跨陆架锋水交换的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对浅海陆架锋的跨锋面水交换进行了数值研究,分别对南海北部陆架锋和南黄海的潮汐锋进行了数值模拟,利用模拟的结果揭示了跨锋面垂向环流的主要特征和跨锋面水交换的物理机制。
     本文采用POM模式对冬季南海北部陆架锋区进行了三维斜压的数值模拟,本文是首次对南海北部陆架锋进行了三维数值模拟,并对跨锋面水交换进行了量化。结合走航观测资料,卫星资料,地波雷达资料等对该海域的海洋锋进行了系统全面的整理和研究,这些数据也作为检验数值模拟是否成功的依据。
     在验证模拟和实测符合良好的基础上,本文以模拟的结果为主,结合观测资料,对南海北部陆架锋的特征,垂向环流结构,跨锋面水交换量等着重进行分析和探讨,同时设计了数值试验,把各个物理因子参数化,通过试验探讨跨锋面水交换的物理机制,得到一系列有意义的结论:
     1) 从模拟的结果来看,陆架锋的位置沿30m-40m等深线分布,锋面强度大约为1℃/n m,跨锋面垂向是双圈环流结构。从观测的结果来看,跨锋面的断面也是典型的双圈环流结构,控制锋面两侧水平环流的流系是广东沿岸流和南海暖流,这两支流动对锋面的位置和强度起很重要的作用。
     2) 通过观测估算的跨锋面水交换量为1.5Sv,上层厚大约为25-30m,水流方向向岸,底层厚大约为5-10m,流速方向向外海。通过模拟的结果而估计的跨锋面水交换量大约为1.89Sv,平均速度向岸大约7-8cm/s。
     3) 通过对跨锋面机制的探讨,作者认为南海北部陆架锋跨锋面水交换有两个分量:其中非锋生的机制是风的影响,风海流本身就有跨锋面的分量,而风的变化造成了锋面两侧流系的变化也对跨锋面水交换有影响;另一个跨锋面的流动分量是锋面本身造成,最主要的控制机制是锋面的斜压不稳定。
     本文也是首次对不同锋面的垂向环流结构进行了比较。采用三维陆架海模型
In this thesis, the cross-front water exchange is studied by numerical simulation. The simulation includes two areas: shelf front in the Northern South China Sea (NSCS) and tidal front in the Yellow Sea (YS). The results show the cross-front circulation and the dominant mechanisms of cross-front water exchange.It is the first time to use 3D numerical model to study shelf front in NSCS, and it is the first time to calculate the cross-front water exchange, too. In NSCS, we have in situ observations, high resolution CTD, ADCP data, satellite pictures and CODAR data. These data are used to validate the results of the model.After the validation the good agreement between simulated results and observed ones, the characteristics of the shelf front in NSCS are studied. Some sensitive experiments are done to study the dominant mechanism of cross-front water exchange. We draw a series of meaningful conclusions as follows, the main of these are:1) The front is along isobath the 30-40m, and the gradient of the front is l℃/n m. The cross-front circulation is double cells. The two important currents are Guangdong Coastal Current and South China Sea Warm Current. The position and the gradient of the front is controlled by these two currents.2) The calculated water exchange with the observation is 1.5 Sv onshore, and which in the simulation is 1.89 Sv. In the observation, the up-layer is about 25-30m onshore and the bottom layer is 5-10m offshore.3) There are two component in the cross-front water exchange, one is non-front mechanism which is wind force in this study, the other is front mechanism which is baroclinic instability.In thesis, we also use a numerical model (HAMSOM) to study the tidal front in the Yellow Sea. It is the first time to do some comparison of two different fronts. The
    main conclusions we draw are:1) The tidal front in YS is in strong tidal area, and the shelf front in NSCS is in weak tidal area. The dominant mechanism of cross-front water exchange in NSCS is wind and baroclinic instability, and the one in YS is tidal mixing.2) The jet along the tidal front is very clear in YS, while the velocity shear in NSCS can not be seen. The vertical circulation of tidal front is multi-cell, and which of the shelf front is double cells.3) The cross-front water exchanges in both fronts are in the upper layer. The water exchange in both fronts can not be neglected for its importance in sendiment transportation.
