燃料电池发电系统功率变换及能量管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池发电是21世纪重要的分布式新能源发电方式之一。燃料电池发电系统由于具有功率密度大、效率高、噪音低、环保、适应性强,不受地域、气候限制等特点,在一些需要高功率密度和高效率电源的领域,如交通、通信、计算机网络、航空航天、国防等,有着良好的应用发展前景。
     本文主要针对以下三项研究内容展开:1.燃料电池发电系统结构和高效功率变换的研究;2.负载动态特性匹配的能量管理技术;3孤岛检测和保护技术。
     在本文的第一章中,介绍了燃料电池的基本工作原理、类型、发展和一些典型的应用;对典型的燃料电池发电系统结构作了回顾,介绍了一些典型的电路拓扑结构;对用于保护燃料电池工作寿命,提高燃料利用率的能量管理技术研究现状进行了小结;介绍了现有的一些孤岛检测方法
     高效的功率变换技术是提高燃料电池容量利用率,降低整个燃料电池发电系统成本的关键。本文的第二章从燃料电池的静态和动态输出特性测试出发,根据系统要求,设计了应用于燃料电池并网发电系统的两个隔离型软开关前级DC/DC变换器,分别为采用逆阻型IGBT的电流型全桥ZCS-DC/DC变换器和采用MOSFET的电压型全桥ZVS-DC/DC变换器。以两个变换器的设计作为具体实例,从功率开关应力、输入电流纹波、变换效率和动态特性等几个方面对两个变换器设计做了对比,通过仿真或实验对分析进行了验证。然后综合比较结果确定了更适合应用于本燃料电池发电系统的结构。
     能量管理技术的主要功能是在系统负载变化时,提供负载功率中的高频分量,保障燃料电池的工作安全。本文的第三章从超级电容的储能利用率和对负载功率冲击抑制两方面出发,对比了燃料电池发电系统能量管理单元中不同储能元件的接入方式。通过对燃料电池动态特性的测试得到了能量管理的设计指标,分析和设计了燃料电池发电系统中的能量管理单元,包括控制环路的建模、控制器和滤波器的设计、超级电容的选择设计和能量管理算法的设计。通过仿真和实验结果对前面的分析和设计进行了验证。
     非检测区(Non-Detection Zone NDZ)是衡量和比较孤岛检测方法有效性的重要指标,因并网控制模式的不同,同样的孤岛检测方法所对应的非检测区存在差异。本文第四章基于分布式发电装置中常用的恒流并网控制模式,分析了两种最常用孤岛检测保护方法,高/低电压检测(OVP/UVP)和高/低频率检测(OFP/UFP)的NDZ特性,通过电路求解的方式获得NDZ边界描述方程,最后通过仿真结果进行了验证。本章还对基于频率检测的有源孤岛检测方法AFD方法进行了分析,针对AFD方法的NDZ难以在有功、无功偏差平面表示的问题,通过时域求解的方式对此类方法进行分析,获得其NDZ边界在有功、无功偏差坐标平面描述方程,并通仿真结果对分析进行了验证。
     本文的第五章介绍了燃料电池发电系统样机的设计,包括模块化的系统结构设计、控制架构设计、通讯设计以及变换器的控制设计,给出了燃料电池发电系统样机在独立运行和并网运行以及两种模式切换时的实验结果。
In fuel cell power generating system, the DC power generated by the fuel cell is converted to AC power by power conversion technology, and then the energy is feed to the grid and local load. The fuel cell power generating system becomes one of the essential forms of the distributed power generation in 21st century. Because of the fuel cell power generation system with merits such as high power density, high efficiency, low noise, environmental protection, adaptive characteristics, the application with fuel cell has good prospects for development in the area which required in a number of high power density and high-efficiency power such as transportation, communications, computer networks, aerospace, defense, etc.
     The study of this dissertation is carried out in following three aspects:1. System structure and highly efficient power conversion research.2. Energy management techniques for dynamic characterize match with load transient.3. Islanding detection and protection technologies.
     In the first chapter, the introduction of the fuel cell's basic working principle, types, development, and some typical applications are given. A statement reviewing typical fuel cell power generation system and topology structure are made. A summary of the technology research about energy management for guaranteeing the fuel cell operation life or improving fuel efficiency are carried out.
     High efficiency power conversion is the key technology to improve the utilization ratio of fuel cell capacity and reducing the cost of the entire fuel cell system. In chapter 2 of this dissertation, the static and dynamic output characteristics test of the fuel cell is given first. Two typical isolated soft switching DC/DC converters, the current-fed phase shift full bridge ZCS converter with reverse-blocking IGBT and voltage-fed phase shift full bridge ZCS converter with MOSFET, are introduced as the selection of the front-ended DC/DC converter. Following the requirement, the designs of the converters are introduced. The comparisons between the two designs are carried out from the switching stress, input current ripple, loss distribution & conversion efficiency and dynamic characterize. The simulation and experiment results are given to verify the analysis. Then, the comparison results are synthesized for the selection of the front-ended DC/DC converter.
