广西弄岗北热带喀斯特季节性雨林种群空间格局研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种群空间格局分析有利于理解格局形成的原因和物种共存机制。本研究主要从群落学特征、种群结构、空间分布格局动态和种间关联几方面对广西弄岗北热带喀斯特季节性雨林3个典型群落进行了分析。
     分析结果表明,3个样地内物种组成十分丰富,尤其是单种属非常多,甚至有超过10%的种属于单科单属种。3个样地内所有个体总的径级结构均呈倒“J”型,表明群落稳定且更新、生长良好。对主要建群种径级结构的分析发现,蚬木和肥牛树径级频率分布呈现不连续的状态,这可能是由于在热带喀斯特季节性雨林中,乔木层的中径级个体对光资源的需求增加及种间相互竞争加剧所致;东京桐的胸径主要集中在中径级,小径级和大径级相对较少,更新层缺乏,说明其为远期衰退种。
     通过空间点格局相关函数g(r)方法分析3个典型群落内主要树种的空间分布格局,发现80%左右的物种几乎在0-20m的尺度上表现为聚集分布。随着研究尺度的增大,随机分布的物种比例有升高趋势,但在不同群落类型中,这种变化趋势并不相同。一般认为,小尺度上的聚集格局主要由扩散限制等种群生物学特性和生境异质性决定,而大尺度上(>20m)的聚集格局主要由生境异质性的影响形成,同时种间的相互作用也会导致聚集格局的形成,因此推测,种子扩散限制等种群生物学特性、种间的相互作用和生境异质性影响可能是3种典型喀斯特季节性雨林种群空间分布格局形成的主要原因。
     在种群发育过程中,3个群落建群种的空间分布格局随发育过程而变化。蚬木小径级个体在小尺度上形成的“斑块”状分布,在水平空间方向上并不是连续的,而是镶嵌分布于整个群落中。说明蚬木小径级个体的空间分布格局除了受自身更新方式的影响外,可能还与喀斯特石山土壤的不连续性、不均匀性等特性有关。蚬木小径级个体随着DBH的增大,其发生聚集分布的尺度逐渐增大,这可能与植物生长和岩溶作用的密切关系有关。蚬木较大径级个体在较小尺度下表现为随机分布,随着尺度的增加,逐渐过度为聚集分布,后又趋于随机分布。肥牛树从小径级到大径级,发生聚集分布的尺度逐渐缩小,最终随机分布占主导。东京桐各生长阶段个体均以随机分布为主,整个种群也呈随机分布。种群分布格局的变化是种群与生境相互作用的结果,与种群数量的动态变化密切相关,反映了种群的一种适应机制。
     种群不同生长阶段个体之间的相互关系是种群与环境长期相互作用的结果,也是种群动态与稳定性的标志。对蚬木、肥牛树和东京桐各生长阶段个体间的空间关联性研究,有利于进一步加深对其分布格局形成过程的理解。研究表明,随着径级差距的加大,在小尺度上蚬木小径级个体与较大径级个体之间的空间正相关减弱,而负相关增强;在大尺度上空间关联则呈相反的过程。同时发现种群径级相邻越近,蚬木个体之间在空间分布上基本呈正相关。整体上,蚬木各个生长阶段之间的关系基本上呈正相关,但随尺度变化而发生微弱的变化。肥牛树各生长阶段之间的关联都比较密切,只是存在某些尺度下显著与不显著的差别,但整体上均呈正相关。东京桐各生长阶段个体之间的关系在所有尺度下均为不相关,只是在某些尺度下出现轻微的负相关,而另一些尺度下呈微弱的正相关。一般地,如果在小尺度上小径级个体与成年个体存在正相关,说明扩散限制对格局的形成可能起重要作用。综合上述结果,进一步验证了扩散限制在蚬木种群及肥牛树种群格局形成过程中可能起到非常重要作用,而扩散限制对东京桐种群格局的形成作用不明显。
     种间空间关联性的研究有助于理解群落内物种之间的相互作用,以及不同物种在不同生境中的定居分异,客观反映物种与环境的关联性。通过对3个典型群落共59个物种对的种间关联分析,结果表明广西弄岗北热带喀斯特地区多对种间关联性不稳定,这可能与弄岗北热带喀斯特石山小生境的不均匀性、不连续性和复杂多样化等特征有关。在某些尺度上由于物种微生态位上的差异,使得物种达到和谐共存,甚至出现伴生现象,而在其他尺度上由于物种对资源利用的相似性,即生态位重叠,资源竞争会导致生态位分化,物种之间在空间上表现为负相关。本区80%左右物种在0-20m的尺度上呈聚集分布,但显著关联种对比例较低。种间个体之间相互作用的机会少,而同种个体紧密聚集,种内相互作用较易发生。这说明扩散限制导致了同种个体聚集分布,而生境异质性促进了种群生态位分化,种群格局发生变化。
     3个典型群落不同种间空间关联类型累加的结果表明,在所有尺度上,正相关、负相关和不相关所占物种对比例近似,为30%左右。这表明喀斯特季节性雨林物种之间在空间分布上是错综复杂的,物种在空间分布上的分化,促进了喀斯特季节性雨林良性发展。
     综上所述,3个典型的喀斯特季节性雨林目前处于一种稳定状态。种子扩散限制等种群生物学特性以及生境异质性影响可能是物种空间格局形成的主要机制。由于引起物种空间分布变化的原因是多种多样的,而且不同的生态学过程和机制可以产生相同的格局,如何区分如扩散限制、生境异质性、负密度制约等不同机制的影响以及不同机制对喀斯特季节性雨林生物多样性维持的贡献,还需要进一步深入研究。
Spatial patterns analysis of plants may provide significant insights into processes and mechanisms of species coexistence in forest communities. In order to understand community dynamics and mechanisms that control the distribution of species in tropical karst seasonal rainforests in Guangxi Nonggang Nature Reserve, we analyzed community characteristics, population structure, spatial pattern dynamics and spatial associations of dominant plant species of three1-ha tropical karst seasonal forest communities.
     We found that the three communities were species rich. The communities also had high taxonomic diversity with more than10%of species belonging to single genera and single family. The structure of DBH size class of all species in each of the three plots generally showed inverse "J" shape, indicating that all of the three communities were stable and successful regeneration. The frequency distributions of DBH size class of Excentrodendron hsienmu and Cephalomappa sinensis, the two constructive species, were discrete, which may be due to the middle layer species were easy damaged in a tropical karst seasonal rainforest. By comparison, the structure of DBH size class of Deutzianthus tonkinensis, another constructive species, was unimodal, which indicated that it would become a declining species in the future.
