户用式光伏并网发电控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界能源危机和环境污染日趋严重,光伏发电系统受到各国政府的高度重视。特别是户用式光伏发电系统,作为未来光伏应用中重要领域之一,应用前景十分广阔,成为当前国内外学者研究的热点。
     本文针对户用式单相光伏并网发电系统,在最大功率点跟踪算法、数字锁相环、并网电流控制和孤岛保护等控制策略方面分别进行了深入的理论分析和探讨。
     首先,针对光伏电池的电流-电压非线性特性及其受光照强度和电池温度影响的特点,在描述了光伏电池原理基础上,研究了光伏电池外特性机制和物理特性机制,分别建立了各自的仿真模型。根据仿真结果与实测数据的对比分析,验证了模型的正确性,为进一步研究最大功率点跟踪算法以及深入研究并网控制策略奠定了良好的基础。
     其次,深入研究了光伏阵列最大功率点跟踪问题。在详细介绍常规的最大功率点跟踪方法基础上,提出了一种新颖的间歇变步长搜索算法,包括定时变步长搜索和定时定占空比控制两个过程。在起动阶段或外界环境变化较大时,以较短定时时间间隔连续进行变步长跟踪搜索,确保快速达到最大功率点;在外界环境变化较小时,维持较长定时时间的最优定占空比控制。仿真与实验结果验证了该新方法不仅可以有效降低持续扰动而引起的功率波动,而且即使在外界条件变化时也能实现快速跟踪最大功率点。
     第三,深入探讨了一种数字锁相环的实现方法。在分析了三相并网锁相控制方法基础上,结合有限冲击响应(FIR)数字滤波器具有线性相移的特点,提出了基于有限冲击响应数字滤波器线性相移控制的单相数字锁相环方法。设计了有限冲击响应滤波器,构建了两相正交电压矢量信号,参照三相并网系统基于αβ静止坐标系到dq同步旋转坐标系的数字锁相环原理,采用同步采样技术确保滤波器系数恒定的方法,实现了基于虚拟两相直角坐标系的数字锁相环控制。该方法能够快速准确地实现锁相,而且不受谐波、电压频率和幅值波动等因素影响,并通过仿真和实验结果进行了验证。
     第四,针对传统的预测电流控制方法在滤波电感参数不匹配时可能出现的稳态相位差甚至系统不稳定问题,提出了一种用于预测电流控制的滤波电感参数在线估计方法。通过简化单相光伏并网发电系统的等效电路,建立了平均电感参数的在线估计方程。针对电感参数变化、逆变器输出电流幅值变化以及注入一定的谐波电流、电网电压幅值变化和注入一定幅值的谐波电压等各种情况,进行了仿真和实验研究,结果表明该方法有效地解决了滤波参数不匹配带来的问题。
     最后,深入研究了两种新型的孤岛检测方法。针对被动检测方法中的过/欠电压、过/欠频率检测法和主动检测法中常用的主动频率偏移法存在的孤岛检测盲区问题,分别提出了基于交替电流扰动法的孤岛检测方法和2N周期扰动法的孤岛检测方法。这两种方法都是打破了单纯依靠检测公共耦合点电压频率是否超出规定频率范围的判断准则,而是根据公共耦合点相邻周期间的电压频率差是否正负连续交替变化来有效地识别非检测区内的孤岛现象。为防止多台并网逆变器输出的扰动电流相互抵消而引起的无法识别孤岛现象,又提出了多台逆变器并网孤岛检测同步技术。仿真和实验结果验证了上述方法既能够识别各种条件下的孤岛现象,也可以解决非检测区问题,同时适用于多台逆变器并网运行。
All over the world focus on the photovoltaic (PV) generation system seriously due to the worldwide energy crisis and worse and worse environment pollution. Especially, residential PV generation system will be one of the most important fields in the PV application in the near future and its foreground will be very wide, therefore, it becomes the research highlight for many scholars.