引文
1. Allen J. T. and Smeed D. A. Potential vorticity and vertical velocity at the Iceland -Faeroes front. Journal of Physical Oceanography, 1996, 26: 2611-2634
    2. Backhaus, J. O. and D. Hainbucher., A three-dimensional model for the simulation of shelf seadyrnamics, Deutsche Hydrographische Zeitschrift, 1985, 38: 165-178
    3. Barth, J. A.. Shortwave instabilities on coastal jets and fronts. J. Geophys. Res., 1994, 99: 16095-16115
    4. Beardsley, R. C., R., Limeburner and H., Yu. Discharge of the Changjiang(Yangtz River)into the East China Sea. Continental Shelf Res., 1985, 4: 57-76
    5. Blumberg, A. F., & Mellor G. L. A description of a three-dimensional coastal ocean circulation model. Heaps N. Three- Dimension Coastal Ocean Models. American Geophysical Union, 1987, 1-16
    6. Bowman M. J., Okubo A. Cabbeling at thermohaline fronts. J Geophys. Res., 1978, vol. 83, No. C12: 6173-6178
    7. Burman B. R., R. C. Beardsley and B. Magnell,. Recent observations of the mean circulation on George Bank. J. Phys. Oceanogr, 1982, 12: 569-591
    8. Chao, S. Y., Shaw, P. T., Wang, J., 1995. Wind relaxation as a possible cause of the South China Sea Warm Current. Journal of Oceanography, 51, 111-132
    9. Charney, J. G.. The dynamics of long waves in a baroclinic westerly current. J. Meteor, 1947, 4: 135-163
    10. Chapman D. C., Lentz S. J. Trapping of a coastal density front by the bottom boundary layer. J. Phys. Oceanogr., 1994, 24: 1464-1479
    11. Chen, C., R., Beardsley, and R., Limeburner. A numerical study of stratified tidal rectification over finite-amplitude banks, part Ⅱ: Georges Banks. J. Phys. Oceanogr., 1995, 25: 2111-2128
    12. Chert, C., R. Schlitz, C. Lough, K. Smith, R. Beardsley, and J. Manning. Wind-induced cross-frontal water transport on the southern flank of Georges Bank: A physical mechanism for the cross-frontal fish larval transport in early summer. Journal of Geophysical Research(special issue for US GLOBEC), 2003a.
    13. Chert, C., Q. Xu, R. C. Beardsley, and P. J. S. Franks.. Modeling Studies of the Cross-Frontal Water Exchange on Georges Bank: A 3D Lagrangian Experiment. Journal of Geophysical Research, J. Geophys. Res., 2003b, 108(C5), 10. 1029/2000JC000390.
    14. Chen Q. C.. Environmental and biological resources of the Pear River Estuary. Proceedings of Symposium on Coastal Ocean Resources and Environment' 97, 1997: 297-301
    15. Chu P. C. et al. South China Sea warm-core and cold-core eddies detected from the Navy's Master Oceanographic Observational data set. Proceeding of Eighth Conference on Air-Sea Interaction, American Meteorological Society, 1996. 176-180
    16. Chu P. C. et al. South China Sea warm pool in boreal spring. Adv. Atmos. Sci., 1997, 14(2), 195-206
    17. Dale W L. Wind and drift current in the South China Sea. The Malayan Journal of tropical Geography. 1956,(8): 1-31
    18. Dong, C. M., H. W. Ou, D. Chen and M. Visbeek. Tidally induced cross-frontal mean circulation: Analytical study. Journal of Physical Oceanography, 2004, 34(1): 293-305
    19. Eady, E. T.. Long waves and cyclone waves. Tellus, 1949, 1: 33-52
    20. Fang Guohong, Fang Wendong, Fang Yue, et al. A Survey of studies on the South China Sea upper ocean Circulation. Acta Oceanographica Taiwanica, 1998, 37(1): 1-16
