菌群在相临样地间相似率较高,样地间nirK基因相似率普遍低于nosZ基因相似率。nirK基因距离较近的样地间出现较高的相似率,地理距离可能是影响nirK基因反硝化菌群多样性分布的主要因素。而nosZ基因在样地间相似率都差异不很大,nosZ基因的分布跟空间距离相关性不大。nirK基因nosZ基因基本符合按地海拔梯度进行聚类。反硝化菌群多样性nirK基因在样地CD最高,在样地MD最低;其均匀度在样地GH最高,在样地MD最低;nosZ基因的多样性在样地GML最高,在样地MD最低;即反硝化细菌多样性与海拔高度变化相关性不明显,而对硝化菌T—RFs多样性指数H′与土壤生物地理化学因子进行相关性分析,结果也发现nirK和nosZ基因多样性指数H′与土壤含水量表现出极其显著的正相关;由此可推断土壤湿度的变化对反硝化细菌多样性有一定的影响。
     5.利用T—RFLP技术,分析了三江源高寒草甸沿海拔梯度分布的4个样地土壤中细菌群落结构和多样性状况,研究结果表明,海拔为4813m的样地土壤细菌多样性普遍高于其3个样地,地理距离的差异是影响此地区土壤细菌生态分布的因素。温度的上升对土壤细菌多样性的影响势必也不容忽视。此外,其它生态因子均与土壤细菌群落结构多样性及生态分布有一定相关性,因此,其它生态因子对土壤细菌多样性的影响也不能忽视。
Soil microbes are important parts of the ecosystem and very active in soil . Thier quantity and distributions in soil can reflect the relationship between plant nutritions and soil fertility ,and the impacts of integrated factors such as soil, vegetation and climate, etc. Therefore, the protection and research of soil microorganism diversity of ecosystem are very important for ecological protection. Sanjiangyuan Nature Reserve located in the south of Qinghai Province, belonged to the Qinghai-Tibet Plateau, the altitude vary obviously vertically ,and has an unique geographic environment. Sanjiangyuan Nature Reserve is the largest and highest Nature Reserve in China.In addition,its biological diversity is very rich and being a very sensitive ecological National Nature Reserve , which provides an ideal laboratory for global ecological change research. Qinghai-Tibet Plateau alpine grassland ecosystem has an important ecological status, because of the tough environment, fragile ecosystem and face serious degradation under the climate changes around the world, especially when integrated factors,such as the human disturbance accelerate the degradation. Researchs on the structure and function of soil microbial communities of Sanjiangyuan alpine grassland Nature Reserves ,unfold the soil microbes ecological distribution and regional specificity can provide a scientific basis for evaluating ecological evironment of the Sanjiangyuan Nature Reserve, and help us to understand the impacts of global climate changes on soil microbes of Sanjiangyuan nature reserve, then we can regulating pretective strategies base on these datas to protect the source of the Sanjiang Nature Reserve well.
     We use traditional isolation methods of microbes in this study to research the number of major soil microbial groups of alpine grassland biodiversity in monitoring plots of the Three Rivers Nature Reserve, and to examine its relationship with soil enzymes, microbial biomass carbon and nitrogen and the relevance of ecological factors; We use terminal restriction fragment length polymorphism (T-RFLP) molecular biology technology to study the diversity of nitrification gene(amoA), denitrification genes (nirK and nosZ), and the soil bacterial community. We also discussed the soil microbil diversity of the structure and function at different altitudes and its major impact factor. The main result are as follows:
     1. Soil of Qinghai-Tibet Plateau alpine grassland in Sanjiangyuan Nature Reserve was chosen to research ,for revealing the composition of soil microbial activity and microbial biomass carbon and nitrogen, and exploring the potential impacts of climate change on the microorganism. Soil samples from 4 site of different altitude, with similar texture and vegetation type, were analyzed. We test microorganism number (bacteria, fungi, actinomycetes and some physiological functions of microorganism), microbial biomass (C, N) and enzyme activities (cellulase, protease, urease, and sucrase). The results showed that all soil samples were rich in organic carbon and nutrients, the number of microorganisms as bacteria> actinomycetes> fungi, the main function of the number of microbial flora were ammonifiers> aerobic azotobacteria> nitrate bacteria> nitrobacteria , and there were signicant difference in microbial biomass (C, N) among those samples. Correlation analysis showed that the altitude had negative correlation with all factors except nitrite bacteria, and the altitude have negative correlation significantly with bacteria and ammonifiers. The altitude have negative correlation significantly with aerobic azotobacteria and nitrate bacteria. Therefore, the increasing temperature might affecte the activity of microorganisms in soil of Qinghai-Tibet Plateau alpine grassland in Sanjiangyuan Nature Reserve significantly.
     2. We concluded that genomic DNA can be extracted from soil effectively in a short time with 'Ultra clean soil DNA Isolation Kit' , and without special equipments. High quality DNA can be used in detecting community and diversity of soil microorganism, it is also helpful for studying metabolism pathway of function microbes.
     3. We study the amoA bacteria community structure and diversity of five soil samples, which vertically distributed in Sanjiang cold grassland ranged from altitude, T-RFLP method was used for analysis. The results showed that there were high similarity between neighborhood samples, geography distance might the main factor upon diversity of amoA bacteria community. amoA bacteria diversity increase with altitude increasing, the highest diversity was observed in sample ZD-1 and the lowest diversity happened in sample GH. The correlativity analysis between the T-RFs diversity indexe H' of amoA bacteria and soil geochemistry factors showed that the T-RFs diversity indexe H' of amoA bacteria is significant correlative with altitude, therefore, the increasing temperature might have definite influence on amoA bacteria diversity.
     4 We applied nirK and nosZ genes for study firstly, with T-RFLP techniques to evaluate the five plots denitrification microbial diversity and community structure of above sea level of vertical distribution of geo-ecological zone of alpine grassland Sanjiangyuan Nature Reserve. The results showed that there were high similarity between denitrifying bacteria. nirK gene similar rates were lower than similar rates of nosZ genes generally. nirK gene from the nearer plot has a higher similaritie rates , geographical distance may be the main factor which affected the diversity and the distribution of denitnfication nirK gene of flora.The similar rates of the nosZ gene in samples has not much differences , and nosZ gene distance has little relationship relevance with distribution. nirK gene and nosZ gene are in line with an elevation gradient according to the cluster. the highest nirK denitrifying bacteria diversity was observed in sample CD-like gene, and the lowest diversity happened in sample MD; its highest uniformity is in sample GH plot, and the lowest is in the sample MD; the diversity of nosZ gene is the highest in GML sample, and the lowest is in MD sample; that is to say the diversity of denitrifying bacteria associated with the change of altitude was not obvious, while the analysis of T-RFs nitrifier diversity index H 'and of soil bio-geo-chemical of the relevant factors also found that nirK and nosZ gene diversity index H 'and soil water content showed an extremely significant positive correlation;thus it can be infered that the changes in soil moisture have a certain impact on the diversity of denitrifying bacteria
     5. By using of T-RFLP techniques ,we can evaluated the distribution of bacterial community structure and diversity from four soil samples of Sanjiangyuan alpine meadow along an altitudinal gradient.The results showed that the plot with altitude of 4813m got a higher bacterial diversity in soil than the other plot with different altitude, and the geographical distance was the factors which affected the ecologically distribution of soil bacteria in this region. Temperature rise on the impact of the diversity of soil bacteria can not be ignored. In addition, other ecological factors are related to the diversity of soil bacterial community structure and ecological distribution, therefore,the mpact of other ecological factors on the diversity of soil bacteria can also not be ignored.
