基于湖泊沉积的近800多年来巢湖环境演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文以长江中下游沿江湖泊巢湖为研究对象,通过钻取位于湖心长度为141cm的CH-1孔,获取沉积物粒度、磁学特性和营养元素的信息,结合沉积物测年技术,重建巢湖800多年的环境演变过程。而通过选取粘土含量、χ、SIRM等16个指标进行主成分分析确定11个综合性指标,在此基础上再进行聚类分析,从而构建了巢湖800多年来的环境演变沉积序列。针对上述一系列研究,得出以下主要结论:
     1.根据对巢湖CH-1孔沉积物210Pb测试分析表明,湖心CH-1孔平均沉积速率约为0.17cm/a,整个CH-1孔柱样沉积物覆盖1 177 aA.D.以来大约800年的时间。
     2.CH-1孔沉积物粒度组成以细粉砂为主,约占总含量的一半,中粉砂次之,其次为粘土,砂含量最少。总体上,由于CH-1孔位于巢湖中心,此处沉积环境较稳定,水动力环境也较弱,因此沉积物粒度颗粒较细。而磁性矿物主要赋存于粘土(< 2μm)组分中,亚铁磁性矿物为磁性矿物的主要贡献者。由于钻孔位于巢湖中央,受河流影响较弱,总体上,粘土含量高的样品,磁化率较高,但磁性矿物颗粒较粗;反之,粘土含量低的样品,磁化率较低,磁性矿物颗粒较细。经对巢湖CH-1孔进行粒度分析,并结合磁学测量和磁学参数的垂向变化趋势,可将该钻孔分为4段:
     ①沉积物年代1 177aA.D.~1 271aA.D.(对应钻孔沉积深度141~125cm),粒度和磁学参数变化均表明该时段内巢湖处于湿润时期,与中世纪暖期的时间相吻合。
     ②沉积物年代1 271aA.D.~1 747aA.D.(对应钻孔沉积深度125~44cm),CH-1孔沉积物粒度和磁学分析表明该时期内,巢湖发生频繁的湿润和干旱交替,使得粒度和磁学参数对环境变化的指示意义并不完全相同。该时期内共发生了5次极端性的干旱事件,其中最干旱事件发生在该段末期,即1 747aA.D.左右。另外,该段内气候总体以干冷为主,指示了中国东部“小冰期”气候的特点。
     ③沉积物年代1 747aA.D.~1 865aA.D.(对应钻孔沉积深度44~24cm),该段是“小冰期”盛期后持续回暖的阶段,降水量很小。在1 747aA.D.左右巢湖流域发生了一次重要的环境变化事件,因而该时间也成为巢湖地区气候变化的一个重要分野线。
     ④沉积物年代1 865aA.D至今(对应钻孔沉积深度44至顶部),该时段内的粒度和磁学参数变化均表明气候持续变冷变干旱的过程,最干旱时期为1 935aA.D.。
     3.CH-1孔营养元素TOC、TN、TP含量的变化与粘土(< 2μm)含量均呈现较显著的相关关系,相关系数都在0.7以上,说明营养元素TOC、TN及TP主要吸附于细颗粒沉积物中。与上述粒度和磁学特征分段略有不同的是,沉积物营养元素在1 271aA.D.~1 747aA.D.之间的分段可以分为3小段:
     ①沉积物年代1 271aA.D.~1 477aA.D.(对应钻孔沉积深度125~90cm),巢湖有机物质主要来源于湖泊水生植物,3项营养元素值呈现较稳定低值和小幅波动的状态,均呈现减少的趋势。
     ②沉积年代1 477aA.D.~1 653aA.D.(对应钻孔沉积深度90~60cm),该时期内CH-1孔沉积物经历的是一个较高的有机质积累过程,也是巢湖沉积物受陆源物质影响的一个过程,巢湖较高的TOC积累主要源于陆生植物的有机物。TOC、TN含量在波动中升高,TP含量则仍保持在较低水平内保持微弱的降低趋势。在1 647aA.D.左右,由于受陆地影响最强烈,巢湖的营养元素达到了最大值。
     ③沉积物年代1 653aA.D.~1 747aA.D.(对应钻孔沉积深度60~44cm),在1 653aA.D.达到峰值后,TOC、TN、TP含量均减少,C/N比值也有减小的趋势,TOC、TN、TP值分别在47cm、44cm、49cm处出现谷值,说明有机质积累达到最低值阶段,与CH-1孔沉积物粒度与磁学分析中呈现的44cm处(约1 747A.D.)的极端干冷事件基本上是一致。此段内TP平均值为0.044,比1 477aA.D.~1 653aA.D.之间平均值为0.027的相比,有很大的增幅。人口和耕地数量的快速增加,加上此时对于农业耕作中对肥料认识的深刻,肥料种类和施用方法的发展造了沉积物中TP含量的大幅跃升。
     4.通过SPSS 15.0对粘土含量、磁化率χ、频率磁化率、SIRM、TOC等16个具有代表性的指标进行主成分分析,确定沉积物粘土含量、χ、SIRM、χARM、TOC、TN等11个能密切反映巢湖环境变化信息的指标变量组成的主成分,并在此基础上对获取的巢湖CH-1孔沉积物113个样品进行聚类分析。结果显示,巢湖CH-1孔沉积物样品可以分为4大类、2个亚类,据此建立了CH-1孔的环境演变序列,并结合前面各指标分析的已有结果得到巢湖地区800多年来环境演变的综合序列。