     The main functions of the energy management are providing the high frequency portion of the load power through the auxiliary energy storage device technique, and then the operation safety of the fuel can be ensured. In chapter 3 of this dissertation, the comparisons among different connection mode of the super capacitor in energy management unit for fuel cell power generation system are introduced. The comparisons carried out in following two aspects:the utilization ratio of super capacitor and effects of the high frequency power compensation. The criteria and parameters for the energy management design are obtained from the dynamic test of the fuel cell, and then the energy management unit is analyzed and designed for the fuel cell power system. The analyses and designs contains the modeling the control loops, the design of the controller and filter, the design and selection of the super capacitor, and the design of the energy management algorithm and program function for the realization. The simulation results and experiment results are given to verify the analysis and designs.
     The Non-Detection Zone (NDZ) is the criteria for describing and comparing the effectiveness of islanding detection methods. For same islanding detection method, the NDZ will be different due to the different control mode. In chapter 4 of this dissertation, the Non-Detection Zone (NDZ) with passive islanding detection methods, such as OVP/UVP, OFP/UFP, for the DG system with the constant current control scheme are analyzed. The parameters of the point of common coupling such as the voltage amplitude and frequency are studied through mathematical derivation. The NDZ boundaries description represented in the power mismatch space re drawn base on the mathematical derivation. And the analysis is verified by the simulation results. The AFD method, as the mostly acceptable active islanding detection, is analyzed in this chapter. In this chapter, the AFD function is analyzed in the time domain, the frequency response with AFD method is obtained from the analysis. Then the NDZ boundaries of this method are first described in the power mismatch space re drawn based on the mathematical derivation. Simulation results are given to verify the analysis.
     In chapter 5 of this dissertation, the prototype fuel cell power generation system design is introduced, including the modular system structure design, architecture design of the control, communications design, and control designs of converters. The experiment results under grid-connected mode and stand-along mode of the fuel cell power system prototype are given.
引文
[1]Report prepared by EG&G Services, Parsons, Inc. and Science Applications International Corporation under contract no. DE-AM26-99FT40575 for the U.S. Department of Energy, National Energy Technology Laboratory, "Fuel Cell Handbook, 5th Edition," October 2000
    [2]Ryan O'Hayre, Suk-Won Cha, Whitney Colella and Fritz B Prinz, "Fuel Cell Fundamentals," John Wiley & Sons Ltd.2006.
    [3]李瑛,王林山,燃料电池,北京:冶金工业出版社,2000
    [4]詹姆斯·拉米尼,安德鲁·迪克斯著,朱红译,燃料电池系统-原理、设计、应用,北京:科学出版社,P20-P28
    [5]高颖,邬冰(主编),高颖,电化学基础,北京:化学工业出版社,2004.
    [6]Adamson and Kerry Ann, "2008 Large Stationary Survey," Report at Fuel Cell Today, March 2008.
    [7]S. J. O, "Fuel cells in distributed generation," in IEEE Power Engineering Society Summer Meeting,1999. pp.568-572 vol.1.
    [8]X. Haiping, K. Li, and W. Xuhui, "Fuel cell power system and high power DC-DC converter," Power Electronics, IEEE Transactions on, vol.19, pp.1250-1255,2004.
    [9]Adamson and Kerry Ann, "Small Stationary Survey 2008," Report at Fuel Cell Today, March 2008.
    [10]张颖颖,曹广益,朱新坚,”燃料电池-有前途的分布式发电技术,”电网技术29(2),pp.57-61,2005.
    [11]邓亚东,王仲范,”燃料电池的技术发展及应用分析,”武汉大学学报(工学版)36(4),pp.48-53,2003.
    [12]仇立干,吴林,石慧,”燃料电池进展,”电池工业,6(5),PP.233-236,2001.
    [3]胡里清,”质子交换膜燃料电池-21世纪的新一代能源动力系统,”电池工业7(3,4),pp.225-231,2002.
    [14]中华人民共和国可再生能源法,2005.
    [15]IEEE Std 1547-2003, "Draft Application Guide for IEEE Standard 1547, Interconnecting Distributed Resources with Electric Power Systems,".
    [16]IEEE Std 1547-2003, "IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems,"
    [17]EEE Std 929-1988, "IEEE recommended practice for utility interface of residential and intermediate photovoltaic (PV) systems,"
    [18]IEEE Std 929-2000(Revision of IEEE Std 929-1988), "IEEE recommended practice for installation and maintenance of nickel-cadmium batteries for Photovoltaic (PV) systems,".
    [19]IEEE Std 519-1992, "IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems,".