     By using the spatial point pattern correlation function g (r), we analyzed spatial distributions of dominant species in the three typical communities. The results showed that the distribution patters about80%of species were aggregative at scales of0-20m, and the percentage of species exhibiting a random or regular pattern increased with scale, mainly occurring at scales of>20m. Biological characteristics (e.g. seed dispersal limitation), and environmental heterogeneity may be the important factor to shape the species spatial distribution in this area.
     The spatial patterns of three constructive species changed with development of the communities. The patches distribution of Excentrodendron hsienmu at small scale was not continuous in horizontal direction and showing a mosaic distribution across the community, which indicated Excentrodendron hsienmu spatial patterns was not only influenced by their own regeneration type, but related to the heterogeneous distribution of karst rocky mountain soil. The scale of clustered distribution increased as the DBH size of Excentrodendron hsienmu grew. Larger DBH size class individuals of Excentrodendron hsienmu showed random distribution, and it gradually became aggregated distribution as the scale increased and finally tended to be random distribution. Form small to large diameter of Cephalomappa sinensis individuals, the scale of aggregate distribution is gradually reduced, and eventually showed random distribut. Deutzianthus tonkinensis were mainly randomly distributed at different growth stages. The variation of population distribution pattern resulted from the interaction between populations and environment, which reflected an adaptation mechanism of the population.
     The relationship between different age classes of individuals was a result of long-term interactions between populations and the environment, and hence it could provide an insight into population dynamics and stability. The spatial associations of different growth stages of Excentrodendron hsienmu, Cephalomappa sinensis and Deutzianthus tonkinensis could facilitate can distinguish our understanding of the mechanism that produced their spatial patterns. The results showed that positive interactions were to be found between small individuals and larger individuals of Excentrodendron hsienmu at small scale. On the whole, the relationships between the different growth stages of Excentrodendron hsienmu were basically positive interactions, and only slightly changed with the scale. Positive interactions were found between the different growth stages of Cephalomappa sinensis except at several certain scales. No significant spatial associations between the different growth stages of Deutzianthus tonkinensis were observed at all spatial scales. Therefore, to sum up, the results verified that dispersal limitation may play an important role in determining spatial patterns of Excentrodendron hsienmu and Cephalomappa sinensis.