    21. Flagg, C. N. Hydrographic structure and variability. In: Backus R H ed. Georges Bank. The MIT Press, 1987. 108-124.
    22. Flagg C. N. and R. C. Beardsley. On the stability of the shelf water/slope water front south of New England. J. Geophys. Res., 1978, 83: 4623-4631
    23. Gawarkiewicz G.. Linear instability models of the shelfbreak fronts. J. Phys. Oceanogr., 1991, 21: 471-488
    24. Gawarkiewicz G. & D. C. Chapman. A numerical study of dense water formation and transport on a shallow, sloping continental shelf. Journal of Geophysical Research, 1995, 100(C3), 4489-4507
    25. Greenberg, D. A. Modeling the mean barotropic circulation in the Bay of Funday and Gulf of Maine. J. Phys. Oceanogr, 1983, 13, 886-904
    26. Hill, A. E., L. D. James and P. F. Lindeen et. al. Dynamics of tidal mixing fronts in the North Sea. Phil Trans R. Soc. Lond., 1993, 343, 431-446
    27. Houghton, R., & C. Ho. Diapycnal flow through the Georges Bank tidal front: a dye tracer study. Geophys. Res. Lett., 2001, 28, 33-36
    28. Hu, J., and M. Liu. The current structure of the southern Taiwan Strait in winter and summer(in Chinese). Trop. Oceanol., 1992, 11(4): 42-47
    29. James I. D. A note on the circulation induced by a shallow-sea front. Estuarine and coastal marine science, 1978, 7: 197-202
    30. Lain, H. Y., K. H. Lau and W. Huang. Forecast and verification of typhoons in the South China Sea: LEO(9902)and Maggie(9903), 1999, Proceedings for "Third Conference on Coastal Atmospheric and Oceanic Prediction and Process", American Meteorological Society, 33-36
    31. Limeburner, R. and R. C. Beardsley. Near-surface recirculation over Deorges Bank. Deep-Sca Res. Ⅱ, 1996, 43(7-8): 1547-1574.
    32. Liu, Z. Y., Yang, H. J., Liu, Q. Y. Regional dynamics ofseasonal variability in the South China Sea. Journal of Physical Oceanography, 2001, 31, 272-284
    33. Loder, J. W., K. F. Drinkwater, N. S. Oakey and E. R Home. Circulation, hydrographic structure and mixing at tidal fronts: the view from Georges Bank. Phil Trans. R. Soc. Lond.,, 1993, 343, 447-460.
    34. Loder J. W., and Platt, T.. Physical control on phytoplankton production at tidal fronts. Proceedings of nineteenth European marine biology symposium. Cambridge: Cambridge University Press, 1985, 3-22
    35. Loder, J. W., and D. G., Wright. Tidal rectification and front circulation on the sides of Georges Bank. J. Mar. Res., 1985, 43: 581-604
    36. Loder, J. W., and D. A., Greenberg. Predicted positions of tidal fronts in the Gulf of Maine region. Continental Shelf Res., 1986, 6: 397-414
    37. Lough, R. G., & Manning, J. P. Tidal-front entrainment and retention of fish larvae on the southern flank of Georges Bank. Deep Sea Res. Ⅱ, 2001, 48(1-3): 631-644
    38. Lozier, S., M. Reed and G. Gawarkiewicz,. Linear stability of shelfbreak fronts. Journal of Physical Oceanography, 2002, 32(3): 924-944
    39. Mellor, G. L., and T. Yamada. A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 1974, 31: 1791-1806
    40. Mellor, G. L., and T. Yamada, Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 1982, 200: 851-875
    41. Moore, G. W. and W. R. Peltier. Cyclogenesis in frontal zones. J. Atmos. Sci., 1987, 44: 384-409
    42. Morgan D. T.. Linear instability of the shelfbreak front off the southern flank of Geoges Bank. Ph. D. dissertation, Dartmouth College. 1997: 1-190
    43. Nitani H. Oceanographic conditions in the sea east of the Philippines and Luzon Strait in the summer of 1965 and 1966. The kuroshio-A Symposium on the Japan Current(Ed. J. D. Marr). Honolulu: East-West Center press, 1970, 213-232
    44. Ou, H. W. A model of tidal rectification by potential vorticity mixing. Part Ⅰ: homogeneous ocean. J. Phys. Oceanogr., 1999, 30: 564-571.