    [20]IEEE Std 142-1992 (ANSI) "IEEE recommended practice for grounding of industrial and commercial power systems,"
    [21]GB/T 12325-2003,”电能质量供电电压允许偏差,”.
    [22]GB/T 14549-1993,”电能质量公用电网谐波,’
    [23]GB/T 12326-2000,”电能质量电压波动和闪变,”.
    [24]GB/T 18481-2001,”电能质量暂时过电压和瞬态过电压,”
    [25]GB/T 15945-1995,”电能质量电力系统频率允许偏差,”.
    [26]GB/T 15543-1995,”电能质量三相电压允许不平衡度,”.
    [27]Mikko Mikkola, "Experimental Studies on Polymer Electrolyte Membrane Fuel Cell Stacks, " PhD Dissertation on Helsinki University Of Technology,2001
    [28]林维民,燃料电池系统.北京:化学工业出版社,1996.
    [29]衣宝廉,燃料电池-高效、环境友好的发电方式北京:化学工业出版社,2000.
    [30]W. Friede, S. Rael, and B. Davat, "Mathematical model and characterization of the transient behavior of a PEM fuel cell," Power Electronics, IEEE Transactions on, vol.19, pp.1234-1241,2004.
    [31]F. Blaabjerg, C. Zhe, and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems," Power Electronics, IEEE Transactions on, vol.19, pp.1184-1194,2004.
    [32]金科,”燃料电池供电系统的研究,”.工学博士学位论文,南京:南京航空航天大学,2006.
    [33]许世森,程健,燃料电池发电系统北京:中国电力出版社,2006.
    [34]X. Yaosuo, C. Liuchen, B. K. Sren, J. Bordonau, and T. Shimizu, "Topologies of single-phase inverters for small distributed power generators:an overview," Power Electronics, IEEE Transactions on, vol.19, pp.1305-1314,2004.
    [35]B. Sahan, A. N. Vergara, N. Henze, A. Engler, and pp. Zacharias, "A Single-Stage PV Module Integrated Converter Based on a Low-Power Current-Source Inverter," Industrial Electronics, IEEE Transactions on, vol.55, pp.2602-2609,2008.
    [36]R. O. Caceres and I. Barbi, "A boost DC-AC converter:analysis, design, and experimentation," Power Electronics, IEEE Transactions on, vol.14, pp.134-141,1999.
    [37]C. Cecati, A. A. Dell, and M. Liserre, "A novel three-phase single-stage distributed power inverter," Power Electronics, IEEE Transactions on, vol.19, pp.1226-1233,2004.
    [38]N. Vazquez, J. Almazan, J. Alvarez, C. Aguilar, and J. Arau, "Analysis and experimental study of the buck, boost and buck-boost inverters," in Power Electronics Specialists Conference,1999. pp.801-806 vol.2.
    [39]N. Kasa, T. Iida, and H. Iwamoto, "An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system," in Industrial Electronics Society,1999. IECON'99 Proceedings, pp.185-190 vol.1.
    [40]M. Kusakawa, H. Nagayoshi, K. Kamisako, and K. Kurokawa, "Further improvement of a transformerless, voltage-boosting inverter for ac modules,". vol.67,2001, pp.379-387.
    [41]W. Chien-Ming, "A novel single-stage full-bridge buck-boost inverter," Power Electronics, IEEE Transactions on, vol.19, pp.150-159,2004.
    [42]Z. pp. Fang, "Z-source inverter," Industry Applications, IEEE Transactions on, vol.39, pp. 504-510,2003.
    [43]H. Yi, S. Miaosen, F. Z. Peng, and W. Jin, "Z-Source Inverter for Residential Photovoltaic Systems," Power Electronics, IEEE Transactions on, vol.21, pp.1776-1782,2006.
    [44]J. Jin-Woo and A. Keyhani, "Control of a Fuel Cell Based Z-Source Converter," Energy Conversion, IEEE Transaction on, vol.22, pp.467-476,2007.
    [45]F. Z. Peng, M. Shen, and K. Holland, "Application of Z-Source Inverter for Traction Drive of Fuel Cell & Battery Hybrid Electric Vehicles," Power Electronics, IEEE Transactions on, vol.22, pp.1054-1061,2007.
    [46]R. Gonzalez, J. Lopez, pp. Sanchis, and L. Marroyo, "Transformerless Inverter for Single-Phase Photovoltaic Systems," Power Electronics, IEEE Transactions on, vol.22, pp.693-697,2007.
    [47]P. T. Krein, R. S. Balog, and G. Xin, "High-frequency link inverter for fuel cells based on multiple-carrier PWM," Power Electronics, IEEE Transactions on, vol.19, pp.1279-1288,2004.
    [48]J. S. Yu, C. Se-Kyo, and pp. N. Enjeti, "A current-fed HF link direct DC/AC converter with active harmonic filter for fuel cell power systems," in Industry Applications Conference,2004.39th IAS Annual Meeting. Conference Record of the 2004 IEEE,2004, pp.128 Vol.1.
