热带印度洋海表面温度年际变化主模态对亚洲季风区大气环流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用NCEP/NCAR大气资料和HadISST资料集的SST资料,使用最大协方差分析(MCA)、回归等统计方法和海-气耦合模式数值试验,系统深入地研究了热带印度洋海表面温度年际变化(SSTA)主要模态对亚洲季风区大气环流变化的影响。确定了热带印度洋SSTA和亚洲季风区大气环流之间在年际尺度上的主要耦合模态;揭示了热带印度洋SSTA影响亚洲季风区大气环流“耦合主模态”所对应的海温及不同层次大气环流的异常变化;探讨了热带印度洋SSTA对亚洲季风区大气环流和降水、夏季南亚高压、夏季北半球中纬度绕球遥相关的主要影响及其机制,揭示了热带印度洋海盆模的“电容器”效应。得到的主要创新性成果如下:
     1.首次将“最大协方差分析”用于研究热带印度洋SSTA与亚洲季风区大气环流异常之间的耦合关系中,确定了当扣除ENSO对大气的直接影响后,热带印度洋SSTA和亚洲季风区大气环流异常之间的两个主要耦合模态:第一耦合模态对应的热带印度洋SSTA模态为海盆模,该模态在春季达峰值位相,而且相应的海温异常可以从春季持续到夏季;第二耦合模态对应的热带印度洋SSTA模态为偶极子模态,该模态在秋季达峰值位相。第一耦合模态最大协方差的方差贡献高达95%,而第二耦合模态最大协方差的方差贡献只有25%左右,故将第一耦合模态称为热带印度洋SSTA影响亚洲季风区大气环流的“耦合主模态”。
     2.给出了“耦合主模态”对应的热带印度洋海盆模对亚洲季风区大气环流的影响。
     春季,作为热源的热带印度洋暖海盆模态,会引起大气的“Matsuno-Gill pattern”响应,从而在高层青藏高原西侧形成高压异常,在低层引起孟加拉湾南部到赤道西太平洋地区较强的东风异常,西北太平洋地区的异常反气旋性环流以及东亚的南风异常。同时,热带印度洋暖海盆模可以导致热带印度洋海区低层气流辐合形成上升运动,引起海面降水异常偏多,大值区位于西南印度洋。东亚地区异常偏南气流可以输送更多水汽,在中国东部到日本南部降水异常偏多。菲律宾东部降水异常偏少。
     到了夏季,对应继续维持的热带印度洋暖海盆模态,大气的响应与春季有明显不同。夏季平均西南季风可以将由印度洋暖海盆模引起的异常偏多的水汽向青藏高原南侧地区输送,造成阿拉伯海东部-印度西部降水异常偏多,在该地区形成一新的热源,正是该热源在其西北侧引起的Rossby波响应使得青藏高压西侧异常高压与春季相比向西北方向有所偏移;同时新热源在低层引起辐合,使得印度西南季风、索马里急流加强,从而在整个热带印度洋地区形成异常顺时针环流,该异常环流又会加强水汽的向北输送,从而更加强该新热源,而该新热源又进一步加强这样的环流异常,两者互相促进,形成一个“正反馈过程”。
     同时夏季中纬度亚洲急流将青藏高原西侧异常高压信号沿急流波导向下游传播,引起日本海上空的高度场异常。西北太平洋异常反气旋性环流与春季相似,中国东部夏季风依然偏强,水汽输送和降水也偏多。对于冷位相的海盆模态,上述异常变化相反。
     总之,揭示了热带印度洋海盆模的“电容器”效应:ENSO首先对印度洋进行“充电”,形成热带印度洋海盆模,海盆模在ENSO峰值位相后的春季达峰值位相,并可以从春季持续到夏季;该模态又可以“放电”,首先影响青藏高原西侧异常高压,并通过中纬度急流波导的传播而影响更远地区的大气环流。印度夏季风通过水汽输送的途径放大了热带印度洋SSTA对大气环流的影响。
     3.通过比较热带太平洋ENSO和印度洋海盆模对夏季南亚高压的影响,进一步证实了印度洋海盆模的“电容器”作用,当SST升高(降低)会使南亚高压偏强(偏弱)。而ENSO对夏季南亚高压的直接影响并不显著,夏季南亚高压和前期Ni?o3指数之间显著正相关只是个表象,并不是ENSO的直接影响结果。
     4.发现了热带印度洋SST年际变化主模态可能引起北半球夏季中纬度绕球遥相关波列。
     本文证实了尽管热带印度洋与热带太平洋相比SSTA的振幅要小得多,但是通过夏季风对水汽的异常输送,形成新的异常热源,放大了热带印度洋SSTA对亚洲夏季风环流的影响,突出了热带印度洋SSTA在大气环流变异中的重要性。
Based on NCEP/NCAR atmospheric data and SST data of HadISST dataset, some statistical methods, such as Maximum Covariance Analysis (MCA) and regression methods, and Ocean-atmosphere coupled model have been used to systematic and comprehensively study the impacts of the SST interannual anomaly (SSTA) in the Tropical Indian Ocean (TIO) on the atmospheric circulation in the Asian Monsoon Region (AMR) in this paper. It is found the dominating coupled modes between the SSTA in TIO and