    45. Ou, H. W. A model of tidal rectification by potential vorticity mixing, Part Ⅱ: frontal regime. J. Phys. Oeeanogr., 2000, 29, 821-827
    46. Pan Yuqiu, Su Jilan&Xu Duanrong. The formation & Evolution of the East China Sea Winter Dense Water. Acta Oceanologica Sinica, 1991, 10(4): 525-538
    47. Pingree, R. D. & D. K. Griffiths. Tidal fronts on the shelf seas around the British Isles. J. Geophys. Res. 1978, 83. c9, 4615-4622
    48. PREPP. Final Report of the Pearl River Estuary. Pollution Program. CCAR/UST, Hong Kong, 2001.
    49. Pringle, J. M., Franks, P. J. S. Asymmetric mixing transport: A horizontal transport mechanism for sinking plankton and sediment in tidal flows. Limnol. Oceanogr., 2001, 46(2): 381-391
    50. Proehl, J. A.. Linear stability of equatorial zonal flows. J Phys. Oceanogr., 1996, 26: 601-621
    51. Qiu B., Imasato N.. Baroclinic instability of buoyancy-driven coastal density currents. J. Geophys. Res., 1988, 93: 5037-5050
    52. Rockwell Geyer W. Tide-induced mixing in the Amazon frontal zone. J. Geophys. Res., 1995, 100(c2): 2341-2353
    53. Rong, Z.. The analyses of the surface circulation in the South China Sea in winter(in Chinese). Mar. Forecasts., 1994, 11(2): 47-51
    54. Rudnick, D. L., and R. E. Davis. Frontogenesis in mixed layers. J. Phys. Oceanogr., 1988, 18, 434-457
    55. Samelson, R. M.. Linear instability of a mixed-layer front. J. Geophys. Res., 1993, 98: 10195-1020
    56. Samelson, R. M. and Chapman D. C. Evolution of the instability of a mixed-layer front. J Geophys. Res., 1995, 100(C4): 6743-6759
    57. SCSIO(South China Sea Institute of Oceanography, Academia Sinica), 1985. Report of the 1979-1982 Multidisciplinary Research Program on the Northern South China Sea. Vol Ⅱ, China Science Press, Beijiag, 432pp
    58. Simpson, J. H. and J. R., Hunter.. Fronts in the Irish Sea. Nature, 1974, 250: 404.
    59. Simpson, J. H.,. Allen C. M &. G. Morris N. C. Fronts on the continental shelf. J. Geophys. Res., 1978,. 83(c9): 4607-4614
    60. Smagorinsky. General circulation experiments with the primitive equations. Ⅰ. The basic experiment. Mon. Wea. Rev., 1963, 91: 99-164
    61. Su Jilan, Wang Wei. On the sources of the Taiwan Warm Current formation from the South China Sea. Chinese Journal of oceanology and Limnology, 1987, 5(4): 299-308
    62. Soong Y. S., J. H. Hu, C. R. Ho, et al. Cold eddy detected in the South China Sea. EOS, 1995, 76: 345-347.
    63. Su, J. L., 1998. Circulation dynamics of the China Seas: north of 18°N. In: Robinson, A. R. Brink, K.(Eds.), The Sea. The Global Coastal Ocean: Regional Studies and Syntheses, Vol. 11. Wiley, New York, 483-506
    64. Su Jilan. Overview of South China Sea circulation and its influence on the coastal physical Oceanography outside the Pearl River Estuary. Continental Shelf Res., 2004, 24(16): 1745-1760
    65. Tang, Y. and K. Tee. Effects of mean and tidal current interaction on the tidally induced residual current, J. Phys. Oceanogr., 1987, 17, 215-230
    66. Tee, K. T. Depth-dependent studies of tidally induced residual currents on the sides of Georges Bank. J. Phys. Oceanogr., 1985, 1818-1846
    67. Thomsd N. Lee, Larry P. Atkinson & Richard Legeckis. Observations of a gulf stream frontal eddy on the Georgia continental shelf, April 1977. Deep-Sea Res. Ⅱ, 1980, 28A(4): 347-378
    68. Uda M. and T. Nakao. 1974. Water Masses and current in the South China Sea and their seasonal changes. In -The kuroshio, proceeding of the 3rd CSK Symposium, Bangkok, Thailand, 1972", 161-188.