    [49]US Standard, "UL Standard for Safety for Inverters, Converters, and Controllers for Use in
    Independent Power Systems, UL 1741,",1999.
    [50]K. Stahl, "Climate Change Fuel Cell Program,200 kW-PC25C Fuel Cell Power Plant for the St.-Agnes-Hospital, Bocholt, Germany, Final Repoer," 2002.
    [51]汪飞,”可再生能源并网逆变器的研究,”.工学硕士学位论文,杭州:浙江大学,2005.
    [52]陈道炼(编著),DC-AC逆变技术及其应用.北京:机械工业出版社,2005.
    [53]R. Gopinath, K. Sangsun, H. Jae-Hong, pp. N. Enjeti, M. B. Yeary, and J. W. Howze, "Development of a low cost fuel cell inverter system with DSP control," Power Electronics, IEEE Transactions on, vol.19, pp.1256-1262,2004.
    [54]W. Jin, F. Z. Peng, J. Anderson, A. Joseph, and R. Buffenbarger, "Low cost fuel cell converter system for residential power generation," Power Electronics, IEEE Transactions on, vol.19, pp.1315-1322,2004.
    [55]H. Ertl, J. W. Kolar, and F. C. Zach, "A novel multicell DC-AC converter for applications in renewable energy systems," Industrial Electronics, IEEE Transactions on, vol.49, pp. 1048-1057,2002.
    [56]J. Mazumdar, I. Batarseh, N. Kutkut, and O. Demirci, "High frequency low cost DC-AC inverter design with fuel cell source for home applications," in Industry Applications Conference,2002.37th IAS Annual Meeting. Conference Record of the,2002, pp.789-794 vol.2.
    [57]L. Zubieta and G. Panza, "A wide input voltage and high efficiency DC-DC converter for fuel cell applications," in Applied Power Electronics Conference and Exposition,2005. APEC 2005. pp.85-89 Vol.1.
    [58]H. Xudong, W. Xiaoyan, T. Nergaard, L. Jih-Sheng, X. Xingyi, and Z. Lizhi, "Parasitic ringing and design issues of digitally controlled high power interleaved boost converters," Power Electronics, IEEE Transactions on, vol.19, pp.1341-1352,2004.
    [59]L. Po-Wa, L. Yim-Shu, D. K. Cheng, and L. Xiu-Cheng, "Steady-state analysis of an interleaved boost converter with coupled inductors," Industrial Electronics, IEEE Transactions on, vol.47, pp.787-795,2000.
    [60]W. Wei, L. Yim-Shu, L. C. Hoi, and C. D. Ki-Wai, "Interleaved boost converter with zero diode reverse-recovery loss," Aerospace and Electronic Systems, IEEE Transactions on, vol.40, pp.1271-1285,2004.
    [61]M. E. Schenck, L. Jih-Sheng, and K. Stanton, "Fuel cell and power conditioning system interactions," in Applied Power Electronics Conference and Exposition,2005. APEC 2005. pp.114-120 Vol.1.
    [62]L. Changrong, A. Johnson, and L. Jih-Sheng, "A novel three-phase high-powersoft-switched DC/DC converter for low-voltage fuel cell applications," IndustryApplications, IEEE Transactions on, vol.41, pp.1691-1697,2005.
    [63]S.O.de and I.Barbi,”A three-phase ZVS PWM DC/DC converter with asymmetricalduty cycle for high power applications,”Power Electronics,IEEE Transactions on,vol.
    20,pp.370-377,2005.[64] D. S. Oliveira and I. Barbi, "A three-phase ZVS PWM DC/DC converter with asymmetrical duty cycle associated with a three-phase version of the hybridge rectifier,"Power Electronics, IEEE Transactions on, vol.20, pp.354-360,2005.
    [65]陈刚,"软开关双向DC/DC变换器的研究,".工学博士学位论文,杭州:浙江大学,2001.6]M.Uzunoglu and M.S.Alam,”Dynamic modeling,design,and simulation of a combinedPEM fuel cell and ultracapacitor system for stannd-alone residential applications,”EnergyConversion,IEEE Transaction on,vol.21,Dp.767-775,2006.
    [67]W. Caisheng, M. H. Nehrir, and S. R. Shaw, "Dynamic models and model validation forPEM fuel cells using electrical circuits," Energy Conversion, IEEE Transaction on, vol.20, pp.442-451,2005.
    [68]S. Pasricha and S. R. Shaw, "A dynamic PEM fuel cell model," Energy Conversion, IEEETransaction on, vol.21, pp.484-490,2006.
    [69]J.-. Lai and D. J. Nelson, "Energy Management Power Converters in Hybrid Electric and Fuel Cell Vehicles," Proceedings of the IEEE, vol.95, pp.766-777,2007.