引文
[1]Bilings W D,Luken J O,Morrdben D A et al..Increasing atmosphtere carbon dioxide:possible effects on arctic tundra.Oecologia.1983,58:286-289
    [2]Lydie C-L,Nicole W,Aurelie M,et al.Soils,a sink for N_2O? A review.Global Change Biology,2007,13:1-17
    [3]Regan J M,Harrington G W,Noguera D R.Ammonia and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system.Applied and Environmental Microbiology,2002,68(1):73-81
    [4]Regina K,Syvasalo E,Hannukkala A,et al.Fluxes of N_2O from farmed peat soils in Finland.European Journal of Soil Science,2004,55:591-599
    [5]Venterea R T,Groffman P M,Verchot L V,et al.Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation.For.Ecol.Manage,2004,196:129-142
    [6]IPCC.Climate Change 2001:The Scientific Basis.Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,2001,40-45
    [7]董云社,齐玉春,Domroes M,等.内蒙古温带半干旱羊草草原N_2O通量及其影响因素.地理研究,2004,23(6):776-784
    [8]IPCC.The Science of Climate Change.New York:Cambridge University Press,1996.
    [9]杜睿,王庚辰,吕达仁.内蒙古典型草原土壤N_2O产生的机理探讨.中国环境科学,2000,20(5):387-391
    [10]杜睿,周宇光,王庚辰,等.土壤水分对温带典型草地N_2O排放过程的影响.自然科学进展,2003,13(9):939-945
    [11]庞静,朱建国,谢祖彬,等.开放式空气二氧化碳浓度增高(FACE)条件下水稻的根系活力和氮同化能力,应用生态学报,2005,16(8):1482-1486
    [12]张振贤,华珞,尹逊霄等.农田土壤N_2O的发生机制及其主要影响因素.首都师范大学学报,2005,26(3):114-120
    [13]Joostl M V,Linda L H,Karl Y B,et al.Drought-induced nitrous oxide flux dynamics in an enclosed tropical forest.Global Change Biology,2005,11:1247-1257
    [14]王明星,张仁健,郑循华.温室气体的源和汇.气候与环境研究,2000,5(1):75-79
    [15]齐玉春,罗辑,董云社,等.贡嘎山山地暗针叶林带森林土壤温室气体N_2O和CH_4排放研.中国科学(D辑),2002,32(11):934-941
    [16]周俊岸,周丽霞,林永标,等.鹤山3种人工林土壤N_2O浓度的时间鹤空间变异.福建林学院学报,2005,25(3):264-268
    [17]李明峰,董云社,齐玉春,等.极端干旱对温带草地生态系统CO_2、CH_4、N_2O通量特征的影响.资源科学,2004,26(3):89-95
    [18]高志岭,陈新平,张福锁.农田N_2O排放研究进展.生态环境,2004,13(4):661-665
    [19]Rich J J,Heichen R S,Bottomley P J,et al.Community compostion and functioning of denitrifying bacteria from adjacent meadow and forest soils.Applied and Environmental Microbiology,2003,69(10):5974-5982
    [20]王艳芬,马秀枝,纪宝明,等.内蒙古草甸草原CH_4和N_2O排放通量的时间变异.植物生态学报,2003,27(6):792-796
    [21]Webster G,Embley M,Freitag T E,et al.Links between ammonia oxidizer species compositon,functional diversity and nitrification kinetics in grassland soils.Environmental Microbiology,2005,7(5):676-684
    [22]Sharon A,Ralf C,Braker G.Effect of soil ammonium concentration on N2O release and on thecommunity structure of ammonica oxidizers and denitrifiers.Applied and Environmental Microbiology,2002,68(11):5685-5692
    [23]张秀君.土壤N_2O产生的微生物过程.沈阳教育学院学报,2005,7(1):129-131
    [24]Flechard C R,Neftel A,Jocher M,et al.Bi-directional soil/atmosphere N_2O exchange over two mown grassland systems with contrasting management practices.Global Change Biology,2005,11:2114-2127
    [25]Okano Y,Hristova K R,Leutenegger C M,et al.Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil.Applied and Environmental Mcirobiology,2004,70(2):1008-1016
    [26]Wallenstein M D,Vilgalys R J.Quantitative analyses of nitrogen cycling genes in soils.Pedobiologia,2005,49:665-672
    [27]Sophie Z,Maria H,Simone M et al.Nitrous oxide emissions and nitrate leaching in relation to microbial biomass dynamics in a beech forest soil.Soil Biology and Biochemistry,2002,34:823 -832
    [28]Robertson G P,Paul E A,Harwood R R.Greenhouse gases in intensive agriculture:contributions of individual gases to the radiative forcing of the atmosphere.Science,2000,289:1922-1925
    [29]Bergsma T T,Robertson G P,Ostrom N E.Influence of soil moisture and land use history on denitrification end product.J Environ Qual,2002,31:711-717
    [30]Liu X D,Tiquia S M,Holguin G,et al.Molecular diversity of denitrifying genes in continental margin sediments within the oxygen deficient zone of the Pacific Coast of Mexico.Applied Environmental Microbiology,2003,69(6):3549-3560
    [31]Stres B,Mahne I,Avgustin G,et al.Nitrous oxide reductase(nosZ) gene fragements differ between native and cultivated Michigan soils.Applied Environmental Microbiology.2004,70(1):301-309
    [32]Zhang Y,Li D,Wang H,et al.The diversity of denitrifying bacteria in the alpine meadow soil of Sanjiangyuan natural reserve in Tibet Plateau.Chinese Science Bulletin,2006,51(10):1245-1254
    [33]Nijburg J,Coolen M J L,Gerards S,et al.Effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitratereducing bacteria community.Appl Environ Microbiol,1997,63:931-937
    [34]Chapin F S,Shaver G R,Gobiin A E,et al.Responses of arctic tundra and observed changes in climate.1995.Ecology,76:694-711
    [35]Inexon P,Benham D G,Poskm J,et al.Effects of climate change on nitrogen dynamics in upland soils.A soil warming study.Global Change Biology,1998,4:153-161
    [36]Herte J,Tom M S,Chang F R,et al.Global warming:results from a meadow-warming experiment.Ecological Application,1995,5:132-150
    [37]Hart S C,Perry D A.Transferring soils from High-to-low elevation forests increases nitrogen cycling rates:climate change implications.Global Change Biology,1999,5:23-32
    [38]王其兵,李凌浩,白永飞,等.气候变化对草甸草原土壤氮素矿化作用影响的实验研究.植物生态学报,2000,24(6):687-682
    [39]李迪强,李建文.三江源生物多样性[M].北京:中国科学出版社,2002.