the atmospheric circulation anomaly in ARM at the interannual time scale. The variabilities of the SSTA in TIO and atmospheric circulation anomaly at different levels of the troposphere in AMR associated to the“dominating coupled modes”are revealed. The impacts of the SSTA in TIO on the atmospheric circulation and precipitation, the South Asian High (SAH) and Circumglobal teleconnection (CGT) in the boreal summer and their mechanisms are investigated. Then the“capacitor”role of the dominating mode of the SSTA in TIO has been revealed:
     1. It is the first time to using the MCA method for investigating the coupled relationship between the SSTA in TIO and atmospheric circulation in AMR and getting two mainly coupled modes between them after the ENSO direct impact signal is removed from the atmosphere. The SSTA mode associated to the first coupled modes, i.e. Indian Ocean Basin mode (IOBM), peaks in the spring and can persist to the ensuring summer. The SSTA associated to the second coupled modes, i.e. Indian Ocean Dipole (IOD) mode, peaks in the autumn. The covariance contribution of the maximum covariance of the first coupled modes is up to 95%, while for the second coupled modes is only about 25%. So the first coupled modes are called as a“dominating coupled modes”of the SSTA in TIO impacts on the atmospheric circulation in AMR in this study.
     2. The impacts of the IOBM associated to the“dominating coupled modes”on atmospheric circulation have been revealed.
     In spring, the warm IOBM, being a heat source, can induce the“Matsuno-Gill pattern”atmosphere response and make positive height anomaly over west to the Tibetan Plateau at upper level, easterly wind over areas from the south of the Bay of Bengal to the equatorial west Pacific, anticyclone over the northwest Pacific, and south wind over the East Asian at lower level. At the same time the IOBM can induce convergence at lower level around the TIO rim and ascending motion of the atmosphere, which can induce more precipitation anomalies with large values over the southwest Indian Ocean. The south wind anomalies over the East Asian can transport more water vapor to this region and make precipitation more over areas from the east China to the south Japan. The precipitation over the east of the Philippine is less.