     Exploring interspecific spatial associations are helpful in understanding the interactions between species within the community and the niche differentiation among species. We analyzed59species pairs, and the results showed that interspecific associations of some species pairs were unstable. Because of the high habitat heterogeneity, resources competition between species-pairs at one scale could lead to niche differentiation; at the other scales, species-pairs could coexist and even became companions. This area about80%of species-pairs showed aggregated distribution at scale of0-20m, but few species-pairs displayed significant associations. These results suggested that dispersal limitation may cause the interspecific individuals aggregated distribution, in contrast, habitat heterogeneity resulted in the population niche differentiation.
     We found that the proportions of positive interactions, negative interactions and spatial segregation were about30%, respectively, indicating that the spatial distribution were complex, and spatial segregation promoted successful regeneration in the karst seasonal rainforest.
     In summary, the three typical karst seasonal rainforest communities were now in stable status. Biological characteristics (e.g. seed dispersal limitation), and environmental heterogeneity may be the important mechanism to shape species spatial pattern in this area. However, different ecological processes and mechanisms can produce the same distribution pattern, how to distinguish the different mechanisms such as dispersal limitation, habitat heterogeneity and negative density dependence which contribute to maintain the biodiversity in the karst seasonal rainforeststill remains to be explored.
引文
[1]Ripley BD.Modeling spatial patterns (with discussion)[J].Journal of the Royal Statistical Society, Series B, 1977,39:172-212.
    [2]Diggle PJ.On parameter estimation and goodness-of-fit testing for spatial point patterns[J]. Biometrics, 1979,35:87-101.
    [3]Greig-Smith P.Quantitative Plant Ecology,3rd edn[M]. London:Blackwell Scientific Publications,1983.
    [4]张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):344-349.
    [5]张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析[J].生态学报,2004,24(1).
    [6]Wiegand T., Moloney K. A. Rings, cireles, and null-models for Point Pattern analysis in ecology[J]. 0ikos,2004,104(2)209-229.
    [7]杨洪晓,张金屯,吴波,李晓松,张友炎.毛乌素沙地油蒿种群点格局分析[J].植物生态学报.2006,30(4):563-570.
    [8]李海涛.植物种群分布格局研究概况[J].植物学通报.1995,12(2):19-26.
    [9]Diggle RJ.Statistical analysis of Spatial Point Patterns[M]. London:Academic Press,1983.
    [10]蒋忠诚,袁道先.西南岩溶区的石漠化及其综合治理综述[M].南宁:广西科技出版社,2003.[11]工世杰.喀斯特石漠化概念演绎及其科学内涵的探讨[J].中国岩溶,2002,21(2):101-105.
    [12]王世杰.喀斯特石漠化——中国西南最严重的生态地质环境问题[J].矿物岩石地球化学通报,2003,22(2):120-126.
    [13]梁畴芬,王克健,苏宗明.广西热带北缘上的一个岩溶森林自然保护区一弄岗[J],广西植物,1981,1(2):1-6.
    [14]梁畴芬,梁健英,刘兰芬,莫新礼.广西弄岗自然保护区综合考察报告[I].广西植物,1988(增刊1):83.
    [15]吴春林.西热带石灰岩季节雨林分类与排序[J].植物生态学与地植物学学报,1991(1):17-26.
    [16]王献溥,孙世洲,李信贤.广西石灰岩季节性雨林分类的研究[J].植物研究,1998,(04):52-84.
    [17]苏宗明,李先混.广西岩溶植被类型及其分类系统[J].广西植物,2003,23(4):289-293.
    [18]蓝芙宁,蒋忠诚,邓艳,李恩香.广西岩溶地区森林群落及其生态因子的比较研究[J].中国岩溶,2004,23(1):30-36.
    [19]李先琨,蒋忠诚,黄玉清,等.桂西南岩溶山地优势植物种群动态及其对岩溶作用的影响[J].地球学报,2008,29(2):253-259.
    [20]朱宏光,刘正富,苏建苗,等.广西北热带岩溶区蚬木幼苗的光合与蒸腾特性[J].安徽农业科学,2011,39(12):7147-7149.
    [21]曲仲湘,吴玉树,王焕校.植物生态学[M].北京:高等出版社,1983.
    [22]梁士楚.贵阳喀斯特山地云贵鹅耳枥种群结构和动态初探[J].植物生态学与地植物学学报,1992,16(2):108-117.