    [40]Firestone M K,Davidson E A.Microbiological basis of NO and NO_2 production and consumption in soil.Exchange of trace gases between terestrial ecosystems and the atmosphere.Chicbester,England,John Wiley and Sons,1989,7-21
    [41]Williams E J,Hurchinson G L,Fehsenfeld F C NOx and N_2O emissions from soil.Global Biogeocbem Cycles,1992,6(4):351-388
    [42]袁可能.植物营养元素的土壤化学.北京:科学出版社,1983.
    [43]王彩绒,田霄鸿,李生秀.土壤中氧化亚氮的产生及减少排放量的措施.土壤与环境,2001,10(2):143-148
    [44]KFRNFY D R,NELSON D W.Nitrogen-inorganic forms.In:PAGE A L,ed.Methods of Soil Analysis.Part2.Madison:Am Soe Agron,1982,643-698
    [45]Bock E,koops H P,harms H.Cell biology of nitrifying bacteria.In:Prosser,JA(Ed),Nitrification Special publications of the Society for General Microbiology,1986,20:17-38
    [46]王敬国.植物营养的土壤化学.北京:北京农业大学出版社,1995
    [47]Dorland and Beauchamp.Denitrification and ammonification at low soil temperature.Soil Sci,1991(71):293-303
    [48]杜睿,吕达仁,王庚辰,等.温度对内蒙古典型草原土壤N_2O排放的影响.自然科学进展,2003,13(1):64-68
    [49]徐文彬,刘维屏,刘广深.温度对旱田土壤N_2O排放的影响研究.土壤学报,2002,39(1):1-8
    [50]J M Bremner,S G Robbins,and A M Blackmer.Seasonal variability in emission of nitrous oxide from soil.Geophysical Research letters,1980,7(9):641-644
    [51]郑循华,王明星,王跃思,等.温度对农田N_2O产生与排放的影响.环境科学,1997b,18(5):1-5
    [52]Fluxes of CO_2,CH_4 and N_2O from a temperate forest soil:the effects of leaves and humus layers.Tellus(1998),50B,243-252
    [53]黄国宏,陈冠雄,韩冰,等.土壤含水量与N_2O产生途径研究.应用生态学报,1999,10(2):53-56
    [54]王智平,曾江海,张玉铭.农田土壤N_2O排放的影响因素.农业环境保护,1994,13(1):40-42
    [55]颜晓元,施书莲,杜丽娟,等.养分状况对水田土壤N_2O排放的影响.土壤学报,2000,37(4):482-488
    [56]KnowelsR.Denitrification.Microbial.Rev,1982,46:43-70
    [57]Y DONG,D SCHARFFE,Y C QI,et al..Nitrous oxide emission from cultivated soil in the north china plain.Tellus,2001,53B,1-9
    [58]Daum Dand Schenk M K.Influence of nutrient solution pH on N_2O and N_2 emission from a soilless culture system.Plant and soil,1998,203:279-287
    [59]张秀君,徐慧,陈冠雄.影响森林土壤N_2O排放和CH_4吸收的主要因素.环境科学,2002(23):8-12
    [60]Haynes R J.Mineral nitrogen in the plant soil system.New York:Academic Press,1986,127-165
    [61]Sirwan Yamulki,Roy M Harrison,K W T Goulding.et al..N_2O,NO and NO_2 fluxes from a grassland:Effect of soil pH.Soil biology and biochemistry,1997.29(8):1199-1208
    [62]Bishal K Sitanla,Lars R Bakken,Gunnar Abrahamsen.N-fertilization and soil acidification effects on N_2O and CO_2 emission from temperate pine forest soil.Soil biology and biochemistry 1995.27(11):1401-1408
    [63]徐华,邢光熹,蔡祖聪,等.土壤质地对小麦河棉花田N_2O排放的影响.农业环境护,2000,19(1):1-3
    [64]李良谟等.土壤,1991,23(1):24-27
    [65]郑循华,王明星,王跃思,等.温度对农田N_2O产生与排放的影响.环境科学,1997b,18(5):1-5
    [66]Debbie K E,Mc Taggart I P,and Smith K A.Nitrous oxide emissions from intensive agricultural systems:Variations between crops and seasons,key driving variables,and mean emission factors.Journal of Geophysical Research,1999,104(D21):26891-26899
    [67]刘广深,徐文彬,洪业汤,等.土壤N_2O释放通量季节变化的主要环境驱动因素研究[J].矿物学报,2002,22(3):229-234
    [68]侯爱新,陈冠雄.不同种类氮肥对土壤释放N_2O的影响.应用生态学报,1998,9(2):176-180
    [69]Zheng X H,Wang M X,Wang Y S,et al.Characters of greenhouse gas(CH_4,N_2O,NO)emission from croplands of southeast China.World Resource Review,1999,11(2):229-246
    [70]Xing G X,Zhu Z L.Preliminary studies on N_2O emissions fluxes from upland soils and paddy soils in China.Nutrient Cycling in Agroecosystems,1997,49:17-22
    [71]曾江海,王智平,张玉铭,等.小麦-玉米轮作期土壤排放N_2O通量及总量估算.环境科学,1995,16(1):32-35
    [72]李楠,陈冠雄.植物释放N_2O速率及施肥的影响.应用生态学报,1993,4(3):295-298
    [73]陈冠雄,商曙辉,于克伟,等.植物释放N_2O的研究.应用生态学报,1990,1(1):94-96
    [74]黄国宏,陈冠雄,韩冰,等.土壤含水量与N_2O产生途径研究.应用生态学报,1999,10(2):53-56
    [75]封克,殷土学.影响氧化亚氮形成与排放的土壤因素.土壤学进展,1995,23(6):35-40
    [76]黄耀,蒋静艳,宗良纲,等.种植密度和降水对冬小麦田N_2O排放的影响.环境科学,2001,22(6):20-23
    [77]董云社,章申,齐玉春,等.内蒙古典型草地CO_2,N_2O,CH_4通量的同时观测及其日变化.科学通报,1999,45(3):318-322
    [78]Sommerfeld R A,Mosier A R,Muselman R C.CO_2,CH_4 and N_2O flux through a Wyoming snowpack and implications for global Budgets[J].Nature,1993,361:141-142
    [79]Teepe R,Brumme R,Beese F.Nitrous oxide emissions from soil during freezing and thawing periods[J].Soil Biology & Biochemistry,2001,33:1269-1275
    [80]Muller C,Martin M,Stevens R J,Laughlin R J.Procces leading to N_2O emissions in grassland soil during frezing and thawing[J].Soil Biology& Biochemistry,2002,34:1325-1331
    [81]东秀珠,洪俊华.原核微生物的多样性.生物多样性,2001,9(1):18-24
    [82]李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特征[J].土壤学报,2002,39(1):97-104
    [83]赵先丽,程海涛,吕国红,等.土壤微生物生物量研究进展.气象与环境学报,2006,22(4):8-72
    [84]赵其国.红壤物质循环及其调控[M].北京:科学出版社,2002,20-21.