     While in summer associated to the warm IOBM persisting from spring to summer, there are some obvious different responses of atmosphere comparing to that in spring. The southwesterly of the India summer monsoon is able to transport anomalous more moisture associated with the warm IOBM towards the south Asian, and induce more precipitation over east Arab Sea-west India and forming an additional heating source. It is this new heat source is responsible for the northwestward shift of the positive height anomaly west to the Tibetan Plateau at upper level. At the same time it can induce convergence at lower level and make the Somali jet stream and southwesterly of the Indian summer monsoon are stronger, and then form a clockwise circulation in the TIO. This clockwise circulation can transport more water vapor to northward and strength this new heat source. And this new heat source can further contribute to this circulation. Both promote to each other and form“a positive feedback”. On the other hand, the Asian jet stream over the mid-latitude can propagate signal of the anomalous high over west to the Tibetan Plateau downstream along the waveguide and induce the positive height anomaly over the Sea of Japan. The anticyclone in the northwest Pacific at low level is similar with that in spring. Also companied with this anticyclone, there are anomalous southerly over east of China, i.e. stronger East Asian summer monsoon, with more water vapor transporting and more precipitations. For the cool IOBM, above anomalies are opposite.
     In general, above investigation reveals the“capacitor”role of the IOBM: first the ENSO“charges”the TIO and induce IOBM, which peaks in the spring after the mature phase of the ENSO and can persist from spring to summer; then the IOBM can“discharge”and affect the anomaly high west to the Tibetan Plateau and remote atmospheric circulation by mid-latitude Asian jet stream propagation along wave guide. It is the India Summer monsoon that enlarges the impacts of the SSTA in TIO on the atmospheric circulation through water vapor transportation.
     3. By comparing the impacts of the IOBM and the ENSO on the SAH in the boreal summer, the“capacitor”role of the IOBM is revealed in further. The warm (cool) IOBM can make the SAH stronger (weaker). While the direct influence of the ENSO on SAH in boreal summer is insignificant. And it is pointed out that the positive significant correlation between the SAH in summer and the leading several months Ni?o3 index is only a superficies, and not the result from the direct influence of the ENSO.
     4. It is found that there is a possibility of the SSTA in TIO inducing the Circumglobal Teleconnection in the summertime mid-latitude circulation of the Northern Hemisphere.
     Although magnitude of the SSTA in TIO is much less than those of the tropical Pacific, the results of this study prove that the SSTA in TIO is of importance in affecting the atmospheric circulation through inducing atmospheric anomaly heating in the south Asian area by the Asian summer monsoon transportation of anomalous water vapor, which enlarges the impacts of the SSTA in TIO on the Asian summer monsoon circulation.
引文
[1] 巢纪平, 袁绍宇, 蔡怡, 热带印度洋的大尺度海气相互作用事件, 气象学报, 2003, 61(2): 251-255.
    [2] 巢清尘, 巢纪平, 热带西太平洋和东印度洋对 ENSO 发展的影响, 科学进展, 2001, 11(12): 1293-1300.
    [3] 陈烈庭, 阿拉伯海南海海温距平纬向差异对长江中下游降水的影响, 大气科学, 1991, 15 (1) : 33- 41.
    [4] 陈月娟, 我国夏季风和降水与邻近海洋水温关系的数值试验, 气候变化若干问题研究,北京: 科学出版社, 1992: 157-167.
    [5] 邓爱军, 陶诗言, 陈烈庭, 印度洋海表温度的时间分布特征及其与我国汛期降水关系的讨论, 大气科学, 1989, 13 (4): 393-399.
    [6] 胡瑞金, 热带印度洋热收支和经向环流的研究, 中国海洋大学博士论文, 2003.
    [7] 黄荣辉,孙凤英,热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响, 气科学, 1994, 8(2): 141-151.
    [8] 金祖辉, 沈如桂, 长江中下游涝梅和旱梅年海温场和热带环流系统的特征, 气象科学技术集刊(11), 北京: 气象出版社, 1987: 83-88.
    [9] 琚建华,陈琳玲,李崇银,太平洋-印度洋海温异常模态及其直属定义的初步研究, 热带气象学报, 2004, 20(6): 617-624.
    [10] 李崇银, 穆明权, 赤道印度洋海温偶极子振荡及其气候影响, 大气科学, 2001, 25 (4): 433-4431.
    [11] 梁平德, 印度夏季风与我国华北夏季降水,气象学报, 1988, 46(2): 75~81.