    [70]A. F. Burke, "Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles,1 Proceedings of the IEEE, vol.95, pp.806-820,2007.
    [71]J. Schiffer, O. Bohlen, D. R. De, D. U. Sauer, and Y. A. Kyun, "Optimized energy management for fuelcell-supercap hybrid electric vehicles," in Vehicle Power and Propulsion,2005 IEEE Conference,2005, pp.341-348.
    [72]H. Y. Cho, W. Gao, and H. L. Ginn, "A new power control strategy for hybrid fuel cell vehicles," in Power Electronics in Transportation,2004,2004, pp.159-166.
    [73]M. Koot, J. T. Kessels, J. B. de, W. pp. Heemels, B. pp. van, and M. Steinbuch, "Energy management strategies for vehicular electric power systems," Vehicular Technology, IEEE Transactions on, vol.54, pp.771-782,2005.
    [74]P. Thounthong and pp. Sethakul, "Analysis of a Fuel Starvation Phenomenon of a PEM Fuel Cell," in Power Conversion Conference-Nagoya,2007. PCC'07,2007, pp. 731-738.
    [75]D. D. Marquezini, D. B. Ramos, R. Q. Machado, and F. A. Farret, "Interaction between proton exchange membrane tuel cells and power converters for AC integration, Renewable Power Generation, IET, vol.2, pp.151-161,2008.
    [76]G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, "Interactions Between Fuel Cells and Power Converters:Influence of Current Harmonics on a Fuel Cell Stack," Power Electronics, IEEE Transactions on, vol.22, pp.670-678,2007.
    [77]R. A. Dougal, S. Liu, and R. E. White, "Power and life extension of battery-ultracapacitor hybrids," Components and Packaging Technologies, IEEE Transactions on, vol.25, pp. 120-131,2002.
    [78]L. Danwei and L. Hui, "Dynamic modeling and control design for bi-directional DC-DC converter for fuel cell vehicles with battery as energy storage element," in Industry Applications Conference,2005. pp.1632-1635 Vol.3.
    [79]P. Thounthong, S. Rael, and B. Davat, "Control Strategy of Fuel Cell and Supercapacitors Association for a Distributed Generation System," Industrial Electronics, IEEE Transactions on, vol.54, pp.3225-3233,2007.
    [80]P. Thounthong, S. Rael, and B. Davat, "Control Algorithm of Fuel Cell and Batteries for Distributed Generation System," Energy Conversion, IEEE Transaction on, vol.23, pp. 148-155,2008.
    [81]J. Yan, R. Shibata, N. Yamamura, and M. Ishida, "A Control Method of Prolonging the Service Life of Battery in Stand-alone Renewable Energy System using Electric Double Layer Capacitor (EDLC)," in Power Electronics and Drives Systems,2005. PEDS 2005. International Conference on,2005, pp.228-233.
    [82]J. Yan, R. Shibata, N. Yamamura, and M. Ishida, "Characteristics of Smoothed-power Output Topology of Stand-alone Renewable Power System Using EDLC," in Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006, pp.1-7.
    [83]IEEE Std 929-2000 "IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems,".
    [84]H. H. M. Zeineldin, "Distributed generation micro-grid operation:Control, protection, and electricity market operation,":University of Waterloo (Canada).,2006.
    [85]M. R. Ward Bower, "Evaluation of Islanding Detection Methods for Photovoltage Utility-interactive Power System," Report IEA PVPS T5-09 March 2002 2002.
    [86]Y. Zhihong, A. Kolwalkar, Z. Yu, Du Pengwei, and W. Reigh, "Evaluation of anti-islanding schemes based on nondetection zone concept," Power Electronics, IEEE Transactions on, vol.19, pp.1171-1176,2004.
    [87]A. Kitamura, M. Okamoto, F. Yamamoto, K. Nakaji, H. Matsuda, and K. Hotta, "Islanding phenomenon elimination study at Rokko test center," in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994,1994 IEEE First World Conference on,1994, pp.759-762 vol.1.
    [88]A. Kitamura, M. Okamoto, K. Hotta, K. Takigawa, H. Kobayashi, and Y. Ariga, "Islanding prevention measures:demonstration testing at Rokko Test center for Advanced Energy Systems," in Photovoltaic Specialists Conference,1993., Conference Record of the Twenty Third IEEE,1993, pp.1063-1067.
    [89]M.E.Ropp,K.Aaker,J.Haigh,and N.Sabbah,”Using power line carriercommunications to prevent islanding [of PV power systems],"in Photovoltaic Specialists Conference,2000. Conference Record of the Twenty-Eighth IEEE,2000, pp.1675-1678.
    [90]H. Kobayashi, K. Takigawa, E. Hashimoto, A. Kitamura, and H. Matsuda, "Method for preventing islanding phenomenon on utility grid with a number of small scale PV systems," in Photovoltaic Specialists Conference,1991., Conference Record of the Twenty Second IEEE,1991, pp.695-700 vol.1.