Lake Chaohu, which is located in the areas along the middle and lower reaches of the Yangtze River of China, is considered as the study object. Cored CH-1 in the central of the lake, with gained sediment samples, based on informations from testing and calculating sediment grain size、magnetic characteristics and natural elements, as well as sediment chronology, this study rebuilds the environmental evolution during nearly the past 800 years in the watershed of Lake Chaohu. Further more, 14 tested indicators such as clay content、magnetic susceptibility、SIRM and so on are selected to execute principal component analysis, then fix 11 new integrated indicators to run cluster analysis, and finally this study creates the environmental evolution sequence about the past 800 years. Based on researches above, the main conclusions are as follows:
     1.Based on the sample dating results of 210Pb from Core CH-1 in central Lake Chaohu, its average deposit rate is about 0.17cm/a, so the whole core CH-1 covers approximately 800 years since AD 1 177.
     2.Sediment from CH-1 is mainly consisted of fine silt, which takes over a half, medium silt and clay next, the least is sand content; while magnetic minerals are mainly absorbed by clay, and them are mainly consisted of ferromagnetic minerals. Overall, core CH-1 locates in the central lake, where has a stable deposit condition with a weak hydrodynamic environment, so river function has faint affection on the sediment, and finally lead to fine grain size. Generally, the clay content is higher, the magnetic susceptibility is higher relatively, and the magnetic mineral grain is coarser; on the contrary, the clay content is lower, relatively, the magnetic susceptibility is lower, while the magnetic mineral grain is finer. Considering the vertical variations of the sediment grain size and magnetic characteristics, core CH-1 was divided into 4 sedimentary chronological sections.
     ①1 177aA.D.~1 271aA.D.(Corresponding to 141~125cm)is proven to be a wet period according to both grain size and magnetic characteristics, which matches along with the Medieval Warm Period(MWP).
     ②1 177aA.D.~1 271aA.D(.Corresponding to 125~44cm)is proven to be a wet/dry period, the frequent wet/dry alternative action causes the inconsistency of indications resulted from grain size and magnetic characteristics. There are 5 extreme drought events totally and the most drought event is in 1 747aA.D. or so at the end of this period. Actually the weather was dry and cold overall, which indicates the climatic characteristics of The Little Ice Age(LIA)in Eastern China.