     In this thesis, the control strategies including the maximum power point tracking (MPPT), digital phase-locked loop (DPLL), grid-connected current control and islanding detection strategy have been analyzed in detail for the residential single-phase PV grid-connected generation system.
     Firstly, as for theⅠ-Ⅴnonlinearity characteristics of PV cells and the influence of irradiation intensity and temperature on PV cells, the outsideⅠ-Ⅴcharacteristics and physical characteristics are developed and their simulation models are built respectively on the basis of the working principle of PV cells. Compared the simulation results with experimental data of PV cells, the above models are proved to be right and it provides an excellent simulation platform to realize MPPT method and study the control strategy for the grid-connected generation system in depth.
     Secondly, the MPPT method of PV array is studied in detail. Based on the introduction of regular MPPT methods, the novel MPPT method based on intermittent step-varied search is proposed, it is composed of two control processes including step-varied timing search and constant duty ratio timing control. When the PV system starts up or the environment changes strongly, step-varied search is implemented at intervals of the shorter timing to track the maximum power point (MPP) quickly. When the environment changes slightly, the optimal constant duty ratio is utilized for a longer timing. The simulation and experimental results prove that this method can reduce the tracking power loss caused by the continuous perturbation, and track the MPP fast even under the quick environment change.
     Thirdly, a digital phase-locked loop (DPLL) method is developed. On the basis of description of the PLL method for the three-phase grid-connected system, a single-phase DPLL method based on the linear phase-shifted control of the finite impulse response (FIR) filter is proposed. The FIR filter is designed to construct two-phase quarter voltage vector signals. According to the DPLL principle by means of the transformation fromαβstationary reference to dq synchronously rotating reference for a three-phase system, and the synchronously sampling technique used to ensure the constant filter order, a DPLL based on a fictitious two-phase quarter coordinate transformation for a single-phase grid-connected power conversion system is implemented. The simulation and experimental results validate that this method can realize PLL quickly and it is not influenced by such conditions as voltage harmonics and the fluctuations of the voltage frequency and amplitude.
     Fourthly, an on-line estimated method of the filter inductance for the predictive current control is analyzed. The equivalent circuit for a single-phase PV grid-connected generation system is simplified, on-line estimated equation of the average filter inductance is given. Some conditions such as filter inductance change, magnitude change of output current and injected harmonic current, magnitude change of AC grid voltage and injected harmonic voltage are studied by the simulation and experiments, the results verify the method solves the problems which are the steady-state phase error and system instability in the conventional predictive current control system when the filter inductance changes.
     Lastly, two novel islanding detection methods are studied in depth. Owing to the islanding non-detection zone (NDZ) problem for over-/under-voltage protection (OVP/UVP) and over-/under-frequency protection (OFP/UFP) in passive detection methods and active frequency drift (AFD) in active detection methods, islanding detection methods based on the alternative current disturbance and the 2N period current disturbance are proposed, respectively. The proposed two methods depend on the voltage period error between the 2Nth and (2N+1)th period at the point of common coupling (PCC) changes alternately in the form of the positive and negative signs to identify the NDZ islanding phenomenon, they do not simply judge whether the voltage frequency at the PCC is beyond the presetting frequency range. In order to prevent the counteraction of current disturbance generated by some grid-connected inverters, the synchronous control strategy of islanding detection for the grid-connected inverters is proposed. The simulation and experimental results verify that two methods can not only identify the islanding very well, but also solve the NDZ problem, and some grid-connected inverters may operate synchronously.
引文
[1]邢永爱.太阳能是具有最大发展潜力的可持续能源[J]. solar energy,2008年第6期:19-21.
    [2]胡志鹏.国内外能源结构变化及替代能源的发展前景[J]. resources of world,2008年第11期:21-26.
    [3]REN21 Steering Committee. Renewables 2007 Global Status Report.2008. http://www.ren21.com. 2008.12.10
    [4]Dr. Mike Meinhardt and Gunter Cramer. Past, Present and Future of grid connected Photovoltaic-and Hybrid-Power Systems[C], Proceedings of IEEE Power Engineering Society Summer Meeting,2000, vol.2:1283-1288.