    [85]李世清,凌莉,李生秀.影响土壤中微生物体氮的因子.土壤与环境,2000,9(2):158-162
    [86]王成,李世清,王强,等.田间土壤生物体氮的影响因子研究.新疆农业大学学报,2003,26(2):20-24
    [87]凌莉,闫湘,李鲁华,等.关中地区农田生态系统土壤微生物体氮分异性研究.干旱地区农业研究,2000,18(3):32-36
    [88]Patra D D,Bhandaris C,Misra A.Effects of plant residues on the size of microbial biomass and nitrogen mineralization in soil-incorporation of cowpea and wheat straw.Soil Science and Plant Nutrition,1992,30:1-6
    [89]Kaiser E A,Martens R,Heinemeyer O.Temporal changes in soil microbial carbon in arable soil:consequence for soil sampling.Plant and Soil,1995,170:287-295
    [90]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展.土壤与环境,2002,11(2):167-171
    [91]Jenkinson DS and Powlson DS.The effects of biocidal treatment on metabolismin soil:Ⅳ:The decomposition of fumigated organisms in soil.Soil Biology and Biochemistry,1976,8:203-208
    [92]Brookes PC,Kragt JF,Powlson DS and Jenkinson DS.Chloroform fumigation and the release of soil nitrogen:the effects of fumigation time and temperature.Soil Biology and Biochemistry,1985a,17(6):831-835
    [93]Brookes PC,Landman A,Pruden G and Jenkinson DS.Chloroform fumigation and the release of soil nitrogen:a rapid extraction method to measure microbial biomass N in soil.Soil Biology and Biochemistry,1985b,17(6):837-842
    [94]Anderson JPE and Domsch KH.A physiological method for the quantitative measurement of microbial biomass in soils.Soil Biology and Biochemistry,1978,10:215-221
    [95]Bums RG and Dick RP(eds.).Enzymes in the Environment:Ecology,Activity and Applications.New York:Marcel Dekker,Inc.,2001.
    [96]Bums RG.Soil Enzymes.New York:Academic Press,1978.
    [97]杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报,2002,8(5):564-570
    [98]曹惠,孙辉,杨浩,孙波,赵其国.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109
    [99]张玉兰,陈利军,刘桂芬,武志杰.土壤水解酶类催化动力学研究进展.应用生态学报,2003,14(12):2326-2332
    [100]关松荫.土壤酶及其研究法.北京:农业出版社.1986.
    [101]Rao MA,Violante A and Gianfreda L.Interaction of acid phosphatase with clays,organic molecules and organo-mineral complexes:Kinetics and stability.Soil Biology&Biochemistry,2000,32:1007-1014
    [102]Busto MD and Perez MM.Extraction of humic-β-glucosidase fractions from soil.Biol&Fertil Soils,1995,20:77-82
    [103]刘广深,徐冬梅,许中坚,王红宇,刘维屏.用通径分析法研究土壤水解酶活性与土壤性质的关系.土壤学报,2003,40(5):756-762
    [104]Rihani M,Botton B,Villemin G and EI Abbouyi A.Ultrastructural patterns of beech leaf degradation by Sporotrichum pulverulentum.European Journal of Soil Biology,2001,37:75-84
    [105]Marx MC,Wood M and Jarvis SC.A.Microplate fluorimetric assay for the study of enzyme diversity in soils.Soil Biology and Biochemistry,2001,33:1633-1640
    [106]Vepsalainen M,Kukkonen S,Vestberg M,Sirvio H and Niemi RM.Application of soil enzyme activity test kit in a field experiment,Soil Biology&Biochemistry,2001,33:1665-1672
    [107]Berchet V,Boulanger D and Gounot AM.Use of gel electrophoresis for the study of enzymatic activities in cold-adapted bacteria.J Microbial Methods,2002,40:105-110
    [108]Acosta MV and Tabatabai MA.Inhibition of arylamidase activity on soils by toluene.Soil Biology&Biochemistry,2002,34:229-237
    [109]张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带植物学报,2004,12(1):83-90
    [110]DeLong E F.Diversity of naturally occurring prokaryotes[A].In:Colwell RR.ed.Microbial Diversity in Time and Space[C].NewYork:Plenum,1996,125-133
    [111]Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol Rev,1995,59(1):143-169
    [112]Watve M G,Gangal R M.Problems in measuring bacterial diversity and a possible solution[J].Appl Environ Microbiol,1996,62(11):4299-4301
    [113]Istock C A,Ferquson N.Bacterial diversity and evolution:theoretical and practical perspectives[J].Journal of Industrial Microbiology,1996,17(3):137-150
    [114]Solbrig O.T..From genes to ecosystems:a research agenda for biodiversity.Report of a IUBS-SCOPEUNESCO workshop.The International Union of Biological Sciences [C].Paris France:51 Boulevar dole Montmorenny.1991.
    [115]Watve M.G,Gangal R.M..Problems in measuring bacterial diversity and a possible solution.A ppl.Environmental Microbiology 1996,62(11):4299-4301.
    [116]Chi Z.M..Microbiology Ecology.Shandong University Publishing House,China.1999.