     ③1 747aA.D.~1 865aA.D.(Corresponding to 44~24cm)is considered as a continuous warming period after The Little Ice Age Maximum, during which had low precipitation. There was an important environmental change event in 1 747aA.D. or so, and this time could be an important boundary of Lake Chaohu environmental evolution history.
     ④1 865aA.D. to Present(Corresponding to 44 to the top)is considered to be a continuous colding and drying process, whose maximum happened in 1 935aA.D., based on both grain size and magnetic characteristics changes.
     3.Neutral elements TOC、TN、TP content variations of core CH-1 show evident correlations with the clay content, the correlation index are all above 0.7, indicates those neutral elements are absorbed in finer sediments. Unlike the indications based on the grain size and magnetic characteristics, it could be divided into 3 stages between 1 271aA.D. and 1 747aA.D..
     ①1 271aA.D.~1 477aA.D.(Corresponding to 125~90cm): During this period, the organic matters mainly came from water plants in Lake Chaohu, all the 3 neutral elements values were under a low value stably and fluctuating within a narrow range, but generally declined.
     ②1 477aA.D.~1653aA.D(.Corresponding to 90~60cm): During this period both TOC and TN ascend while TP declines in a small trend; the sediment organic matters accumulated considerable high and the lake sediment experienced an affected process by the land-derived matter. Due to the maximum affections of the land, 3 neutral elements contents come to their maximum such as TOC、TN, especially ,the value of C/N reached to its largest value of the whole core, which indicates that the accumulation of TOC generally came from the organic matter of land plants.
     ③1 653aA.D.~1 747aA.D.(corresponding to 60~44cm): TOC、TN、TP contents, as well as C/N ratio, declines after 1 653aA.D. , by which time they reached their peak values. Neutral elements valley values such as TOC、TN、TP appeared at 47cm、44cm、49cm in sequence, it shows that the organic matter accumulation low. This conclusion is consistency to the extreme cold event in 1 747A.D. reflected by the sediment grain size and magnetic characteristics at 44cm. During this period TP average content was 0.044, which is much larger than the average content between 1 477aA.D. and 1 653aA.D. , it merely was 0.027. Sediment TP content increased substantially because of the fast increasing population and growing farmland, in addition to the profound knowledge of the fertilizer on farming.
     4.Following principal component analysis on selected 16 typical indicators by running SPSS15.0, such as clay content、χ、SIRM and so on, 11 target variables that can closely reflect the information of environmental evolution are confirmed, then, cluster analysis of the total 113 cored samples is conducted based on this result. It is showed that the total samples from core CH-1 in Lake Chaohu could be divided into 4 classes and 2 subclasses. Following the classified classes, environmental evolution sequence of Lake Chaohu area for the past approximate 800 years had been rebuilt. Finally, based on those analyses above, environmental evolution integrative sequence in Chaohu district is reconstructed.
引文
Anderson, D. E., Goudie, A. S., Parker, A. G., 2007. Global environments through the Quaternary. Oxford: University.
    Andrieu, P.V., Ponel, P., Bruneton, H., et al., 2000. Palaeoenvironments and cultural landscapes of the last 2000 years reconstructed from pollen and coleopteran records in the lower Rhone Valley, southern France. The Holocene, 10 ( 3 ), 341-355.
    Appleby, P. G., Nolan, P. J., Gifford, D. W., et al., 1986. 210Pb dating by low background gamma counting. Hydrobiologia, 143, 21-27.
    Bell, M., Walker, M. J. C., 2005. Late Quaternary Environmental Change, Physical and Human Perspectives. Harlow.
    Collinson, D. W., 1986. Methods in rock magnetism. London: Allen & Unwin in (publishers) Lid,1986:28~31.
    Dearing, J., 2007. Past Human-Climate-Ecosystem Interactions (PHAROS),PAGES NEWS, 15(1), 2.