    [23]余世孝.数量生态学导论[M].北京:科学技术文献出版社,1995:68-87.
    [24]王伯荪,余世孝,彭少麟,等.植物群落学研究手册[M].广州:广东高等教育山版社,1996:85-99.
    [25]李景文.森林生态学(第二版)[M].北京:中国林业出版社,1994.
    [26]奇凯.黑里河天然油松林主要植物种空间格局和空间关联[D].北京林业大学,2011.
    [27]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001.
    [28]龙海舟.川西巴郎山川滇高山栋种群空间格局研究[D].北京林业大学2010.
    [29]杨在中.群落种群格局研究中的三角边界插值公式[J].生物数学学报.1986(02):96-100.
    [30]黄健儿,吕月良,施友文.格氏拷空间格局的初步研究[J].福建林学院学报.1991,11(3):266-271.
    [31]张金屯.草地群落主要种群的小格局分析[J].草业学报.1994,(4):7-11.
    [32]惠刚盈.角尺度——个描述林木个体分布格局的结构参数[J].林业科学.1999,35(1):27-42.
    [33]张金屯.数量生态学[M].北京:科学出版社,2004.
    [34]汤孟平,唐守正,雷相东,等.Ripley's K(d)函数分析种群空间分布格局的边缘校正[J].生态学报,2003,23(8):1533-1538.
    [35]张忠华,梁士楚,胡刚.桂林岩溶石山阴香种群的空间分布格局[J].福建林业科技,2007,(03):103-106.
    [36]张健,郝占庆,宋波,叶吉,李步杭,姚晓琳.长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性[J].应用生态学报,2007,(08):1681-1687.
    [37]张春雨,赵秀海.随机区块法在空间点格局分析中的应用[J].生态学报,2008,(07):3108-3115.
    [38]曹晏宁,史利莎,韩烁,侯安燕,涂凡,张金屯.科尔沁沙地植被恢复中差不嘎蒿种群不同龄级个体的点格局分析[J].植物学通报,2008,(04):437-442
    [39]时培建,戈峰,杨清培,王建国.点格局分析中边缘校正的一种新算法及其应用[J].生态学报,2009,(02):804-809.
    [40]李立,陈建华,任海保,米湘成,于明坚,杨波.古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析[J].植物生态学报,2010,(03):241-252.
    [41]王磊,孙启武,郝朝运田胜尼,张姗姗,陈一馄,张小平.皖南山区南方红豆杉种群不同龄级立木的点格局分析[J].应用生态学报,2010,(02):272-278.
    [42]韩文衡,向悟生,叶铎,吕仕洪,丁涛,李先琨.广西木论保护区喀斯特常绿落叶阔叶混交林优势种空间格局及其相关性[J].应用生态学报,2010,(11):2769-2776.
    [43]陈丽,王炜,王东波,王永利.扩展点格局分析方法在灌木种群空间分布格局研究中的应用[J].生态学杂志,2011,(12)2700-2705.
    [44]何艳华,闫明,武丽君,张直峰,毕润成.山西霍山白桦种群不同龄级立木的点格局分析[J].植物科学学报,2011,(06):662-667.
    [45]祝燕,白帆,刘海丰,李文超,李亮,李广起,王顺忠,桑卫国.北京暖温带次生林种群分布格局与种间空间关联性[J].生物多样性,2011,(02)252-259.
    [46]喻理飞,朱守谦,叶镜中,魏鲁明,陈正仁.退化喀斯特森林自然恢复过程中群落动态研究[J].林业科学,2002,(01):1-7.
    [47]区智,李先琨,吕仕洪,向悟生,苏宗明,陆树华.桂西南岩溶植被演替过程中的植物多样性[J].广西科学,2003,(01):63-67.
    [48]朱守谦,陈正仁,魏鲁明.退化喀斯特森林自然恢复的过程和格局[J].贵州大学学报(农业与生物科学版),2002,(01):19-25.
    [49]李援越,祝小科,朱守谦.退化喀斯特群落自然恢复程度评价[J].南京林业大学学报(自然科学版),2003,(04):31-34.
    [50]马克平.大型固定样地:森林生物多样性定位研究的平台[J].植物生态学报,2008,(02):237
    [51] Dallmeier F. Long-term monitoring of biological diversity in tropical forest areas [J].MAB Digest.1992.
    [52]Wri, Iuch, Unep. Global biodiversity strategy [J]. Library of Congress Catalog Card,1992,92-104.