    [12] 刘秦玉,秦婷,热带三大洋海表温度和云水关系的初探,2007,中国海洋大学学报(已接收)。
    [13] 刘屹岷, 吴国雄, 刘辉等, 空间非均匀加热对副热带高压形成和变异的影响Ⅲ: 凝结潜热加热与南亚高压及西太平洋副高,气象学报, 1999, 57(5): 525-538.
    [14] 吕俊梅, 琚建华, 张庆云, 陶诗言, 热带西太平洋海温距平与 Rossby 波传播对 1993 和1994 年东亚夏季风异常影响的差异, 大气科学, 2006, 30(5): 977-987.
    [15] 罗绍华, 金祖辉, 陈烈庭, 印度洋和南海海温与长江中下游夏季降水的相关分析, 大气科学, 1985, 9(3): 336-342.
    [16] 闵锦忠, 孙照渤, 曾刚, 南海和印度洋海温异常对东亚大气环流及降水的影响, 南京气象学院学报, 2000, 23(4): 542-548.
    [17] 孙安健, 江淮流域旱涝年份准定常行星波分布与平均纬向风速的差异,应用气象学报,1994, 5(1): 68-76
    [18] 孙旭光, 大气对太平洋年际和年代际海温异常响应的观测分析和数值模拟研究, 南京大学博士论文, 2005.
    [19] 谭言科, 张人禾, 何金海等,热带印度洋海温的年际变化与ENSO, 大气科学, 2004, 62(6): 831-840.
    [20] 魏凤英, 《现代气候统计诊断预测技术》,北京:气象出版社,1999.
    [21] 吴国雄, 刘还珠, 降水对热带海表温度异常的邻域响应Ⅰ: 数值模拟, 大气科学, 1995, 19(4): 422-434.
    [22] 吴国雄, 刘平, 刘屹岷等,印度洋海温异常对西太平洋副热带高压的影响—大气中的两级热力适应,气象学报, 2000, 58(5): 513-522.
    [23] 吴国雄, 孟文, 赤道印度洋-太平洋地区还起系统的齿轮耦合和ENSO事件Ⅰ: 资料分析, 大气科学, 1998, 22(4): 470-480.
    [24] 武术, 刘秦玉, 胡瑞金, 热带太平洋-南海-印度洋海面风与海面温度年际变化整体耦合的主模态, 中国海洋大学学报, 2005, 35(4): 521-526.
    [25] 肖子牛,晏红明, El Ni?o 位相期间印度洋海温异常对中国南部初夏降水及初夏亚洲季风影响的数值模拟研究,大气科学, 2001, 25(2): 461-469.
    [26] 杨辉, 李崇银, 热带太平洋-印度洋海温异常综合模对南亚高压的影响, 大气科学, 2005, 29(1): 99-110.
    [27] 晏红明, 肖子牛, 印度洋海温异常对亚洲季风区天气气候影响的数值模拟研究, 热带气象学报, 2000, 16: 18-27.
    [28] 闫晓勇, 张铭, 赤道东太平洋海温异常期间印度洋偶极子对东亚季风区影响的数值模拟.热带气象学报, 2004, 20(24): 375-382.
    [29] 袁佳双, 郑庆林, 热带印度洋持续暖海温对东亚初夏大气环流影响的数值研究, 热带气象学报, 2004, 20(3): 249-257.
    [30] 张礼平, 柯怡明, 胡江林, 刘利平, SVD 方法在场分析和预测中的应用, 热带气象学报,2002, 18(3):237-244.
    [31] 张琼, 刘平, 吴国雄, 印度洋和南海海温与长江中下游旱涝, 大气科学, 2003, 127(16): 992-1006.
    [32] 张琼, 钱永甫, 南亚高压的年际和年代际变化, 大气科学, 2000, 124(11): 67-78.
    [33] 周天军, 宇如聪, 李薇等, 20 世纪印度洋气候变率特征分析, 气象学报, 2001, 59(3): 257-271.