    [117]王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望.微生物学杂志,2002,22(1):36-39
    [118]Borneman J.,Skroch P.W.,Palus J.A..Molecular microbial diversity of an agricultural soil in Wisconsin.Applied and Environmental Microbiology 1996,62:1935-1943
    [119]Bakken L.R..Separation and purification of bacteria from soil.Applied Environmental.Microbiology 1985,49:1482-1487
    [120]Hawksworth D.L..The fungal dimension of biodiversity:magnitude,significance,and conservation.Mycological Research 1991,95:641-655
    [121]张萍,刀志灵,郭辉军.高黎贡山不同土地利用方式对土壤微生物数量和多样性的影响.云南植物研究,1999,(增刊Ⅺ):84-89
    [122]肖昌松,刘大力,周培瑾.南极长城站地区土壤微生物生态作用的初步探讨.生物多样性,1995,3(3):134-138
    [123]胡元森,刘亚峰,吴坤.黄瓜连作土壤微生物区系变化研究.土壤通报,2006,37(1):126-129
    [124]东秀珠,洪俊华.原核微生物的多样性.生物多样性,2001,9(1):18-24
    [125]徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量的影响.土壤学报,2002,39(1):89-95
    [126]陈文新,李阜隶.我国土壤微生物学和生物固氮研究的回顾和展望.世界科技研究与发展,2003,24(4):6-12
    [127]Martin Pet.N_2 - fixing bacteria in the rhizospere Quantification and hormonal effects on root development.Pflanzenernr Bodend 1989,152:237-245
    [128]Sugden A.M..Ecology:diversity and ecosystem resilience.Science 2000,290(5490):233-235
    [129]杨海君,谭周进.假单胞菌的生物防治作用研究.中国生态农业学报,2004,12(3):158-161
    [130]Van Veen J.A.,Van Overbeek L.S.,Van Elsas J.D..Fate and activity of microorganisms introduced into soil microbiology.Microbiology and Molecular Biology Review.1997,61(2):121-135
    [131]姜学艳,黄艺.菌根真菌增加植物抗盐碱胁迫的机理.生态环境,2003,12(3):353-356
    [132]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展.土壤与环境,2002,11(2):167-171
    [133]张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的应用.生态学杂志,2003,22(5):131-136
    [134]齐鸿雁,薛凯,张洪勋.磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用.2003,23(8):1576-1582
    [135]Frostegard A,Tunlid A,and Baath E.Phospholipid fatty acid composition,biomass,and activity of microbial communities from two soil typesexperimentally exposed to different heavy metals.Applied and Envirionmental Microbiololgy,1993,59:3605-3617
    [136]Roslev P,Iversen N and Henriksen K.Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radiolabelling and lipid analysis.Journal of Microbiological Methods,1998,31:99-111
    [137]HeadIM,SaundersJR,Piekpu R W.Mierobial evolution diversity,and ecology.A deeade of ribosonud RNA analysis of uneultivated micorogranism.Micorb Ecol,1998,35:1-21
    [138]Merilley L,Vogt G,Blanc M,et al.Baeterial diversity in the bulk soil and hrizosphere Fractions of Lolium Perenne and Trifoljum repent as revealed by PCR resrtietion analysis.Plant Soil,1998,198:129-224
    [139]Sabine P,Steafnie K,Frank S,et al.Succession of micorbial communities during hot composing as detected by PCR R-Single-Strand-Conformation polymoprhism-based genetic profiles of small-subunit rRNA genes.Appl Enviorn Micorbiol,2000,66(3):930-936
    [140]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展.土壤通报,2004,35(6):789-792
    [141]Laser D R,Sren J S.Eeffets of mercury contamination on the culturable heterotrophic,Functional and genetic diversity of the bacterial community in soil.FEMS Microbiol Ecol,2001,36:1-9
    [142]Stephen J R,Chang Y J,Macnuaghton S J,et al.Fate of a metal resistant inoculum in contaminated and prisinesoils assessed by denaturing gradient gel electrophoresis.Envrion Toxicol Chem,1999,18:1118-1123
    [143]王洪媛,管华诗,江晓路.微生物生态学中分子生物学方法及T-RFLP技术研究.中国生物工程杂志,2004,24(8):42-47
    [144]MUYZER G,DE WAAL EC,UIITERLINDEN AG.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Appl Environ Microbiol,1993,59(3):695-700
    [145]LEE D-H,ZO Y G,KIM S J.Nonradioactive method to study genetic profiles of natural bacterial communities by PCR -singles-stand conformation polymorphism [J].Appl Environ Microbiol,1996,62(9):3112-3120
    [146]LIU W T,MARSH T L,CHENG H,et al.Characterization of microbial diversity by determ ining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J].Appl Environ Microbiol,1997,63(11):4516-4522
    [147]KENT A D,SMITH D J,BENSON B J,et al.Web based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities[J].Appl Environ Microbiol,2003,69(11):6768-6776
    [148]MARSH T L.Terminal Restriction Fragment Length Polymorphism(TRFLP):an emerging method for characterizing diversity among homologous populations of amplicons[J].Curr Opin Microbiol,1999,2(3):323-327
    [149]余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施[J].应用与环境生物学报,2006,12(6):861-868
    [150]Hans-Peter H,Merlin T Y,Werner L.Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA,mmoX,mxaF,and 16S rRNA and ribosomal DNA,including pmoA-based terminal restriction fragment length polymorphism profiling[J].Appl Environ Microbiol,2001,67(9):4177-4185
    [151]卢莉琼,徐亚同,梁俊.Perspective of molecular biological techniques applied in microbiological diversity and microbiological ecology.[J].应用与环境生物学报,2004,10(6):826-830
    [152] Liu W T,Marsh T L,Cheng H,et al.Characterization of microbial diversity by determining terminal restiction fragment length polymorphisms of genes encoding 16SrDNA [J].Appl Environ Microbial ,1997,63(11):4516-4522
    [153] Tiedje J.M.,Asuming-Brempong S.,Nusslein K..Opening the black box of soil microbial diversity.Applied Soil Ecology 1999,13(2):109-122.Bourrain M.,Achouak W.,Urbain V..DNA extraction from activated sludge.Current Microbiology 1999,38(6) :315-319
    [154] Johnson M.J.,Lee K.Y.,cow K.M..DNA finger print reveals link s among agricultural crops,soil properties,and the composition of soil microbial communities.Geoderma 2003,114:279-303
    [155] Ogram A.,Sayler G.S.,Barkay T..The extraction and purification of microbial DNA from sediments.J Microbiology Methods 1987,(7):57-66.