    Dearing, J. A., 1997. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Palaeolimnology, 18(1), 1-14.
    Dearing, J. A., Jones, R. T., Shen, J. et al., 2007. Using multiple archives to understand past and present climate–human–environment interactions: the lake Erhai catchment, Yunnan Province, China. Journal of Paleolimnology, 31, LO1512, doi: 10.1007/s10933-007-9182-2
    DeMenocal, P.B., 2001. Cultural responses to climate change during the late Holocene. Science, 292, 667-673.
    Friedman, G. M., Sanders, J. E., (徐怀大,陆伟文译),1982.沉积学原理.北京:科学出版社.
    Friedman, G. M., Sanders, J. E., 1978. Principles of Sedimentology, John Wiley and Sons.New York
    Gallopin, G., 2005. Linkages between adaptation, resilience, vulnerability and adaptation, In: Hesse, A. et al. (eds.), Conference Book for the Open Meeting of the Human Dimensions of Global Environmental Change Research Community, Bonn, Germany, October, IHDP, 75-76.
    Ge, Q. S., Zheng, J. Y., Fang, X. Q., et al., 2003. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River,China,during the past 2000 years. The Holocene, 13(6), 933-940.
    Grosjean, M., Nunez, L., Cartajena, I., et al., 1997. Mid-Holocene climate and culture change in the Atacama Desert, northern Chile. Quaternary Research, 48(2), 239-246.
    Grove, J. M., 2004. Little Ice Ages: Ancient and Modern, London: Routledge.
    Hall, R., Smol, J. P., 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lake. FreshwaterBiology, 27, 417-434
    Helge, W. A., Gerhardt, S., Patzold, J. et al., 2001. Millennial-scale changes of surface- and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high-latitude climate during the Holocene. Geology, 29(3), 239-242.
    Ishiga, H., Nakamura, T., Sampei, Y. et al., 2000. Geochemical record of the Holocene Jomon Transgression and human activity in coastal lagoon sediments of the San'in district, SW Japan. Global and Planetary Change, 25(3-4), 223-237.
    Lamb, A.L., Melanie, J.L., Hilary J., et al., 2005. Sloaneb, A comparison of the palaeoclimate signals from diatom oxygen isotope ratios and carbonate oxygen isotope ratios from a low latitude crater lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 290-302.
    Mayewski, P. A., Rohling, E. E., Stager, J. C., et al., 2004. Holocene climate variability. Quat Res, (62)243-255.
    McDermott, F., Mattey, D.P., Hawkesworth, C., 2001. Centennial-scale Holocene climate variability revealed by a high-resoultion speleothemδ18O record from SW Ireland. Science, 294, 1328-1331.
    Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114 ( 3-4 ), 289-302.
    Oldfield, F., Yu, L., 1994. The influence of particle size variation on the magnetic properties of sediments from the northeastern Irish Sea. Sedimentology, 41, 1093-1108.
    PAGES , 2000. Ecosystem processes and past human impacts. Newsletter, 8(3), 1-35.
    Sahoo G.B., Schladow S.G., 2008. Impacts of climate change on lakes and reservoirs dynamics and restoration policies. Sustain Science,
    Selby, K. A., Brown, A. G., 2007. Holocene development and anthropogenic disturbance of a shallow lake system in Central Ireland recorded by diatoms. Journal of Palaeolimnology, 38(3), 419-440.
    Shine, K. P., Forster, P. M., 1999. The effect of human activity on radiative forcing of climate change; a review of recent developments. Global and Planetary Change, 20(4), 205-225.
    Sly, P. G., 1978. Sedimentary processes in lakes, In: Lerman, A., ed. Lakes: Chemistry, Geology, Physics, New York: Spring-Verlag, 65-90.
    Thorsten B., 2008. Models as tools for understanding past, recent and future changes in large lakes.Hydrobiologia, 599,177–182
    Wagner B., Melles M., Hahne J., et al, 2000. Holocene climate history of Geographical SocietyΦ, East Greenland—evidence from lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 160,45-68.