    [34] Ambrizzi T, Hoskins B J, Hsu H H, Rossby wave propagation and teleconnection patterns in the Austral winter, J. Atmos. Sci., 1995, 52: 3661-3672
    [35] Annamalai H., Raghu Mutugrdde, Role of Indian Ocean in regional climate variability. Earth’s Climate: The ocean-atmosphere interaction. Geophysical Monograph, 2004, 147: 213-246.
    [36] Annamalai, H., R. Murtugudde, J. Potemra, et al., Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode, Deep-Sea Res. II, 2003, 50: 2305-2330.
    [37] Annamalai H., Shang-Ping Xie, and J.P. Mccreary, Impacts of Indian Ocean Sea Surface Temperature on Developing El Ni?o, J. Climate, 2005a, 15: 302-319.
    [38] Annamalai H., Ping Liu, and Shang-Ping Xie, Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons, J. Climate, 2005b, 18: 4150-4167.
    [39] Baquero-Bernal, A., M. Latif, and S. Legutke, On dipole-like variability in the tropical Indian Ocean, J. Climate, 2002, 15: 1358-1368.
    [40] Behera, S. k., R. Krishnan, and T. Yamagata, Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994, Geophys. Res. Lett., 1999, 26: 3001-3004.
    [41] Behera, S. K., S. A. Rao, H. N. Saji, and T. Yamagata, Comments on “A cautionary note on the interpretation of EOFs”, J. Climate, 2003a, 16: 1087-1093.
    [42] Behera, S. K., and T. Yamagata, Influence of the Indian Ocean on the Southern Oscillation, J. Meteor. Soc. Japan, 2003b, 81: 169-177.
    [43] Bjerknes, J., Atmospheric teleconnections from the equatorial Pacific, Mon. Wea. Rev., 1969, 97: 163-172.
    [44] Chandrasekar, A., and A. Kitoh, Impact of localized sea surface t temperature anomalies over the equatorial Indian Ocean on the Indian summer monsoon, J. Meteorol. Soc. Jpn., 1999, 76: 841-853.
    [45] Chiang, J. C. H. & Sobel, A. H. Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate, J. Climate, 2002, 15, 2616-2631.
    [46] Clark C. O., C. Oelfke, J. E. Cole, and P. J. Webster, Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability, J. Climate, 2000, 13: 4452-4452.
    [47] Czaja, A., and C. Frankignoul, Observed impact of Atlantic SST Anomalies on the North Atlantic Oscillation, J. Climate, 2002, 15: 606-623.
    [48] Ding Qinghua and B. Wang, Circumglobal teleconnection in the northern hemisphere summer, J. Climate, 2005, 18: 3483-3505.
    [49] Ellis, R. S., A Preliminary study of a relation between surface temperature of the North Indian Ocean and precipitation over India, M.S. thesis, Department of Meteorology, Florida State University, Tallahassee, 1952.
    [50] Enomoto, T., B. J. Hoskins, and Y. Matsuda, The formation mechanism of the Bonin high in August, Quart. J. Roy. Meteor. Soc., 2003, 129: 157-178.
    [51] Frankignoul, C., Sea surface temperature anomalies, planetary waves and air–sea feedbacks in the middle latitude, Rev. Geophys., 1985, 23: 357-390.
    [52] Gill, A. E., Some simple solutions for heat-induced tropical circulation, Quart. J. Roy. Meteor. Soc., 1980, 106: 447-462.
    [53] Gualdi, S., E. Guilyardi, A. Navarra, The interannual variability in the tropical Indian Ocean as simulated by a CGCM, Clim. Dyn., 2003, 20: 567-582.
    [54] Guan, Z., K. Ashok, and T. Yamagata, Summer-time response of the tropical atmosphere to the Indian Ocean dipole sea surface temperature anomalies, J. Meteorol. Soc. Jpn., 2003, 81: 531-561.
    [55] Horel, J.D. and J.M. Wallace, Planetary-scale atmospheric phenomena associated with the Southern Oscillation, Mon, Weather Rev., 1981, 109: 813-829.