    [53]Yamakura T,Yamada I,Inoue T,et al.A long-term and large-scale research of the Lambir Rain Forest in Sarawk:Progress and conceptual background of Japanese activities[J].Tropics,1995,4:259-276.
    [55]Ashton PS, Ogino KLong Term Ecological Research of Tropical Rain Forest in Sarawak [M]:Ehime University,1995.
    [54]Ashton PS. What can be learned from a 50ha plot which cannot be learned any other way? [A]. In:Lee, Hubbell SP, eds.1995.
    [56]苏宗明,赵天林,黄庆昌.弄岗自然保护区植被调查报告[J].广西植物,1988(增刊1):185-214.
    [57]邓自强.弄岗自然保护区岩溶地质考察报告[J].广西植物,1988(增刊1):1-16.
    [58]李克强.弄岗自然保护区地貌分区及地貌发育初考[J].广西植物,1988(增刊1):33-51.
    [59]农绍勤.弄岗自然保护区气候资源考察报告[J].广西植物,1988(增刊1):74-82.
    [60]陈平.弄岗自然保护区土壤考察报告[J].广西植物,1988(增刊1):52-73.
    [61]苏宗明.广西植被植物区系研究[J].广西植物,1997,(01):61-69.
    [62]欧祖兰,苏宗明,李先琨.广西岩溶植被植物区系[J].广西植物,2004,(04):302-310.
    [63]广西森林编辑委员会.广西森林[M].北京:中国林业出版社,2001,281-282.
    [64]李先琨,苏宗明,吕仕洪等.广西岩溶植被自然分布规律及对岩溶生态恢复重建的意义.山地学报,2003,21(2):129-136.
    [65]中科院植物研究所生态室编.植物生态学研究报告集[R].北京:科学出版社,1978.
    [66]苏宗明.广西(山王丌岗石灰岩山森林类型的分类问题[J].广西植物,1981,(02):7-10.
    [67]郭伦发,何金祥,王新桂,林春蕊,何成新.大戟科主要油料植物的开发利用研究进展[J].中国油脂,2009,(10):57-61.
    [68]Condit R. Research in large, long-term tropical forest plots. Trends in Ecology and Evolution, 1995(10):18-23.
    [69]Condit R. Tropical Forest Census Plots:Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer, Berlin.1998.
    [70]叶万辉,曹洪麟,黄忠良等.鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究[J].植物生态学报,2008,32(2):274-286.
    [71]郝占庆,李步杭,张健,王绪高,叶吉,姚晓琳.长白山阔叶红松林样地(CBS):群落组成与结构[J].植物生态学报,2008,(02):238-250.
    [72]祝燕,赵谷风,张俪文,沈国春,米湘成,任海保,于明坚,陈建华,陈声文,方腾,马克平.古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构[J].植物生态学报,2008,(02):262-273.
    [73]郝占庆,于德永,杨晓明,丁之慧.长白山北坡植物群落α多样性及其随海拔梯度的变化[J].应用生态学报,2002,(07):785-789.
    [74]张金屯.植被数量生态学方法[M].北京:中国科学技术出版社,1995,1-380.
    [75]HE F.L., RICHARD P D. Density-dependent effects on tree survival in an old-growth Douglas fir forest[J]. Journal of Ecology,2000,88:676-688.
    [76]袁志良,王婷,朱学灵,沙迎迎,叶永忠.宝天曼落叶阔叶林样地栓皮栎种群空间格局[J].生物多样性,2011,(02):224-231.
    [77]Frost I,Rydin H. Spatial pattern and size distribution of the animal-dispersed Quercus ruburin two spruce-dominanted forests.Eco-science,2000,7:38-44.
    [78]陈章和,许兆然,张德明.珍稀濒危石灰岩植物——蚬木的生理生态学研究.广西植物,1993(增刊4):103-113.
    [79]Diggle, P J. Statistical Analysis of Spatial Point Patterns[J].London:Arnold,2003.
    [80]Ripley, B.D. The second-order analysis of stationary point processes[J]. Journal of Applied Probability,1976,13:255-266.
    [81]Illian, J., Penttinen,A., Stoyan, H., et al. Statistical analysis and modelling of spatial point patterns. John Wiley & Sons,2008.
    [82]Stoyan D,Stoyan H. Fractals, Random shapes and point fields. Methodsof Geometrical Statistics. John Wiley & Sons,1994.