    安徽水旱灾害.1998.中国水利水电出版社.
    陈斌,2000.巢湖流域水土流失现状、成因和综合治理对策.华东森林经理,14,1~3.
    陈建徽,陈发虎,张家武等,2008.中国西北干旱区小冰期的湿度变化特征,地理学报,63(1),23~31.
    陈敬安,万国江,1999,云南洱海沉积物粒度组成及其环境意义辨识.矿物学报,19(2),175~182.
    陈敬安,万国江,徐经意,2000.洱海沉积物粒度记录与气候干湿变迁.沉积学报,18(3),341~351.
    陈敬安,万国江,张峰等,2003.不同时间尺度下的湖泊沉积物环境纪录—以沉积物粒度为例.中国科学(D辑),33(6),563~568.
    陈萍,何报寅,杜耘等,2005.1200a来洪湖演变的环境磁学记录.沉积学报,23(1),138~142.
    陈其春,李成文,2004.巢湖市人口-耕地-粮食系统变化特征与预测分析.国土与自然资源研究,(2),29~30.
    丁祖芬,朱必翔,吴志传,2000.巢湖地区洪涝灾害成因及抗灾减灾对策.安徽农业科学, 28(1),39~42.
    杜磊,易朝路,潘少明,2004.长江下游巢湖湖泊沉积物的粒度特征与沉积环境.安徽师范大学学报(自然科学版),27(1),101~104.
    范斌,许世远,俞立中等,2007.近300年来植硅体记录的巢湖流域气候变化.华东师范大学学报(自然科学版),(4),71~76.
    范育新,赵晖,陈发虎等,2007.博斯腾湖湖泊沉积物光释光年代测量.第四纪研究,7(4),568~575.
    高超,王心源,杨则东等,2005.巢湖崩塌岸成因初步研究.水土保持研究,12(2),49~51.
    高俊峰,闻余华,2002.太湖流域土地利用变化对流域产水量的影响.地理学报,57(2),194~200.
    葛全胜,郑景云,满志敏等,2002.过去2000a中国东部冬半年温度变化序列重建及初步分析.地学前缘,19(1),169~182.
    顾成军,戴雪荣,张海林等,2004.巢湖沉积物粒度特征与沉积环境.海洋地质动态,20(10),10~13.
    顾成军,2005.巢湖历史沉积记录与流域环境变化研究.华东师范大学毕业硕士学位论文.
    管章志,师育新,戴雪荣等,2007.安徽龙河口水库流域沉积物中粘土矿物分析及其环境意义.岩石矿物学杂志,26(1),95~100.
    韩美,李艳红,张维英等,2003.近30年来我国湖泊沉寂研究的进展.山东师范大学学报(自然科学版),18(3),52~55.
    何华春,许叶华,杨競红等,2007.洪泽湖流域沉积物重金属元素的环境记录分析.第四纪研究,27(5),766~774.
    胡守云,王苏民,Appel E等,1998.呼伦湖湖泊沉积物磁化率变化的环境磁学机制.中国科学(D辑),28(4),334~339.
    贾海林,刘苍字,张卫国,2004.崇明岛CY孔沉积物的磁性特征及其环境意义.沉积学报,22(1),117~123.
    贾铁飞,戴雪荣,张卫国等,2006.全新世巢湖沉积记录及其环境变化意义.地理科学,26(6),706~711.
    金章东,王苏民,沈吉等,2001.小冰期弱化学风化的湖泊沉积记录.中国科学(D辑),31(3),221~225.
    金章东,王苏民,沈吉等,2002.湖泊沉积物Sr同位素记录的小冰期.科学通报,47( 19 ),1512~1517.
    李彬,袁道先,1998.中国近万年以来古气候研究概况及其发展方向,地球科学进展,13(2),193.