    69. Watts J. C. D. Hydrography of the continental shelf area off Hong Kong,. Ⅱ Observations for the year 1970. Hong Kong Fisheries Bulletin, 1973, 3, 37-46
    70. Wei H., Su J., Meng T.. Wan R., Wang L., Lin. Y., 2003. Tidal front, frontal circulation and anchovy egg converge in the Yellow Sea, Fish. Oceanogr. 12(4/5): 434-442
    71. Wong, L. A., J. C. Chen H. Xue, L. X. Dong, J. L. Su, and G. Heinke, A model study of the circulation in the Pearl River Estuary(PRE)and its adjacent coastal water: 1. simulations and comparison with observations, 2003, J. Geophys. Res., 108,
    72. Xue, H., F. Chai, D. Xu and C. Fu. A circulation model of the South China Sea, Oceanography in China. 13, 1-14, 2001.
    73. Xue H.and G. Mellor. Instability of the Gulf Stream Front in the South Atlantic Bight. J. Phys. Oceanogr, 1993. 23: 2326-2350
    74. Yang H. J., Liu Q. Y., Liu Z. Y. et al.. A general circulation model study of the dynamics of the upper ocean circulation of The South China Sea. Journal of Geophysical Research, 2002, 107(C7): 22-1-22-14
    75.毕亚文,赵保仁.黄海西南部陆架锋区锋断面环流数值模拟.海洋科学,1993,6:61-63
    76.蔡树群.苏纪兰,甘子钧,等.冬季南海上层环流动力机制的数值研究.海洋学报,2001,23(5):14-23
    77.蔡树群.苏纪兰,甘子钧,等.夏季南海上层环流动力机制的数值研究.海洋学报,2002,24(1):1-7
    78.蔡怡等.南海冬季环流数值模拟.热带海洋,1999,18(2):48-55
    79.陈长胜.海洋生态系绕动力学与模型.北京:高等教育出版社,2003.
    80.管秉贤,陈上及.中国近海的海流系统[A3].全国海洋综合调查报告(第五册),R1,1964:1-85
    81.管秉贤.南海暖流—广东外海—支冬季逆风流动的海流.海洋与湖沼,1978,9,2:117-127
    82.黄大吉.浅水区锋面的流场结构.海洋与湖沼,1993,24(4),385-391
    83.黄企洲,王文质,傅孙成,等.夏季流经东沙群岛北侧的一支偏西向海流.热带海洋,1997,16(2):58-65
    84.李东辉,游小宝,张铭.南海各月月平均流场的数值模拟.气象科学,2003,23(1):31-38
    85.李立.1992年3月南海东北部陆架—陆坡区的海洋锋.中国海洋学文集(6).北京:海 洋出版社,1996:33-41
    86.李立,郭小钢,吴日升.台湾海峡南部的海洋峰.台湾海峡,2000,19(2):147-156
    87.李立.南海中尺度海洋现象研究概述.台湾海峡,2002,21(2):265-274
    88.李荣风,曾庆存.冬季中国海及其临近海域海流系统的数值模拟.中国科学(B辑),1993,23(12):1329-1338
    89.李荣凤,郭冬建,曾庆存.黑潮和南海北部海流相互关联的数值模拟研究.自然科学进展—国家重点实验室通讯,1996,6(2):222—228
    90.刘桂梅,王辉,孙松,韩博平.黄海夏季潮汐锋区环流的数值研究.Advances in Atmospheric Sciences(大气科学进展:英文版),2003,20(3):453-460
    91.刘海洋.中国近海污染现状分析及对策.水利水电,2003,1:11-15
    92.刘先炳,苏纪兰.南海环流的一个约化模式.海洋与湖沼,1992,23(2):167-174
    93.吕新刚,沙文钰.台湾海峡M2分潮的三维数值模拟.黄渤海海洋,1999,17(3):16-25
    94.马应良,钟欢良等.南海北部陆架邻近水域十年水文断面调查报告.北京:海洋出版社,1990,42-241
    95.戚建华,苏育嵩.黄海潮生陆架锋的数值模拟研究.海洋与湖沼,1998,29(3):247-253
    96.苏纪兰,黄大吉,1995.黄海冷水团的环流结构.海洋与湖沼,26(5),增刊:1-7
    97.苏纪兰,许建平,蔡树群,1999.南海的环流与涡旋.南海季风爆发和演化及其与海洋的相互作用,丁一汇,李崇银编.北京:气象出版社,66-72.