    [5]李宏毅,谭洪起.太阳能光伏光热建筑一体化[J].建筑创作,2006(2):164-164.
    [6]Stefan Krauter.太阳能发电—光伏能源系统[M].机械工业出版社,2008.5.
    [7]王斯成.我国光伏发电有关问题研究[J].中国能源,2007,29(2):7-11.
    [8]黄为一,王娟娟.投资我国太阳能光伏产业需要关注的几个问题[J].中国能源,2008年,30(10).
    [9]S. B. Kjaer. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules[J]. IEEE Trans. Ind. Appl.,Vol.41, No.5,2005:1292-1306.
    [10]M. A. Abella, F. Chenlo. Choosing the right inverter for grid-connected PV systems[J]. Renewable Energy World, March-April,2004.
    [11]M. E. Ropp. Design Issues for Grid-Connected Photovoltaic Systems[J]. Doctoral Thesis, Georgia Institute of Technology, Atlanta, GA, October 12,1998.
    [12]M. Calais, J. Myrzik, T. Spooner et al. Inverters for single-phase grid connected photovoltaic systems-An overview[J]. in Proc. IEEE PESC'02, vol.2,2002:1995-2000.
    [13]Toshihisa Shimizu. Flyback-Type Single-Phase Utility Interactive Inverter With Power Pulsation Decoupling on the DC Input for an AC Photovoltaic Module System [J]. IEEE Trans. Ind. Appl., VOL.21, NO.5,2006:1264-1272.
    [14]J. Riatsch, H. Stemmler, and R. Schmidt. Single cell module integrated converter system for photovoltaic energy generation [J]. in Proc. EPE'97, vol.1, Trondheim, Norway,1997:71-77.
    [15]Y. Xue, L. Chang, S. B. Kjaer et al. Topologies of single-phase inverters for small distributed power generators:an overview[J]. IEEE Trans. Power Electron., Sep.2004, vol.19, no.5:1305-1314.
    [16]F. Blaabjerg, Z. Chen, and S. B. Kjaer. Power electronics as efficient interface in dispersed power generation systems[J]. IEEE Trans. Power Electron., Sep.2004, vol.19, no.5:1184-1194.
    [17]J. M. A. Myrzik and M. Calais. String and module integrated inverters for single-phase grid connected photovoltaic systems-A review[C]. in Proc. IEEE Bologna PowerTech Conf., vol.2,2003:430-437.
    [18]H. Haeberlin. Evolution of inverters for grid connected PV-systems from 1989 to 2000[C]. in Proc. 17th Eur. Photovoltaic Solar Energy Conf., Munich, Germany, Oct.22-26,2001:426-430.
    [19]C. Hua, J. Lin, and C. shen. Implementation of a DSP-controlled photovoltaic system with peak power tracking[J]. IEEE Trans. Ind. Electron.,1998, vol.45, no.1:99-107.
    [20]K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada. Maximum photovoltaic power tracking:An algorithm for rapidly changing atmospheric conditions[J]. in Proc. IEE Generation, Transmiss., Distrib.,1995, vol.142:59-64.
    [21]T. Ouchi, H. Fujikawa, S. Masukawa, and S. Iida. A control scheme for three-phase current source inverter in interactive photovoltaic system[J]. Trans. Inst. Electr. Eng. Jpn.,2000, vol.120-D, no.2:230-238.
    [22]T. Kitano, M. Matsui, and D. Xu. A maximum power point tracking control scheme for PV system based on power equilibrium and its system design[J]. Trans. Inst. Electr. Eng. Jpn.,2001, vol.120-D, no.12:1263-1269.
    [23]Y. C. Kuo, T. J. Liang, and J. F. Chen. Novel maximum-power-point-tracking controller for photovoltaic energy conversion system[J]. IEEE Trans. Ind. Electron.,2001, vol.48, no.3:594-601.