    [156] Volossiouk T.,Robb E.J.,Nazar R.N..Direct DNA Extraction for PCR-Mediated Assays of Soil Organisms.Applied and Environment Microbiology 1995,61(11):3972-3976
    [157] Tebbe C.C.,Vahjen W..Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast.Applied and Environment Microbiology 1993,(59):2657-2665
    [158] Sambrook J.,Fritsch E.F.,Maniatis T..Molecular Cloning:A Laboratory Manual.nd ed.New York :Cold Spring Harbor Laboratory Press ,1989
    [159] Andrew E.B.,Claudia C.Isolation of high molecular weight DNA from soil for cloning into BAC vectors.FEMS Microbiology Letters 2003,15-20
    [160] De Grange,R.Bardin. Detection and counting of Nitrobacter populations in soil by PCR.Applied and Environment Microbiology 1995,61:2093-2098
    [161] Sebastianelli A,Sen T,Bruce I J.Extraction of DNA from soil using nanoparticles by magnetic bioseparation [J].Lett Appl Microbiol,2008,46(4):488-491
    [162] Sagova-Mareckova M,Cermak L,Novotna J,Plhackova K,Forstova J,Kopecky J.Innovative methods for soil DNA purification tested in soils with widely differing characteristics [J].Appl Environ Microbiol,2008,74 (9):2902-2907
    [163] Rojas-Herrera R,Narvaez-Zapata J,Zamudio-Maya M,Mena-Martinez M E.A simple silica-based method for metagenomic DNA extraction from soil and sediments [J].Mol Biotechnol,2008
    [164] Carrigg C,Rice O,Kavanagh S,Collins G,O'Flaherty V.DNA extraction method affects microbial community profiles from soils and sediment [J].Appl Microbiol Biotechnol,2007,77 (4):955-964
    [165] Sagova-Mareckova M,Cermak L,Novotna J,Plhackova K,Forstova J,Kopecky J.Innovative Methods for Soil DNA Purification Tested in Soils of Widely Differing Characteristics [J].Appl Environ Microbiol,2008
    [167] Braker G,Ayala-del-Río H L,Devol A H,Fesefeldt A,Tiedje J M.Community structure of denitriflers,bacteria,and archaea along redox gradients n Pacific northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase(nirS)and 16S rRNA genes [J].Applied and Environmental Microbiology,2001,67 (4): 1893-1901
    [168] Sagova-Mareckova M,Cermak L,Novotna J,Plhackova K,Forstova J,Kopecky J.Innovative Methods for Soil DNA Purification Tested in Soils of Widely Differing Characteristics [J].Appl Environ Microbiol,2008
    [169] Tom-Petersen A,Leser T D,Marsh T L,Nybroe O.Efects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique [J].FEMS Microb Ecol,2003,46 (1):53-56
    [170] Liu W T,Marsh T L,Cheng H,Forney L J.Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of gene coding 16S rRNA.Applied and Environmental Microbiology [J]. 1997,63 4516-4522
    [171] Chan O C,Yang X,Fu Y,Feng Z,Sha L,Casper P,Zou X.16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China [J].FEMS Microbiol Ecol,2006,58 (2):247-259
    [172] Ulrich A,Klimke G,Wirth S.Diversity and activity of cellulose-decomposing bacteria isolated from a sandy and a loamy soil after long-term manure application [J].Microb Ecol,2008,55 (3):512-522
    [173] Tom-Petersen A,Leser T D,Marsh T L,Nybroe O.Efects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique [J].FEMS Microb Ecol,2003,46 (1):53-56
    [174] Kaplan C W,Kitts L C.Bacterial succession in a petroleum land tmatment unit [J].Appl Environ Microbiol,2004,70 (3): 1777-1786
    [175] Meier C,Wehrli B,Meer J R.Seasonal Fluctuations of Bacterial Community Diversity in Agricultural Soil and Experimental Validation by Laboratory Disturbance Experiments [J] .Microb Ecol,2007
    [176] Pringault O,Duran R,Jacquet S,Torreton J P.Temporal variations of microbial activity and diversity in marine tropical sediments (New Caledonia lagoon) [J].Microb Ecol,2008,55 (2):247-258
    [177]罗海峰,齐鸿雁,薛凯,张洪勋.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23 (8):1570-1575
    [178] Sharon A,Ralf C,Braker G.Effect of soil ammonium concentration on N2O release and on thecommunity structure of ammonica oxidizers and denitrifiers.Applied and Environmental Microbiology,2002,68 (11):5685-5692
    [179] Regan J M,Harrington G W,Noguera D R.Ammonia and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Applied and Environmental Microbiology,2002,68(1):73-81
    [180] Zhang Y,Li D,Wang H,et al.The diversity of denitrifying bacteria in the alpine meadow soil of Sanjiangyuan natural reserve in Tibet Plateau.Chinese Science Bulletin,2006,51 (10): 1245-1254
    [181] Stres B,Mahne I,Avgustin G,et al.Nitrous oxide reductase (nosZ) gene fragements differ between native and cultivated Michigan soils.Applied Environmental Microbiology.2004,70 (1):301-309
    
    [182] Klotz M.G.,Alzerrec A.J.,Norton J.M.. A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia oxidizing bacteria:a third member of the amo operon.FEMS Microbiology Letter 1997,150(1):65-73
    [183] Arp D.J.,Sayavedra-Soto L.A.,Hommes N.G..Molecular biology and Biochemistry of ammonia oxidation by Nitrosomonas europaea.Archvies of Microbiololgy 2002,178:250-255
    [184] Klotz M.G.,Norton J.M..Sequence of anammonia monooxygenase subunit A-encoding gene from Nitrosospirasp.NpAV.Gene 1995,163:159-160
    [185] Klotz M.G.,Norton J.M.,Multiple copies of ammonia monooxygenas (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria.FEMS Microbiology Letter 1998,168:303-311
    [186] Norton J.M.,Alzerreca J.J.,Suwa Y.Diversity of ammoni monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology 2002,177:139-149
    [187] Sayavedra-Soto L.A.,Hommes N.G.,Alzerreca J.J..Transcription of the amoC,amoA,and amoB genes in Nitrosomonas europaea and Nitrosospirasp. NpAV.FEMS Microbiololgy Letter 1998,167:81-88
    [188] Stein L.Y.,Sayavedra-Soto L.A.,Hommes N.G.Differential regulation of amoA and amoB gene copies in Nitrosomonas europaea. FEMS Microbiology Letter 2000,192:163-168
    [189]Rotthauwe J.H.,Deboer W.,Liesack W..Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp.AHB1 and Nitrosolobus multiform is C-71.FEMS Microbiology Letters 1995,133:131-135
    [190]Purkhold U.,Pommerening-Roser A.,Juretschko S..Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:implications for molecular diversity surveys.Applied and Environment Microbiology 2000,66:5368-5382
    [191]Luo H.F.,Qi H.Y.,Xue K..Influence of application of GC-clamp on study of soil microbial diversity by PCR-DGGE.Acta Ecologica Sinica 2003,23(10):2170-2175
    [192]袁飞,冉炜,胡江.变性梯度凝胶电泳法研究我国不同土壤氨氧化细菌群落组成及活性.生态学报,2005,25(6):1318-1324
    [193]Tatsunori Nakagawa,Kiji Mori,Chiaki Kato.Distribution of Cold-Adapted Ammonia-Oxidizing Microorganism in the Deep-Ocean of the Northeastern Japan Sea.Microbes Environ 2007,22(4):365-372
    [194]Philppot L,Hallin S.Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community[J].Current opinion in microbiology,2005,8:234-239
    [195]刘学端.海底及污染环境中微生物群落分子多样性研究一发展和应用以功能基因及基因芯片为基础的基因组技术体系[D].湖南农业大学,2003.