    98.苏纪兰.中国近海的环流动力机制研究.海洋学报,2001,23(4):1-16
    99.汤毓祥,郑义芳.关于黄、东海洋锋的研究.海洋通报,1990,9(5):89-96
    100.万邦君,郭炳火.横穿黑潮锋断面的流场结构.海洋与湖沼,1994,25(6):652-659
    101.王道儒.北部湾冷水团的动力—热力机制研究.1998,中国海洋大学博士学位论文.
    102.王辉,孙文心.自适应网格应用于黄海潮流模拟.青岛海洋大学学报,1999,29(4):556-562
    103.王佳.南中国海定常环流的一种模型.山东海洋学院学报,1985,15(3):22-31
    104.王磊,王丽娅,魏皓.利用卫星遥感资料对南海北部陆架海洋表层温度锋的分析.中国海洋大学学报,2004,34(3):351-357
    105.徐锡祯,邱章,陈惠昌.南海水平环流的概述.中国海洋湖沼学会水文气象学会学术会议(1980)论文集.北京:科学出版社,1982:127-145
    106.许建平,苏纪兰,仇德忠,1996.黑潮入侵南海的水文分析.南海东北部海区环流课题组.中国海洋学文集(6).北京:海洋出版社,1-12
    107.许建平,苏纪兰.黑潮水入侵南海的水文分析Ⅱ.1994年8-9月观测结果.热带海洋,1997,16(2),1-23
    108.杨昆,施平,王东晓.冬季南海北部中尺度涡旋的数值研究.海洋学报,2000,22(1):27-34
    109.杨海军等.南海海洋环流研究综述.地球科学进展,1998,13(4):364-368
    110.应秩甫.珠江口伶仃洋锋的类别及其对沉积的影响.热带海洋,1994,13,2:25-31
    111.游小宝,李荣凤,张铭,等.三维斜压模式对冬季南海环流的数值计算.海洋学报,2001,23(6):1—10
    112.袁叔尧,邓九仔.南海东北部夏季逆风流数值模拟.海洋与湖沼,1997,28(2):192-197
    113.曾庆存,李荣凤,季仲贞,等.南海月平均流的计算.大气科学,1989,13(2):127-138
    114.张瑞安,郑东.黄海西部春季海洋锋及其与渔业的关系.青岛海洋大学学报,1989,19(1(Ⅱ)),200-204
    115.赵保仁.黄海冷水团锋区与潮混合.海洋与湖沼,1985,16(6):451-459
    116.赵保仁.黄海潮生陆架锋的分布.黄渤海海洋,1987,5(2):16-23
    117.赵保仁,涂登志,毕亚文.黄海两部34°N断面潮生陆架锋的多年变化及跨锋断面的环流结构.海洋科学,1992,(2):41-45.
    118.赵保仁.北黄海冷水团环流结构探讨—潮混合锋对环流结构的影响.海洋与湖沼,1996,27(4):429-434
    119.赵保仁,王其茂.渤海的潮混合特征及潮汐锋现象.海洋学报,2001,23(4):113-119
    120.郑义芳,丁良模,谭铎.黄海南部及东海海洋锋的特征.黄渤海海洋,1985,3(1):9-16
    121.郑义芳.东海北部海区黑潮锋的位置变动及其对陆架外缘附近海区水团分布的影响.黑潮调查研究论文选(二),1990.
    122.朱建荣,丁平兴,胡敦欣.2000年8月长江口外海区冲淡水和羽状锋的观测.海洋与湖沼.2003,34(3),249-255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700