    [56] Huang, B. H., and J. L. Kinter, The interannual variability in the tropical Indian Ocean and its relations to El Ni?o-Southern Oscillation, J. Geophys. Res., 2002, 107, 3199, doi: 10.1029/2001JC 001278.
    [57] Kalnay, E., and Coauthors, The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 1996, 77: 437-471.
    [58] Kawamura, R., Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Ni?o-Southern Oscillation coupling, J.Geophys. Res., 2001, 106(D5): 4681-4693.
    [59] Kawamura, R., Ramasamy, S., Mark A. Collier, and Hal B. Gordon, Lagged relationships between ENSO and the Asian Summer Monsoon in the CSIRO coupled model, Geophys. Res. Lett., 2004, 31, L23205, doi: 10.1029/2004GL021411.
    [60] Klein, S. A., B. J. Sode, and N.-C. Lau, Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge, J. Climate, 1999, 2: 917–932.
    [61] Kripalani, R. H., and A. Kulkarni, Rainfall variability over southeast Asia—Connections with Indian monsoon and ENSO extremes: New perspective, Int. J. Climatol., 1997, 17: 1155-1168.
    [62] Kripalani, R. H., and S. V. Singh, Large-scale aspects of India-China summer monsoon rainfall, Adv. Atmos. Sci., 1993, 10: 72-84.
    [63] Krishnan, R., and M. Sugi, Baiu rainfall variability and associated monsoon teleconnection. J. Meteor. Soc. Japan, 2001, 79: 851-860.
    [64] Krishnan, R., M. Mujumdar, V. Vaidya, K. V. Ramesh, and V. Satyan, The abnormal Indian summer monsoon of 2000, J. Climate, 2003, 16: 1177-1194.
    [65] Kumar A., Hoerling M P., Indian Ocean SST anomalies and their global impact. In: Proceedings of the Twenty-first Annual Climate Diagnostic and Prediction Workshop, American Meteorology Society, 1996: 110-113.
    [66] Lau, K.-M., and H.-Y. Weng, Recurrent teleconnection patterns linking summertime precipitation variability over East Asia and North America, J. Meteor. Soc. Japan, 2002, 80: 1309-1324.
    [67] Lau, K.-M., K.-M. Kim, and J.-Y. Lee, Interannual variability, global teleconnection and potential predictability associated with the Asian summer monsoon, East Asian Monsoon, C. P. Chang, Ed., World Scientific, 2004: 564 pp.
    [68] Lau, K.-M., and H.-T. Wu, Assessment of the impacts of the 1997-98 El Ni?o on the Asian-Australian monsoon, Geophys. Res. Lett., 1999, 26: 1747-1750.
    [69] Lau, N.-C., A. Leetmaa, M. J. Nath, H.-L. Wang, Influences of ENSO-Induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer, J. Climate, 2005, 18: 2922-2942.
    [70] Lau, N.C., and M. J. Nath, Impact of ENSO on the variability of the Asian-Australianmonsoon as simulated in GCM experiments, J. Climate, 2000, 13, 4287-4309.
    [71] Lau, N.-C., and M. J. Nath, Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes, J. Climate, 2003, 16: 3-20.
    [72] Lau, N.-C., and M. J. Nath. Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean, J. Climate, 2004, 17: 245-265.
    [73] Li Chongyin, Mu Mingquan, The influence of the Indian Ocean dipole on atmospheric circulation and climate, Adv. Atmos. Sci., 2001a, 18(5): 831-843.
    [74] Li Chongyin, Sun Shuqing, Mu Mingquan, Origin of TBO-interaction between anomalous east-Asian winter monsoon and ENSO cycle, Adv. Atmos. Sci., 2001b, 18(4): 554-566.
    [75] Li, Tim, and Bin Wang, A theory for the Indian Ocean dipole-zonal mode, J. Atmos. Sci., 2003, 60: 2119-2134.