    [24]K.Kobayashi, H.Matsuo, Y.Sekine. A novel optimum operating point tracker of the solar cell power supply system. In Proc.35th Annu[C]. IEEE power Electron. Spec.Conf.,2004:1113-1118.
    [25]N. Mutoh, M. Ohno, and T. Inoue. A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems[J]. IEEE Trans. Ind. Electron.,2006, vol.53, no.4:1055-1065.
    [26]A. M. A. Mahmoud, H. M. Mashaly, S. A. Kandil et al. Fuzzy logic implementation for photovoltaic maximum power point tracking[C], in proc.9th IEEE int. workshop robot Human interactive Commum.,2000:155-160.
    [27]N. Patcharaprakiti, S. Premrudeepreecharn. Maximum power point tracking using adaptive fuzzy logic control for grid-connected system[J]. In IEEE Power Eng. Soc.Winter meet.,2002:372-377.
    [28]B. M. Wilamowski and X. Li, Fuzzy system based maximum power point tracking for PV system[C]. In Proc.28th Annu. Conf. IEEE ind. Electron. Soc.,2002:3280-3284.
    [29]M. Veerachary, T. Senjyu, K. Uzato. Neutral-network-based maximum-power-point tracking of interleaved-boost-converter-supplied PV system using fuzzy controller[J]. IEEE Trans. Ind. Electron., 2001, vol.50, no.4:594-601.
    [30]Johan H. R. Enslin. Interconnection of distributed power inverters to the distributed network[R]. IEEE Power Electronics Society News Letter, Fourth Quarter 2003.
    [31]赵葵银,杨青.基于正过零鉴相的全数字锁相环的研究[J].湖南工程学院学报,2008,vol.18,no.3:13-15.
    [32]P. V. Brennan. Performance of phase-locked loop frequency synthesizer using accumulative phase detector[J]. IEE Proc.-Circuits Devices Syst., October 1996, vol.143:249-254.
    [33]S. Sakamoto, T. Izumi, T. Yokoyama, et al. A new method for digital PLL control using estimated quadrature two phase frequency detection[J]. in Proc. Power Conversion Conf.,2002, vol.2:671-676.
    [34]Jovcic D. Phase locked loop system for FACTS[J]. IEEE Transactions on Power Systems,2003, 18(3):1116-1124.
    [35]戴瑜心,张义兵,陈际达.有源滤波器逆变电路的滞环比较控制策略[J].湖南师范大学自然科学学报,2003(9):37-40.45.
    [36]郭自勇,周有庆,郭利敏.一种简单的预测电流控制新方法[J].电力自动化设备,2007,vol.27,no.7:29-32.
    [37]刘亮,邓名高,欧阳红林.基于预测电流控制的PWM逆变器死区补偿方法研究[J].电工技术学报,2005年,vol.20, no.8:78-84.
    [38]李玉玲,鲍建宇,张仲超.基于模型预测控制的单位功率因数电流型PWM整流器[J].中国电机工程学报,2006,vol.26, no.19:60-64.
    [39]Tzou Ying-Yu et al. Adaptive repetitive control of PWM inverter for very low HD AC-voltage regulation with unknown loads[J]. IEEE Trans. On PE,1999, vol.14, no.5:971-981.
    [40]庄淑瑾,孙玉坤,任明炜.静止无功发生器的预测电流控制方法[J].电力自动化设备,2008,vol.28(11):53-56.
    [41]Hung G K, Chang C C, Chen C L. Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverters[J]. IEEE Transactions on Energy Conversion,2003, vol.18, no.1:169-173.
    [42]John Stevens, development and testing of an approach to anti-islanding in utility-interconnected photovlatic systems[R]. Photovoltaic System Applications Department, Sandia National Laboratories, 2000.
    [43]Mahat Pukar, Zhe Chen, Bak-Jensen Birgitte. Review of islanding detection methods for distributed generation, Electric Utility Deregulation and Restructuring and Power Technologies[C]. DRPT 2008, Third International Conference on 6-9 April 2008:2743-2748.