    李容全,贾铁飞,1992.根据内陆湖水面变化恢复古降水量的方法.科学通报,37(14),306~1309.
    李容全,郑良美,朱国荣,1990.内蒙古高原湖泊与环境变迁.北京:北京师范大学出版社.
    刘建军,李春来,2002.基于遥感和GIS的巢湖流域人口信息提取.科学通报,23(47),1835~1837.
    陆敏,张卫国,师育新等,2003.太湖北部沉积物金属和营养元素的垂向变化及其影响因素.湖泊科学,15(3),213~220.
    吕晓霞,翟世奎,牛丽凤,2005.长江口柱样沉积物中有机质C/N比的研究.环境化学,24(3),255~259.
    满志敏,1999.中世纪暖期我国华东沿海海平面上升与气候变化关系,第四纪研究,19(1),90.
    孟凡德,姜霞,金相灿,2004.长江中下游湖泊沉积物理化性质研究.环境科学研究,17(增刊),24~29..
    彭国祯, 2001.巢湖流域生态林建设的重点与措施.林业科技开发,15,16~18.
    任明达,王乃樑,1985.现代沉积环境概论.北京:科学出版社.
    申洪源,朱诚,张强,2003.长江三角洲地区环境演变与环境考古学研究进展.地球科学进展,18(8),569~576.
    沈吉,杨丽源,羊向东等,2004.全新世以来云南洱海流域气候变化与人类活动的湖泊沉积记录.中国科学(D辑),34(2),130~138.
    沈吉,张恩楼,2001.青海湖近千年来气候环境变迁的湖泊沉积记录.第四纪研究,21(6),508~513.
    施雅风,孔昭宸,王苏民等,1993.中国全新世大暖期鼎盛阶段的气候与环境.中国科学(B辑),23(8),865~873.
    舒强,李吉均,赵志军等,2006.苏北盆地XH-1#钻孔沉积物磁化率与粒度组分相关性变化特征及其环境意义.沉积学报,24(2),276~281.
    孙凤贤,2000.巢湖塌岸的特征及其规律.地质灾害与环境保护,11(4),287~291.
    孙惠民,何江,吕昌伟等,2006.乌梁素海沉积物中有机质和全氮含量的分布特征.应用生态学报,17(4),620~624.
    孙千里,肖举乐,2006.岱海沉积记录的季风/干旱过渡区全新世适宜期特征.第四纪研究,26 (5) ,781~790.
    孙千里,周杰,沈吉等,2006.北方环境敏感带岱海湖泊沉积所记录的全新世中期环境特征.中国科学(D辑),36(9),838~849.
    汤峰,钱易群,2001.巢湖水总有机碳(TOC)、高锰酸钾指数(CODMn)相关性研究.重庆环境科学,23(4),64~66.
    童金南,赵来时,左景勋等,2005.安徽巢湖地区下三叠统综合层序.地球科学——中国地质大学学报,30(1),40~46.
    屠清瑛,顾丁锡,尹澄清等,1990.巢湖——富营养化研究.合肥:中国科学技术大学出版社.
    万国江,1995.137Cs及210Pbex方法湖泊沉积计年研究新进展.地球科学进展,10(2),188~192.
    万国江,陈敬安,胥思勤等,2004.210Pbex沉积通量突发增大对湖泊生产力的指示——以程海为例.中国科学(D辑),34 (2),154~162.
    王君波,朱立平,2002.藏南沉错沉积物的粒度特征及其古环境意义.地理科学进展,21 (5),459~468.
    王立群,戴雪荣,华珞等,2007.安徽龙河口水库沉积物碳、氮、磷地球化学记录及其环境意义.海洋湖沼通报,(4),59~64.
    王宁练,姚檀栋,羊向东等,2007.冰芯和湖泊沉积记录所反映的20世纪中国北方沙尘天气频率变化趋势.中国科学(D辑),37(3),378~385.