    [83]Dale M R T.Dixon P.Fortin M J,et al. Conceptual and Mathematical Relationships among Methods for Spatial Analysis.Ecography,2002,25:558-577.
    [84]Loosmore, N.B. and Ford, E.D. Statistical inference using the G or K point pattern spatial statistics[J]. Ecology,2006,87:1925-1931.
    [85]Perry, G L W,Miller, B P,Enright, N J. A Comparison of Methods for the Statistical Analysis of Spatial Point Patterns in Plant Ecology[J]. Plant Ecology,2006,187(1):59-82.
    [86]李亮,刘海丰,白帆,祝燕,李广起,李文超,桑卫国.东灵山4种落叶阔叶次生林的物种组成与群落结构[J].生物多样性,2011,(2):243-251.
    [87]Hubbell SP. Two decades of research on the BCI Forest Dynamics Plot:where we have been and where we are going. In:Tropical Forest Diversity and Dynamism:Findings from a Large-scale Plot Network (eds Losos EC, Leigh EG Jr). Chic ago:University of Chicago Press,2004,8-30.
    [88]李昌龙,马瑞君,王继和,李爱德,严子柱,李得禄.甘肃民勤连古城自然保护区优势种种群结构和动态研究[J].西北植物学报,2005,(8):1628-1636.
    [89]茹文明,张桂萍,毕润成,张峰,张金屯.濒危植物脱皮榆种群结构与分布格局研究[J].应用与环境生物学报,2007,(1):14-17.
    [90]兰国玉,胡跃华,曹敏,朱华,王洪,周仕顺,邓晓保,崔景云,黄建国,刘林云,许海龙,宋军平,何有才‘.西双版纳热带森林动态监测样地——树种组成与空间分布格局[J].植物生态学报,2008,(2):287-298.
    [91]叶万辉,曹洪麟,黄忠良,练琚愉,王志高,李林,魏识广,王章明.鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究[J].植物生态学报,2008,(2):274-286.
    [92]张金屯,孟东平.芦芽山油松-辽东栎林优势树种空间分布格局研究[J].西北植物学报,2006,(8):1682-1685.
    [93]韩路,王海珍,彭杰,莫治新.塔里木河上游天然胡杨林种群空间分布格局与动态研究[J].西北植物学报,2007,(8):1668-1673.
    [94]张赟,张春雨,赵秀海.内蒙古黑里河天然油松林主要树种的空间分布格局[J].西北植物学报,2009,(1):167-173.
    [95]Forman R T, Hahn C D. Spatial patterns of trees in Caribbean semi-evergreen forest[J].Ecology,1980, 61:1267-1274.
    [96]He FL, Legendre P, LaFrankie JV Distribution patterns of tree species in a Malaysian tropical rain forest[J]. Journal of Vegetation Science,1997,8,105-114.
    [97]Murrell D, Purves D, Law R.Intraspecific aggregation and species coexistence. Trends in Ecology and Evolution,2002,17,211.
    [98]张春雨,赵秀海,夏富才.长白山次生林树种空间分布及环境解释[J].林业科学,2008,(8):1-8.
    [99]杨秀清,韩有志.关帝山次生杨桦林种群结构与立木的空间点格局[J].西北植物学报,2010,(9):1895-1901.
    [100]侯继华,黄建辉,马克平.东灵山辽东栎林主要树种种群11年动态变化[J].植物生态学报,2004,(5):609-615.
    [101]缪宁,刘世荣,史作民,喻泓,刘兴良.川西亚高山红桦-岷江冷杉林优势种群的空间格局分析[J].应用生态学报,2009,(6):1263-1270.
    [102]郭志华,卓正大,陈洁,吴梅凤.庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究[J].植物生态学报,1997,(5):33-41.
    [103]黄世能,李意德,骆土寿,王伯荪.海南岛尖峰岭次生热带山地雨林树种间的联结动态[J].植物生态学报,2000,(5):569-574.
    [104]郭忠玲,马元丹,郑金萍,刘万德,金哲峰.长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究[J].应用生态学报,2004,(11):2013-2018.
    [105]汤孟平,周国模,施拥军,陈永刚,吴亚琪,赵明水.天目山常绿阔叶林优势种群及其空间分布格局[J].植物生态学报,2006,(5):743-752.
    [106]Wiegand T,Gunatilleke S,Gunatilleke N.Species associations in a heterogeneous Sri Lankan dipterocarp forest.The American Naturalist,2007,170,E77-E95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700