    [44]J. Stevens, R. Bonn, J. Ginn, and S. Gonzalez. Development and Testing of an Approach to Anti-Islanding in Utility-interconnected Photovoltaic Systems[M]. Photovoltaic System Applications Department, Sandia National Laboratories,2000.8, SAND 2000-1939.
    [45]W. Bower, M. Ropp. Evaluation of islanding detection methods for photovoltaic utility-interactive power systems[R]. Report IEA-PVPS TS-09, March 2002.
    [46]Ropp M E, Begovic M, Rohatgi A. Analysis and performance assessment of the active frequency drift method of islanding prevention[J]. Ieee Transactions on Energy Conversion,1999,14(3):810-816.
    [47]S.S.Ahmed, N.C.Sarker. A Scheme for Controlled Islanding to Prevent Subsequent Blackout[J]. IEEE Trans. on Power Systems, Vol.18, No.1,2003:136-143.
    [48]Moon-Ju Ko, Ick Choy, Ju-Yeop Choi. Simulation of Active Frequency Drift Adding Zero Current Method for Islanding Detection[J]. Power Electronics Specialists Conference,2006,PESC '06.37th IEEE,18-22 June 2006:1-5.
    [49]沈辉.太阳能光伏发电技术[M].化学工业出版社,2005年9月.
    [50]汉斯.太阳电池阵设计手册:光电能转换原理及其应用[M].北京:中国宇航出版社,1987年.
    [51]李定安.太阳能光伏发电系统工程[M].北京:北京工业大学出版社,2001年.
    [52]蒋荣华,肖顺珍.硅基太阳能电池与材料.新材料产业,2003,vol.116, no.7:8-13.
    [53]赵争鸣,刘建政等.太阳能光伏发电及其应用[M].科学出版社,2005年.
    [54]Mikihiko Matsui, Tatsuya, et al.. A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link[C]. Conference Record of IEEE Thirty-Fourth IAS Annual Meeting, Oct.1999,no.2:804-809.
    [55]罗雪莲,江小涛,王远,刘辉等.太阳能电池及其应用[J].武汉科技学院学报,2005年10期.
    [56]G. Walker. Evaluating MPPT converter topologies using a MATLAB PV model[J]. Electr. Electron. Eng.,2001, vol.21, no.1:49-56.
    [57]Izumi Tsuda, Kosuke Kurokawa and Ken Nozaki. Influence of Ⅰ-Ⅴ characteristics of PV cell on stand alone PV power systems[J]. IEEJ Trans., July 1993, vol.113-B, no.7:745-751.
    [58]Nobuyoshi Mutoh, Masahiro Ohno and Takayoshi Inoue. A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation system[J]. IEEE Trans. Ind. Electron., Aug.2006, vol.53, no.4:1055-1065.
    [59]A. Hadj Arab, B. Ait Driss, R. Amirneur and E. Lorenzo. Photovoltaic Systems Sizing for Algeria[J]. Solar Energy,1995, vol.54, no.2:99-104.
    [60]Mehmet Akbaba, Isa camber and Adel Kemal. Matching of Separately Excited DC Motors to Photovoltaic Generators for Maximum Power Output[J]. Solar Energy,1998, vol.63, no.6:375-385.
    [61]E. Koutroulis, K. Kalaitzakis et al. Development of a microcontroller based, photovoltaic maximum power point tracking control system[J]. IEEE Trans. Power Electron., Jan.2001, vol.16, no.1:46-54.
    [62]F. Valenciaga, P. F. Puleston, and P. E. Battiaiotto. Power control of a photovoltaic array in a hybrid electric generation system using sliding mode techniques[J]. Proc. Inst. Electr. Eng.-Control Theory Appl., Nov.2001, vol.148, no.6:448-455.
    [63]T. Noguchi, S. Togashi, and R. Nakamoto. Short-current pulse-based maximum power point tracking method for multiple photovoltaic and converter module system[J]. IEEE Trans. Ind. Electron., Feb. 2002, vol.49, no.1:217-223.