    [91]S. K. Chakravarthy, "Low frequency oscillations in a TCSC system," Power Engineering Review, IEEE, vol.19, pp.55-57,1999.
    [92]H. Guo-Kiang, C. Chih-Chang, and C. Chern-Lin, "Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverters," Energy Conversion, IEEE Transaction on, vol.18, pp.169-173,2003.
    [93]H. Guo-Kiang, C. Chih-Chang, and C. Chern-Lin, "Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverters," Energy Conversion, IEEE Transaction on, vol.18, pp.169-173,2003.
    [94]M. Ropp, "Design issues for Grid-connected photovoltaic system,". vol. Doctor of Philiosophy Atlanta, GA:Georgia Institute fo Technology,1998.
    [95]M. E. Ropp, M. Begovic, A. Rohatgi, G. A. Kern, R. H. Bonn, and S. Gonzalez, "Determining the relative effectiveness of islanding detection methods using phase criteria and nondetection zones," Energy Conversion, IEEE Transaction on, vol.15, pp.290-296, 2000.
    [961 B. Singam and L. Y. Hui, "Assessing SMS and PJD Schemes of Anti-Islanding with Varying Quality Factor," in Power and Energy Conference,2006. PECon'06. IEEE International,2006, pp.196-201.
    [97]M. E. Ropp, M. Begovic, A. Rohatgi, G. A. Kern, R. H. S. Bonn, and S. Gonzalez, "Determining the relative effectiveness of islanding detection methods using phase criteria and nondetection zones," Energy Conversion, IEEE Transaction on, vol.15, pp.290-296, 2000.
    [98]W. Xiaoyu and W. Freitas, "Impact of Positive-Feedback Anti-Islanding Methods on Small-Signal Stability of Inverter-Based Distributed Generation," vol.23, pp.923-931, 2008.
    [99]Changrong, L., A. Johnson, and L. Jih-Sheng, "A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications." Industry Applications, IEEE Transactions on,2005.41(6):p.1691-1697.
    [100]Uzunoglu, M. and M.S. Alam, "Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications". Energy Conversion, IEEE Transaction on,2006.21(3):p.767-775.
    [101]Xudong, Huang, Xiaoyan, Wang, Nergaard, T, Jih-Sheng, Lai, Xingyi, Xu, Lizhi, Zhu, "Parasitic ringing and design issues of digitally controlled high power interleaved boost converters". Power Electronics, IEEE Transactions on,2004.19(5):p.1341-1352.
    [102]严仰光,阮新波,脉宽调制DC/DC全桥变换器软开关技术北京:科学出版社,1999.
    [103]C, Iannello, L, Shiguo and I, Batarseh, "Full bridge ZCS PWM converter for high voltage and high power applications," IEEE Tran. on Aerospace and Electronic Systems., vol.38, pp.515-526,2002.
    [104]Z. Linquan and R. Xinbo, "A zero-current and zero-voltage-switching PWM boost full-bridge converter," IEEE Power Electronics Specialist, vol.12, pp.15-19,2003.
    [105]C. Iannello, L. Shiguo and I. Batarseh, "Small-signal and transient analysis of a full-brideg ZCS PWM converter using an average model," IEEE Trans. Power Electron, vol.18, pp.793-801,2003.
    [1061 Z. Xuancai, X. Dehong, S. Guoqiao, X. Danji, K. Mino, and H. Umida, "Current-fed DC/DC converter with reverse block IGBT for fuel cell distributing power system," in Industry Applications Conference,2005. pp.2043-2048 Vol.3.
    [107]朱选才,徐德鸿,u.Hidetoshi,and M.Kazuaki,”应用逆阻型IGBT的移相控制电流型全桥零电流开关DC/DC变换器,”中国电机工程学报2006,16(6),pp.45-49.
    [108]裘圣琳,”燃料电池发电系统前端DC/DC变换器研究,”.工学硕士学位论文,杭州:浙江大学,2006.
    [109]J. A. Sabatc, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. I. Cho, "Design Consideration For High-Voltage High-Power Full-Bridge Zero-Voltage-Switched PWM Converter," in APEC 1990,1990, pp.275-284.
    [110]L. Grajales and F. C. Lee, "Control system design and small-signal analysis of a phase-shift-controlled series-resonant inverter for induction heating," in Power Electronics Specialists Conference,26th Annual,1995, pp.450-456.
    [111]吴屏,朱选才,徐德鸿,”高效燃料电池发电系统前级DC/DC变换器,”电力电子技术2007,47(09),pp.10-11.
    [12]吴屏,”燃料电池发电系统前端DC/DC变换器设计,”工学硕士学位论文,杭州:浙江大学,2007.
    [113]M. Takei, A. Odaka, and H. Fujimoto, "Application technologies of Reverse-Blocking IGBT," Fuji electric Journal, vol.75, pp.1-4,2002.