    [196]Yoshie S,Noda N,Tsuneda S,et al.Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems[J].Applied and Environmental Microbiology,2004,705:3152-3157
    [197]Gomez-Villalba B,Calvo C,Vilchez R,et al.TGGE analysis of the diversity of ammonia-oxidizing and denitrifying bacteria in submerged filter biofilms for the treatmentof urban wastewater[J].Applied and Environmental Microbiology,2006,72:393-400
    [198]Sakano Y,Pickering K D,Strom P F,et al.Spatial distribution of total,ammoniaoxidizing,and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support[J].Applied and Environmental Microbiology,2002,68(5):2285-2293
    [199]Henry S,Baudoin E,Lopez-Gutierrez J C,et al.Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR[J].Journal of Microbiological Methods,2004,59:327-335
    [200] Kandeler E,Deiglmayr K,Tscherko D,et al.Abundance of narG, nirS,nirK,and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland [J].Applied and Environmental Microbiology,2006,72(9):5957-5962
    
    [201] Hwang C,Wu W M,Gentry T J,et al.2006.Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor [J].Applied and Environmental Microbiology,71:748-760
    
    [202] Rosch C,Bothe H.Improved assessment of denitrifying,N2-fixing,and total-community bacteria by terminal restriction fragme length polymorphism analysis using multiple restriction enzymes[J].Applied and Environmental Microbiology,2005,71:2026-2035
    
    [203] Taroncher-Oldenburg G,Griner E M,Francis C A,et al.Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment [J].Applied and Environmental Microbiology,2003,69:1159-1171
    
    [204] Braker,G,A.Fesefeldt,and K.P.Witzel.Development of PCR Primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying baeteria in environmental samples .Appl Environ.Microbiol. 1998,64:3769-3775
    
    [205] Braker,G,J.Zhou L.Wu,A.H .Devol,and J.M Tiedje.Nitrite reductase genes(nirK and nirS) as functional markers to investigate diversity of denitrifying baeteria in Pacific Northwest marine sediment communities.Appl.Environ.Microbiol.2000,66:2096- 2104
    
    [206] Philippot L,Piutti S,Martin-Laurent F,Hallet S,Germon J C.Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils [J].Appl Environ Microbiol,2002,68 (12):6121-6128
    
    [207] Enwall K,Philippot L,Hallin S.Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization [J].Appl Environ Microbiol,2005,71 (12):8335-8343
    
    [208] Mounier E,Hallet S,Cheneby D,Benizri E,Gruet Y,Nguyen C,Piutti S,Robin C,Slezack-Deschaumes S,Martin-Laurent F,Germon J C,Philippot L.Influence of maize mucilage on the diversity and activity of the denitrifying community [J].Environ Microbiol,2004,6 (3):301-312
    
    [209] Siciliano S D,Roy R,Greer C W.Reduction in denitrification activity in field soils exposed to long term contamination by 2,4,6-trinitrotoluene (TNT) [J].FEMS Microbiol Ecol,2000,32 (1):61-68
    
    [210] Seal,DJ.and L.J.Kerkhof.Horizontal heterogeneity of denitrifying baeterial communities in marine sediments by terminal restriction fragment length polymorphism analysis.Appl.Environ.Microbiol.2000,66:1980-1986
    [211]Tate RL Ⅲ.Soil Microbiology 2nd edn.John Wiley,New York,2000.[212]Jenkinson DS,Brookes PC,Powlson DS.Measuring soil microbial biomass.Soil Biology and Biotechemistry,2004,36:5-7
    [213]White,D.,J.D.Crosbie,D.Atkinson,K.Killham.Effect of an introduced inoculum on soil microbial diversity.EMS Microbiology Ecology.1994,14(2):169-178
    [214]Smith JL,Halvorson JJ,Bolton H JR.Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment.Soil Biology and Biochemistry,2002,34:1749-1757
    [215]吴建国,艾丽.祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量.植物生态学报,2008,32(2):465-476
    [216]蔡晓布,周进,钱成.不同退化程度高寒草原土壤微生物活性变化特征研究.土壤学报,2008,45(6):1110-1118
    [217]刘光菘,蒋能慧,张连第,等.土壤理化分析与剖面描述.北京:中国标准出版社,1996
    [218]许光辉,郑洪元.土壤微生物分析方法手册,北京:农业出版社,1986
    [219]周礼恺.土壤酶学.北京:科学出版社,1987.
    [220]张于光,李迪强,王慧敏,等.青藏高原三江源地区高寒草甸土反硝化细菌多样性的初步研究,科学通报,2006,51(6):715-723
    [221]中国科学院南京土壤研究所微生物室.土壤微生物研究法.北京:科学出版社,1985:40-59
    [222]郑洪元,周礼恺,张德生译.北京:科学出版社,1980
    [223]林超峰,陈占全,薛泉宏,等.青海三江源区植被退化对土壤养分和微生物区系的影响,应用与环境生物学报,2007,13(6):788-793
    [224]Menyail OV,hungate BA,Zech W.The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment.Plant and Soil,2002,242:183-196
    [225]FU Gang,LIU Zeng-wen,CUI Fang-fang.The feature of soil enzyme activity and quantity of microorganism under artificial forests and their relationships with soil nutrient in Qinling Mountain Area[J].Journal of Northwest SCI-Tech Univ of Agr AND,2008,36(10):88-94
    [226]LI Cheng-Fang,CAO Cou-Gui,XU Yong-Hua,et al..Dynamics of soil microbial biomass N and soil enzymes activities in rice-duck and rice-fish ecosystems[J].Acta Ecologica Sinica,2008,28(8):3905-3912
    [227]Inexon P,Benham D G,Poskm J,et al.Effects of climate change on nitrogen dynamics in upland soils.A soil warming study.Global Change Biology,1998,4:153-161
    [228]Herte J,Tom M S,Chang F R,et al.Global warming:results from a meadow-warming experiment.Ecological Application,1995,5:132-150
    [229]Pang Jing,Zhu Jian-Guo,Xie Zu-Bin,et al..Root activity and nitrogen assimilation of rice(Oryzasativa) under Free-Air CO2 Enrichment[J].Chinese Journal of Applied Ecology,2005,16(8):1482-1486
    [230]Wang Qi-Bing,LI Ling-Hao,BAI Yong-Fei,et al.Field experimental studieon the effects of clemate change on nitrogen mineralization of meadow steppe soil[J],Acta Phytoecologica Sinica.2000,24(4):687-690
    [231]Hart S C,Perry D A.Transferring soils from High-to-low elevation forests increases nitrogen cycling rates:climate change implications.Global Change Biology,1999,5:23-32
    [232]张于光,李迪强,王慧敏,肖启明.用于分子生态学研究的土壤微生物DNA提取方法[J].应用生态学报,2005,16(5):956-960
    [233]李慧,陈冠雄,张颖.分子生物学方法在污染土壤微生物多样性研究中的应用.土壤学报,2004,41(4):612-617
    [234]Yeates C,Gillings M R,Davison A D.Methods for microbial DNA extraction from soil for PCR amplification.Bilology Procedure Online 1998,1(1):40-47
    [235]王敬国.植物营养的土壤化学.北京:北京农业大学出版社,1995.