    [64]D. P. Hohm and M. E. Ropp. Comparative study of maximum power point tracking algorithm using an experimental, programmable, maximum power point tracking test bed[J]. in Proc. IEEE PESC,2000: 1699-1702.
    [65]W. Swiegers and J. Enslin. An Integrated Maximum Power Point Tracker for Photovoltaic Panels[J]. Proceedings of IEEE International Symposium on Industrial Electronic,1998, vol.1:40-44.
    [66]杨海柱,金新民.最大功率跟踪的光伏并网逆变器研究[J].北方交通大学学报,2004,vol.28,no.2:65-68.
    [67]N. Kasa, T. Iida, and H. Iwamoto. Maximum power point tracking with capacitor identifier for photovoltaic power system[C]. In Proc. Eighth Int. Conf. Power Electron. Variable Speed Drives, 2000:130-135.
    [68]L. Zhang, A. Al-Amoudi and Y. Bai. Real-time maximum power point tracking for grid-connected photovoltaic systems[C]. In Proc. Eighth Int. Conf. Power Electron. Variable Speed Drives, 2000:124-129.
    [69]M. L. Chiang, C. C. Hua, J. R. Lin. Direct power control for distributed PV power system[C]. In Proc. Power Convers. Conf.,2002:311-315.
    [70]T. Tafticht and K. Agbossou. Development of a MPPT method for photovoltaic systems[C]. In Canadian Conf. Elect. Comput. Eng.,2004:1123-1126.
    [71]S.Jain, V.Agarwal, A new algorithm for rapid tracking of approximate maximum power point in photovoltaic system[J]. IEEE Power Electron. Lett.,2004,vol2,no.1:16-19.
    [72]N. Femia, G. Petrone, G. Spagnuolo et al. Optimization of perturb and observer maximum power point tracking method[J]. IEEE Trans. Power Electron.,2005, vol20, no.4:963-973.
    [73]K. H. Hussein and I. Mota. Maximum photovoltaic power tracking:An algorithm for rapidly changing atmospheric conditions[C]. In IEE Proc. Generation Transmiss. Distrib.,1995:59-64.
    [74]A. Brambilla, M. Gambarara, A. Garutti et al. New approach to photovoltaic arrays maximum power point tracking[C]. In Proc.30th Annu. IEEE Power Electron. Spec. Conf.,1999:632-637.
    [75]T. Y. Kim, H. G. Ahn, S. K. Park et al. A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation[C]. In IEEE Int. Symp. Ind. Electron., 2001:1011-1014.
    [76]陈兴峰,曹志峰,许洪华.光伏发电的最大功率跟踪算法研究[J].可再生能源,2005,vol.119,no.1:8-11.
    [77]G. J. Yu, Y. S. Jung, J. Y. Choi. A novel two-mode MPPT control algorithm based on comparative study of existing algorithms[C]. in Conf. Record 29th IEEE photovoltaic Spec.Conf.,2002:1531-1534.
    [78]K. Kobayashi, I. Takano, Y. Sawada. A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions[C]. in IEEE Power Eng. Soc. Gen. Meet.,2003:2612-2617.
    [79]叶满园,官二勇,宋平岗.以电导增量法实现MPPT的单级光伏并网逆变器[J].电力电子技术,2006, vol.2, no.40:30:32.
    [80]M. A. S. Masoum, Hs Dehbonei, E. F. Fuch. Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking[J]. IEEE Trans. Energy Converts.,2002, vol.17, no.4:514-522.
    [81]B. Bekker and H. J. Beukes. Finding an optimal PV panel maximum power point tracking method [J]. in Proc.7th AFRICON Conf. Africa,2004:1125-1129.
    [82]S. Yuvarajan, S. Xu. Photo-voltaic power converter with a simple maximum-power-point-tracker[J], in Proc.2003 Int. Symp. Circuits Syst.,2003:111-399-402.