    [114]D. Zhou, Z. Liu, and K. Sasagawa, "An improved driving and protection circuit for reverse blocking IGBT," in PESC 2004,35th Annul IEEE,2004, pp.118-124.
    [115]蔡宣三,张占松,工关电源的原理与设计.北京:电子工业出版社,2004.
    [116]L. Song-Yi and C. Chern-Lin, "Analysis and design for RCD clamped snubber used in output rectifier of phase-shift full-bridge ZVS converters," Industrial Electronics, IEEE Transactions on, vol.45, pp.358-359,1998.
    [117]V. Vlatkovic, J. A. Sabate, R. B. Ridley, F. C. Lee, and B. H. Cho, "Small-signal analysis of the phase-shifted PWM converter," Power Electronics, IEEE Transactions on, vol.7, pp.128-135,1992.
    [118]Miao, Z., et al. Study of a fuel cell power plant in power distribution system. Part I. Dynamic model, in Power Engineering Society General Meeting,2004. IEEE.2004.
    [119]Pasricha, S. and S.R. Shaw, A dynamic PEM fuel cell model. Energy Conversion, IEEE Transaction on,2006.21(2):p.484-490.
    [120]Caisheng, W., M.H. Nehrir, and S.R. Shaw, Dynamic models and model validation for PEM fuel cells using electrical circuits. Energy Conversion, IEEE Transaction on,2005. 20(2):p.442-451.
    [121]Dougal, R.A., S. Liu, and R.E. White, Power and life extension of battery-ultracapacitor hybrids. Components and Packaging Technologies, IEEE Transactions on,2002.25(1):p. 120-131.
    [122]Timmermans, J.M., et al. Modelling and design of super capacitors as peak power unit for hybrid electric vehicles. in Vehicle Power and Propulsion,2005 IEEE Conference. 2005.
    [123]Koot, M., et al., Energy management strategies for vehicular electric power systems. Vehicular Technology, IEEE Transactions on,2005.54(3):p.771-782.
    [124]朱选才,徐德鸿,吴屏,曹陆萍,and沈国桥,”燃料电池的辅助储能控制装置,”.中国发明专利,专利号:ZL 200710069091.4,2009.
    [125]朱选才,徐德鸿,吴屏,曹陆萍,沈国桥,”燃料电池发电装置能量管理控制系统设计,”中国电机工程学报,2008,18(4),pp.101-106.
    [126]X. Zhu, D. Xu, P. Wu, G. Shen and P. Chen, "Energy management design for a 5kW fuel cell distributed power system,"in APEC 2008., pp.291-297.
    [1271 K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, and J. S. Lai, "Bi-diretional dc to dc converters for fuel cell systems," IEEE Power Electronics in Transportation,1998, pp.47-51.
    [128]Xudong Huang, Jih-Sheng Lai, etc, "Parasitic Ringing and Design Issues of Digitally Controlled High Power Interleaved Boost Converters," IEEE Trans. On Power Electronics, Vol.19,No.5pp.1341-1351, September 2004.
    [1291 Kjaer,Stig Munk-Nielsen,Frede Blaabjerg,John K. Pedersen, "Comparative Analysis of Three Interleaved Boost Power Factor Corrected Topologies in DCM", PESC2O'Sullivan, G.A., " Fuel cell inverters for utility applications ", Proceeding of IEEE PESC 2000, Vol.3, pp.1191-1194.
    [130]Wei Wen, Yim-Shu Lee, Hoi Lam Chow, M., Ki-Wai Cheng, D., "Interleaved Boost converter with zero diode reverse-recovery loss," Aerospace and Electronic Systems, IEEE Transactions on, Volume 40, Issue 4, Oct.2004 Page(s):1271-1285
    [131]S. Chandrasekaran and L. U. Gokdere, "Integrated magnetics for interleaved DC/DC Boost converter for fuel cell powered vehicles," Power Electronics Specialists Conference, 2004.2004 IEEE 33rd Annual, Volume 2, June 2004 Page(s):356-361
    [132]S. Chandrasekaran and V. Mehrotra, "Matrix integrated magnetics for low voltage, interleaved DC/DC converters," Proceeding of Applied Power Electroncis Conference 2003, Feb.2003
    [133]徐德鸿,电力电子系统建模与控制.北京:机械工业出版社,2006.
    [134]孙丽萍,徐德鸿,陈敏,“两调节参数的双向DC/DC变换器的建模”,电源技术应用,2005,5,pP:61-64.
    [135]孙丽萍,”PWM加相移控制的双向DC/DC变换器的动态建模,”.工学硕士学位论文,杭州:浙江大学,2006
    [136]Ropp, M.E., "Design issues for grid-connected photovoltaic systems," 1998, Georgia Institute of Technology
    [137]Ward Bower and Ropp, M.E., "Evaluation of Islanding Detection Methods for Photovoltage Utility-interactive Power System," Report IEA PVPS T5-09.2002, pp.1-59.