    [236]陈岭.氨单加氧酶基因(amoA)在氨氧化细菌种群分析和定量检测中的应用研究[D].浙江大学,2003
    [237]S.Leininger,T Urich,M Schloter,et al.Archaea predominate among ammoniaoxidizing prokaryotes in soils[J].Nature,2006,442(17):806-809
    [238]Maria Touma,Thomas E Freitag,et al.Growth,activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J].Enviromental Microbiology,2008,10(5):1357-1364
    [238]Graeme W.Nicol,Sven Leininger,Christa Schleper,et al..The influence of soil pH on the diversity,abundance and transcription-al activity of ammonia oxidizing archaea and bacteria[J].Environmental microbiology(2008)10(11),2966-2978
    [240]Kemmitt,S J.,Wright,D.,Goulding,K.W.T.,et al.pH regulation of carbon and nitrogen dynamics in two agricultural soils[J].Soil Biol Biochem,(2006)38:898-911
    [241] Sharon Avranami,Brendan J.M.Bohannan,N_2O emission rates in a California meadow soil areinfluenced by fertilizer level,soil moisture and thecommunity structure of ammonia-oxidizing bacteria[J]. Global Change Biology (2009)15,643-655
    [242] Rosch C,Bothe H.Improved assessment of denitrifying,N2-fixing,and total- community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes [J].Appl Environ Microbiol,2005,71 (4):2026- 2035
    [243] Rosch C,Mergel A,Bothe H.Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil [J].Appl Environ Microbiol,2002,68 (8):3818-3829
    [244] Rich J J,Dale O R,Song B,Ward B B.Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments [J].Microb Ecol,2008,55 (2):311-320
    [245] Cavigelli M,Robertson G P.The functional significance of denitrifier community composition in terrestrialecosystem.Ecology,2000,81:1402-1414
    [246] Cavigelli M,Robertson G P.Role of denitrifier diversity in rates of nitrous oxide comsumption in a terrestrial ecosystem.Soil Biol Biochem,2001,33:297-310
    [247] Rover M,Heinemeyer O,Kaiser E A.Microbial induced nitrous oxide emissions from arable soil during winter.Soil Biol Biochem,1998,30:1859-1865
    [248] Wieland G,Neumann R,Backhaus H.Variation of microbial communities in soil,rhizosphere,and rhizoplane in response to crop species,soil type and crop development,Appl Environ Microbiol,2001,67:5849-5854
    [249] Zhou J,Xia B,Treves D S,et al.Spatial and resource factors influencing high microbial diversity in soil.Appl Environ Microbiol,2002,68:326-334
    [250] Scala D J,Kerkhof L J.Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol,2000,66:1980-1986
    [251] Brocklehurst K R,Morby A P.Metal-ion tolerance in Escherichia coli:analysis of tran scriptional profiles by genearray technology [J] .Microbiol Ecol,2000,146 (9):2277- 2282
    
    [252] Linton D,Lawson A J,Owen R J,Stanley J.PCR detection,identification to species level,and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples [J] .J Clin Microbiol, 1997,35 (10):2568-2572
    [253] Lukow T,Dunfield P F,Liesack W.Use of the T-RFLP technique toassess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants [J].FEMS M icrobiol Ecol,2000,32 (3):241-247
    [254]Dunbar J,Ticknor L O,Kuske C R.Phylogenetic specificity and rep roducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities[J].Appl & Environ Microbiol,2001,67(1):190-197
    [255]Wu X L,Chin K J,Conrad R.Effect of temperature stress on the structure and function of the methanogenic archaeal community in a rice field soil[J].FEMS Microbiol Ecol,2002,39(3):211-218
    [256]http://mica.ibest.uidaho.edu/trflp.php
    [257]周慧.云南高黎贡山国家自然保护区土壤微生物多样性研究[D].湖南农业大学,2008
    [258]Yu Z,Morrison M.Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis[J].Appl Environ Microbiol,2004,70(8):4800-4806
    [259]程海鹰,肖生科,马光东,汪卫东,王修林.营养注入后油藏微生物群落16S rRNA 基因的T-RFLP对比分析[J].石油勘探与开发,2006,33(3):356-359
    [260]Harada A,Ohkusa T,Kushima K,Sakamoto M,Benno Y,Beppu K,Shibuya T,Sakamoto N,Watanabe S.Identification of bacteria from blood in febrile patients with ulcerative colitis by terminal restriction fragment length polymorphism profile analysis of 16S rRNA gene[J].Scand J Gastroenterol,2008,43(4):423-430
    [261]Moyer C L,Tiedje J M,Dobbs F C,Karl D M.A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes:efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature[J].Appl Environ Microbiol,1996,62(7):2501-2507
    [262]http://mica.ibest.uidaho.edu/enzyme.php.
    [263]Naeem S,Li S.Biodiversity enhance ecosystem reliability[J].Nature,1997,390:507-509
    [264]Tilman D.The ecological conseqences of changes in biodiversity:a search for general principles[J].Ecology,1999,80:1455-1474
    [265]Hartmann M,Widmer F.Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices[J].Appl Environ Microbiol,2006,72(12):7804-7812
    [266]Hansel C M,Fendorf S,Jardine P M,Francis C A.Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile[J].Appl Environ Microbiol,2008,74(5):1620-1633

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700