    [83]Ren BiYing, Sun XiangDong, Zhong YanRu. Application of compounded on-line fuzzy controller with self-regulating PID to a DC/DC converter.4th International Power Electronics and Motion Control Conference, IPEMC 2004, Xi'an,2004:517-520.
    [84]X. Sun, W. Wu and X. Li et al. A research on photovoltaic energy conteilling system with maximum power point tracking[C]. In Proc. Power Converters. Conf.,2002:822-826.
    [85]吴波,郭育华,文宇良.单相电力锁相环的改进和FPGA实现[J].电力电子技术,2008年,vol.42,no.4:80-82.
    [86]谢邦立,蒋金明,李治理.锁相环技术在三相可逆PWM整流器中的应用研究[J].电气传动,2008年,vol.38, no.10:29-32.
    [87]张厥盛,郑继禹,万心平.锁相技术[M].西安西安电子科技大学出版社,1991年.
    [88]郑君里,应启晰,杨为理.信号与系统[M].高等教育出版社,2001年.
    [89]赵为.太阳能光伏发电系统的研究[D].合肥工业大学博士论文,2003年2月.
    [90]Se-Kyo Chung. A phase tracking system for three phase utilityinterface inverters[J]. IEEE Transactions on Power Electronics,2000,15(3):431-438.
    [91]Pedro Rodriguze,Josep Pou Joan Bergas. Decoupled double synchronous reference frame PLLfor power converters control[J].IEEE Trans.Power Electron,2000,22 (2):584-592.
    [92]Shen B, Low V, Ooi B T. Slip frequency phase lock loop (PLL) for decoupled P-Q control of doubly-fed induction generator (DFIG)[C]. IECON, Busan, South Korea,2004.
    [93]S. K. Chung. Phase-locked loop for grid-connected three-phase power conversion systems[J]. IEE Proc.-Electr. Power Appl., May 2000, vol.147, no.3:213-219.
    [94]Hilmy Awad, Jan Svensson and M. J. Bollen. Tuning software phase-locked loop for series-connected converters[J]. IEEE Trans. Power Delivery, Jan.2005, vol.20, no.1:300-308.
    [95]A. B. Rey, S.de Pablo and J. M. Ruiz. Decoupled current source vector control of a 3-phase grid-connected inverter using a novel vector utility observer for synchronization[J]. IEE Michael Faraday House,2004:609-614.
    [96]Gardner R. M.. Phaselock techniques [M]. NewYork:John Wiley,1979.
    [97]Arruda L. N., Silva S. M., et al. PLL Structures for Utility Connected System[J].36th Industry Applications Society Annual Meeting. IAS2001. Chicago, USA,2001, vol.4:2655-2660.
    [98]正田英介.电力电子学[M].北京:科学出版社,2001年.
    [99]Amuda L N, Cardoso Filho, Silva B J, et al. Wide bandwidth single and three-phase PLL structures for grid-tied PV systems[C]. IEEE-PSC, Anchorage, Alaska, USA,2000.
    [100]陈海荣,徐政.基于同步坐标变换的VSC-HVDC暂态模型及其控制器[J].电工技术学报,2007,vol.22, no.2:121-126.
    [101]Rubens M. Santos Filho, Paulo F. Seixas, et al. Comparison of Three Single-Phase PLLAlgorithms for UPS Applications[J]. IEEE Trans. Ind. Electron., vol.55, no.8, August 2008:2923-2932
    [102]Saitou M., Matsui N., Shimizu T. A Control Strategy of Single-phase Active Filter using a Novel d-q Transformation[J].38th Industry Applications Society Annual Meeting. IAS2003. Salt Lake City, USA,2003, vol.2:1222-1227.
    [103]Sidelmo M. Silva, Bruno M. Lopes, Braz J. Cardoso Filho, et al. Performance Evaluation of PLL Algorithms for Single-phase Grid-connected Systems[J].39th IAS Annual meeting,2004, vol.4: 2259-2263.