    王苏民,张振克,1999.中国湖泊沉积与环境演变研究的新进展.科学通报,44(6),579~587.
    王苏民,窦鸿身主编,1998.中国湖泊志.北京:科学出版社.
    王心源,何慧,钱玉春等,2005.从环境考古角度对故居巢国的蠡测.安徽师范大学学报(自然科学版),28(1),97~102..
    王心源,吴立,张广胜等,2008a.安徽巢湖全新世湖泊沉积磁化率与粒度组合的变化特征.地理科学,28(4),548~553.
    王心源,张广胜,张恩楼等,2008b.巢湖湖泊沉积记录的早—中全新世环境演化研究.科学通报,53(增刊Ⅰ),132~138.
    王永华,钱少猛,徐南妮,2004.巢湖东区底泥污染物分布特征及评价.环境科学研究,17(6),22~26.
    卫艳,舒强,陈晔,2005.苏北盆地兴化1#钻孔的沉积物粒度特征及其古环境意义.南京师大学报(自然科学版),28(2),101~107.
    吴立,王心源,张广胜等,2008.安徽巢湖湖泊沉积物孢粉—碳屑组合记录的全新世以来植被和气候演变.古地理学报,10(2),183~191.
    吴宣德,余艳,曹大民,2005.明清舒城的土地利用及其对自然环境的影响(研究报告).
    吴莹,张经,张再峰等,2002.场景悬浮颗粒物中稳定碳、氮同位素的季节分布.海洋与湖沼,33(5),546~552.
    项亮,1999.鄱阳湖历史时期水面扩张和人类活动的环境指标判识.湖泊科学,11(4),289~295.
    项亮,吴瑞金,吉磊,1996.137Cs和241Am在滇池、剑湖沉积孔柱中的蓄积分布及时标意义.湖泊科学,8(1),27~34.
    谢红霞,张卫国,顾成军等,2006.巢湖沉积物磁性特征及其对沉积动力的响应.湖泊科学,18(1),43~48.
    谢又予,2000.沉积地貌分析.海洋出版社.
    谢远云,李长安,王秋良等,2005.江汉平原6000年以来的古降水变化:江陵剖面沉积物粒度记录.海洋地质与第四纪地质,25(3),119~124.
    薛薇.2004.SPSS统计分析方法及应用.北京:电子工业出版社.
    杨保,施雅风,李桓鹏,2002.过去2ka气候变化研究进展.地球科学进展,17(1),96~103.
    杨世伦,2003.海岸环境和地貌过程导论.海洋出版社:19~25.
    杨守业,李从先,2006.长江三角洲晚新生代沉积物有机碳、总氮和碳酸盐组成及古环境意义.地球化学,35(3),221~226.
    羊向东,童国榜,1996.江苏固城湖区一万多年来的孢粉植物群及古季风气候变迁.植物学报,38(7),576~581.
    羊向东,王苏民,沈吉等,2001.近0.3Ka来龙感湖流域人类活动的湖泊环境响应.中国科学(D辑),31(12),1031~1038.
    杨煜达,满志敏,郑景云,2006.清代云南雨季早晚序列的重建与夏季风变迁.地理学报,61(7),705~712.
    杨则东,晁玉珠,褚进海等,2005.巢湖淤积及其对水患形成的环境影响遥感分析研究.地质灾害与环境保护,16(1),53~57.
    杨则东,鹿献章,2001.长江安徽段及巢湖水患区防洪治水的环境地质问题.长江流域资源与环境,10(3),279~283.
    杨则东,徐小磊,谷丰,1999.巢湖湖岸崩塌及淤积现状遥感分析.国土资源遥感,(4),1~7.
    姚书春,李世杰,2004.巢湖富营养化过程的沉积记录.沉积学报,22(2),343~347.