    [76] Liu Qinyu, Na Wen and Zhengyu Liu, An Observational study of the impact of North Pacific SST anomalies on the atmosphere, Geophys. Res. Lett., 2006, 33, L18611, doi: 10.1029/2006GL026082.
    [77] Liu, X., Z. Liu, J. E. Kutzbach, S. C. Clemens, and W. L. Prell, Hemispheric insolation forcing of the Indian Ocean and Asian monsoon: Local versus remote impacts, J. Climate, 2006, 19: 6195-6208.
    [78] Liu, Z., J. Kutzbach, and L. Wu, Modeling climate shift of El Ni?o variability in the Holocene, Geophys. Res. Lett., 2000, 27(15): 2265-2268.
    [79] Lu R. Y., Oh J H, Kim B. J., A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer, Tellus, 2002, 54A: 44-55.
    [80] Matsuno, T., Quasi-geostrophic motions in the equatorial area, J. Meteor. Soc. Japan, 1966, 44: 25-43.
    [81] Nicholls, N., All-India summer monsoon rainfall and sea surface temperatures around Northern Australia and Indonesia, J. Climate, 1995, 8: 1463–1472.
    [82] Nitta T., Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation, J. Meteor. Soc. Japan, 1987, 65: 373-390.
    [83] Park, C.-K., and S.D. Schubert, On the nature of the 1994 East Asian summer drought, J.Climate, 1997, 10: 1056-1070.
    [84] Plumb R A, On the three-dimensional propagation of stationary waves, J. Atmos. Sci., 1985, 42: 217-229.
    [85] Rao, K. G., and B. N. Goswami, Interannual variations of sea surface temperature over the Arabian Sea and the Indian Monsoon: A new perspective, Mon. Weather Rev., 1988, 116: 558-568.
    [86] Rao, R.R., Sivakumar, R., On the possible mechanisms of the evolution of a mini-warm pool during the presummer monsoon monsoon season and the genesis of onset vortex in the southeastern Arabian Sea, Q.J.R. Meteo. Soc., 2000, 125: 789-809.
    [87] Rao, S. A., S. K. Behera, Y. Masumoto, Interannual variability in the subsurface tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole, Deep-Sea Res. II, 2002, 49: 1549-1572.
    [88] Rasmusson. E. M., and T. H. Carpenter, Variations in tropical sea surface temperature and sea surface wind fields associated with the Southern Oscillation/El Ni?o, Mon. Wea. Rev., 1982, 110: 354-384.
    [89] Sadhuram, Y., and N. C. Wells, Role of the Indian Ocean on the Southern Oscillation, atmospheric circulation indices and monsoon rainfall over India, Glob. Atmos. Ocean Sys., 1997: 47-72.
    [90] Saji, N. H., B. N. Goswami, P. N. Vinayachandran et al., A dipole mode in the tropical Indian Ocean, Nature, 1999, 401: 360-3631.
    [91] Saji, N. H., and T. Yamagata, Possible impacts of Indian Ocean dipole mode events on global climate, Clim. Res. 2003, 25: 151-169.
    [92] Shukla, J., and B. M. Misra, Relationship between sea surface temperature and wind speed over central Arabian Sea and monsoon rainfall over India, Mon. Weather Rev., 1977, 105: 998-1002.
    [93] Shukla, J., Effects of Arabian Sea sea-surface temperature anomaly on Indian summer monsoon: Numerical experiment with GFDL model, J. Atmos. Sci., 1975, 32: 503-511.
    [94] Shukla, J., Interannual variability of monsoons, in Monsoons, edited by J. S. Fein and P. L. Stephens, John Wiley and Sons, New York, 1987: 399-464.
    [95] Shukla, J., Predictability of time averages: Part II. The influence of the boundary forcing, inProblems and prospects in long and medium range weather forecasting, edited by D.M. Burridge and E. Kallen, Springer-Verlag, London, 1984: 155-206,
    [96] Slingo, J. M., and H. Annamalai, The El Ni?o of the century and the response of the Indian summer monsoon, Mon. Weather Rev., 2000, 128: 1778-1797.