    [138]H.H. Zeineldin, E.F. El-Saadany, M.M.A. Salama, "Impact of DG interface control on islanding detection and nondetection zones", Power Delivery, IEEE Transactions on, Volume 21, Issue 3, July 2006, pp.1515-1523
    [139]Zhihong Ye, Kolwalkar, A., Yu Zhang, Pengwei Du, Reigh Walling. "Evaluation of anti-islanding schemes based on nondetection zone concept", Power Electronics, IEEE Transactions on, Volume 19, Issue 5, Sept.2004, pp.1171-1176
    [140]Ropp, M.E., M. Begovic, and A. Rohatgi, "Analysis and performance assessment of the active frequency drift method of islanding prevention." Energy Conversion, IEEE Transaction on,1999.14(3), pp.810-816.
    [141]W. Hui, L. Furong, K. Yong, C. Jian, and W. Xueliang, "Experimental Investigation on Non Detection Zones of Active Frequency Drift Method for Anti-islanding," in Industrial Electronics Society,2007. IECON 2007.33rd Annual Conference of the IEEE,2007, pp. 1708-1713.
    [1421 Lopes, L.A.C. and S. Huili, "Performance assessment of active frequency drifting islanding detection methods." Energy Conversion, IEEE Transaction on,2006.21(1), pp. 171-180
    [43]奚淡基,”逆变器并网孤岛检测技术研究,”.工学硕士学位论文.杭州:浙江大学.2006.
    [144]Z. Xuancai, Du Chengrui, S. Guoqiao, C. Min, and X. Dehong, "Analysis of the Non-detection Zone with Passive Islanding Detection Methods for Current Control DG System," in Proceeding of APEC 09 Conf. Washinton,2009, pp.358-363.
    [145]沈国桥,徐德鸿,”LCL滤波并网逆变器的分裂电容法电流控制,”中国电机工程学报,2008,28(18),pp.36-41.
    [146]沈国桥,徐德鸿,”采用滤波器中间电流反馈的并网逆变器电流控制方法,”中国发 明专利,专利号:ZL 200610050625.4,2008.
    [147]S. Guoqiao, X. Dehong, C. Luping, and Z. Xuancai, "An Improved Control Strategy for Grid-Connected Voltage Source Inverters With an LCL Filter," Power Electronics, IEEE Transactions on, vol.23, pp.1899-1906,2008.
    [148]沈国桥,”燃料电池并网逆变技术研究,”.工学博士学位论文,杭州:浙江大学,2008.
    [149]曹陆萍,”燃料电池并网逆变器的控制与保护,”.工学硕士学位论文,杭州:浙江大学,2007.
    [150]曹陆萍,沈国桥,朱选才,徐德鸿,”单相并网逆变器功率控制的实现,”电力电子技术2007,47(9),pp.19-20.
    [151]杨成林,”三相逆变器DSP控制技术的研究,”.工学硕士学位论文,杭州:浙江大学,2004.
    [152]刘进军,王兆安,杨君,谐波抑制和无功功率补偿.北京:机械工业出版社,1998.
    [153]陈仲,”并联有源电力滤波器实用关键技术的研究,”.工学博士学位论文,杭州:浙江大学,2005.
    [154]S. Guoqiao, X. Dehong, and X. Danji, "Novel seamless transfer strategies for fuel cell inverters from grid-tied mode to off-grid mode," in APEC 2005. pp.109-113.
    [155]S. Guoqiao, X. Dehong, and Y. Xiaoming, "Voltage Phase Regulated Seamless Transfer Control Strategy for Utility-interconnected Fuel cell Inverters with an LCL-filter," in Power Electronics Specialists Conference,2006. PESC'06.2006, pp.1-6.
    [156]S. Guoqiao, X. Dehong, and Y. Xiaoming, "Instantaneous Voltage Regulated Seamless Transfer Control Strategy for Utility-interconnected Fuel cell Inverters with an LCL-filter," in Power Electronics and Motion Control Conference,2006. IPEMC'06., 2006, pp.1-5.
    [157]苏奎峰,吕强,耿庆锋,and陈圣俭,TMS320F2812原理与开发.北京:电子工业出版社,2006.
    [158]刘和平,严利平,张学锋,and卓清锋,TMS320LF240x DSP结构、原理及应用.北京:北京航空航天大学出版社,2002.
    [1591 Incorporated, Texas Instruments, TMS320C28x系列DSP的CPU与外设(TI DSP系列中文手册).北京:清华大学出版社,2004.
    [160]林渭勋,现代电力电子电路.杭州:浙江大学出版社,2002.
    [161]邹伯敏,自动控制理论.北京:机械工业出版社,2002.
    [162]蒋静坪,实时控制系统.杭州:浙江大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700