    姚书春,沈吉,2003.巢湖沉积物柱样中正构烷烃初探.湖泊科学,15(3),200~204.
    姚书春,薛滨,李世杰等,2006.长江中下游湖泊沉积速率的测定及环境意义——以洪湖、
    巢湖、太湖为例.长江流域资源与环境,15(5),569~573.
    殷福才,张之源,2003.巢湖富营养化研究进展.湖泊科学,15(4),377~384.
    俞立中,许羽,许世远等,1995.太湖沉积物的磁性特征及其环境意义.湖泊科学, 7( 2 ),141~150.
    于世永,朱诚,王富葆等,2000.太湖流域全新世气候——海面短期震荡事件及其对新石器文化的影响.地理科学,20(4),331~336.
    余铁桥,贾铁飞,2008.巢湖CH-1孔沉积物磁性、粒度特征分析.上海师范大学学报(自然科学版),37(5),523~528.
    张崇岱,潘宝林,1990.巢湖湖盆及其变迁研究.安徽师范大学学报,13(1),48~56.
    张德二,1993.我国“中世纪温暖期”气候的初步推断.第四纪研究,(1),7~15.
    张德二,刘传志,江剑平,1997.中国东部6区域近1000年干湿序列的重建和气候跃变分析.第四纪研究,1,1~11.
    张福瑞,戴雪荣,王立群等,2005,.安徽龙河口水库沉积物磁性特征及其环境意义.上海地质,3:6~9.
    张广胜,2007.湖泊沉积记录的9870cal.aB.P.以来巢湖流域环境演变研究.安徽师范大学硕士学位论文.
    张兰生,1992.环境演变研究.北京:科学出版社.
    张璞,陈建强,田明中等,2005.沉积物粒度分析在厦门市第四纪环境研究和地层划分对比中的应用.地球科学与环境学报,27(1),88~94.
    张普纲,樊行昭,霍俊杰,2003.磁性参数的环境指示意义.太原理工大学学报,34(3),301~308.
    王绍武,闻新宇,罗勇等,2007.近千年中国温度序列的建立.科学通报,52(8),958~964.
    张卫国,戴雪荣,张福瑞,2007等.近7000年巢湖沉积物环境磁学特征及其指示的亚洲季风变化.第四纪研究,27(6),1054~1062.
    张卫国,俞立中,2002.长江口潮滩沉积物的磁学性质及其与粒度的关系,中国科学(D辑),32(9),783~792.
    张晓阳,蔡述明,孙顺才,1994.全新世以来洞庭湖的演变.湖泊科学,6(1),13~21.
    张燕,潘少明,彭补拙,2005.用137Cs计年法确定湖泊沉积物沉积速率研究进展.地球科学进展,20(6),671~678.
    张振克,吴瑞金,王苏民等,1998.岱海湖泊沉积物频率磁化率对历史时期环境变化的反映.地理研究,17(3),297~302.
    张正学,1999.巢湖设计枯水分析计算.电力勘测,3,45~49.
    郑景云,葛全胜,方修琦,2002.从中国过去2000年温度变化看20世纪增温.地理学报,57(6),631~638.
    朱诚,张强,张芸等,2003.长江三角洲长江以北地区全新世以来人地关系的环境考古研究.地理科学,23(6),705~712.
    朱立平,陈玲,张平中等,2001.环境磁学反映的藏南沉错地区1300年来冷暖变化.第四纪研究,21(6),520~527.
    朱育新,王苏民,羊向东等,1999.中晚全新世江汉平原沔城地区古人类活动的湖泊沉积记录.湖泊科学,11(1),33~40.
    周志华,刘丛强,李军等,2007.巢湖沉积物δ13Corg和δ15N记录的生态环境演化过程.环境科学,28(6),1338~1343.
    左景勋,童金南,邱海鸥等,2004.巢湖平顶山北坡剖面早三叠世碳、氧同位素地层学研究.地层学杂志,28(1),35~41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700