    [97] Soman, M. K., and J. M. Slingo, Sensitivity of the Asian summer monsoon to aspects of sea-surface-temperature anomalies in the tropical Pacific, Q. J. R. Meteorol. Soc., 1997, 123: 309-336.
    [98] Soon-Il An., Conditional Maximum Covariance Analysis and Its Application to the Tropical Indian Ocean SST and Surface Wind Stress Anomalies, J. Climate, 2003, 16: 2932-2938.
    [99] Sperber, K. R., and T. N. Palmer, Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project, J. Climate, 1996, 9: 2727-2750.
    [100] Tao, S. Y., and L. X. Chen, A review of recent research on the East Asian summer monsoon in China, Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 1987: 60-92.
    [101] Venzke, S., M. Latif, and A. Villwock, The coupled GCM ECHO-2. Part II: Indian Ocean response to ENSO, J. Climate, 2000, 13: 1371-13831.
    [102] Wang, B., R.-G. Wu, and K.-M. Lau, Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–east Asian monsoons, J. Climate, 2001, 14: 4073-4090.
    [103] Wang, B., R. G. Wu, Tim Li., Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation, J. Climate, 2003a, 15:1195-1211.
    [104] Wang, B., Steven C. Clemens, Ping Liu, Contrasting the Indian and East Asian monsoons: implications on geologic timescales, Marine Geology 2003b, 201:5-21.
    [105] Washington, W. M., R. M. Chervin, and G. V. Rao., Effects of a variety of Indian Ocean surface temperature anomaly patterns on the summer monsoon circulation: Experiments with the NCAR general circulation model, Pure Appl. Geophys., 1977, 1335-1356.
    [106] Watanabe, M., and F.-F. Jin, A moist linear baroclinic model: Coupled dynamical–convective response to El Ni?o, J. Climate, 2003, 16: 1121-1139.
    [107] Webster, P. J., A. M. Moore, J. P., Loschnigg et al., Coupled ocean-atmosphere dynamics inthe Indian Ocean during 1997-98, Nature, 1999, 401: 356-3601.
    [108] Wu, L, and Z. Liu, Decadal variability in the North Pacific: the eastern North Pacific mode, J. Climate, 2003, 16: 3111-3131.
    [109] Wu, R. G., and Ben P. Kirtman, Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM, J. Climate, 2004, 15: 4019-4031.
    [110] Wu, R.-G., and B. Wang, A contrast of the east Asian summer monsoon-ENSO relationship between 1962-77 and 1978-93, J. Climate, 2002, 15: 3266-3279.
    [111] Xie, S.-P., H. Annamalai, F. Schott, and J. P. McCreary, Structure and Mechanisms of south Indian Ocean climate variability, J. Climate, 2002,15: 864-878.
    [112] Yamagata, T., S. K. Behera, S. A. Rao., The Indian Ocean dipole: a physical entity, CLIVAR Exchanges, 2002, 24: 15-18.
    [113] Yamagata, T., Swadhin K., Behera, et al., Coupled ocean-atmosphere variability in the tropical Indian Ocean, The ocean-atmosphere interaction. Geophysical Monograph, 2004, 147: 189-211.
    [114] Yanai, Michio and Tomohiko Tomita, Seasonal and Interannual Variability of Atmospheric Heat Sources and Moisture Sinks as Determined from NCEP/NCAR Reanalysis, J. Climate, 1998, 11: 463-482.
    [115] Yulaeva, E. & Wallace, J. M., Sensitivity of seasonal climate forecasts to persisted SST anomalies, J. Climate, 1994, 7, 1719-1736.
    [116] Zhang, R.-H., Monsoon rainfall variations and teleconnections over south and East Asia, Int. J. Climatol., 2001, 21: 603-616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700