    [104]丁玉美,高西全,数字信号处理.西安电子科技大学出版社,2005年.
    [105]郑南宁,程洪.数字信号处理.清华大学出版社,2007年.
    [106]B. K. Bose. An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system[J]. IEEE Trans. Ind. Electron., Oct.1990, vol.37, no.5:402-408.
    [107]Q. Yao and D. G. Holmes. A simple novel method for variable-hysteresis-band current control of a three phase inverter with constant switching frequency[C]. in Proc. IEEE Ind. Appl. Meeting, Oct. 1993:1122-1129.
    [108]李永东等.大容量多电平变换器—原理.控制.应用[M].科学出版社,2005年10月.
    [109]王兆安,黄俊.电力电子技术[M].机械工业出版社,2001:162-164.
    [110]D. G. Holmes and D. A Martin. Implementation of a direct digital predictive current controller for single and three phase voltage source inverter[J]. in Proc. Annu. Meeting IEEE Ind. Appl.,1996: 906-913.
    [111]T. Summers and R. E. Betz. Dead-Time issues in predictive current control[C]. in Proc.37th IAS Annu. Meeting,2002, vol.3:2086-2093.
    [112]O. kukrer. Discrete time current control of voltage fed three phase PWM inverters[J]. IEEE Trans. Power Electron., May 1996, vol.11, no.2:260-269.
    [113]陈道炼.DC-AC逆变技术及其应用[M].机械工业出版社,2003:265-267.
    [114]Hossein Madadi Kojabadi, Bin Yu, Idris A. Gadoura, et al. A Novel DSP-Based Current-Controlled PWM Strategy for Single Phase Grid Connected Inverters[J]. IEEE Trans. Power Electron., vol.21, no.4, July 2006:985-993.
    [115]IEEE Std 929-2000 Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, Sponsored by IEEE Standards Coordinating Committee 21 on Photovoltaics[S], Published by the IEEE, New York, NY April 2000.
    [116]IEEE Std 1526TM-2003 Recommended Practice for Testing the Performance of Stand-Alone Photovoltaic Systems, Sponsored by the IEEE Standards Coordinating Committee 21 on Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage (SCC21) [S], Published by The Institute of Electrical and Electronics Engineers, Inc.3 Park Avenue, New York, NY 10016-5997, USA,29.
    January 2004.
    [117]Jun Yin, Liuchen Chang, and Diduch C. Recent developments in islanding detection for distributed power generation[J].2004 Large Engineering systems Conference of Power Engineering, July 2004: 124-128.
    [118]Zhihong Ye, Kolwalkar A.,Yu Zhang, et al. Evaluation of anti-islanding schemes based on non-detection zone concept[J]. Power Electronics, IEEE Transactions Sept.2004, vol.19, no.5: 1171-1176.
    [119]Ropp. M. E., Begovic M, Rohatgi A. An Investigation on the Nondetection Zones of Synchronous Distributed Generation Anti-Islanding Protection[J]. IEEE Trans ON power delivery, vol.23, no.2, APRIL 2008:593-600.
    [120]刘芙蓉,康勇,段善旭.一种有效的孤岛检测盲区描述方法[J].电工技术学报,2007,vol.22,no.10:167-172.
    [121]Lopes L. A. C., Sun H. Performance assessment of active frequency drifting islanding detection methods[J]. IEEE Transactions on Energy Conversion, March 2006, vol.21, no.1:171-180.
    [122]袁玲,郑建勇,张先飞.光伏发电并网系统孤岛检测方法的分析与改进[J].电力系统自动化,2007, vol.31, no.21:72-75.
    [123]杨海柱,金新民.基于正反馈频率偏移的光伏并网逆变器反孤岛控制[J].太阳能学报,2005,vol.26, no.3:409-412.
    [124]陈卫民,陈国呈,吴春华等.基于分布式并网发电的新型孤岛检测研究[J].电工技术学报,2007,vol.22, no.8:114-118.
    [125]Lopes L.A.C., Yongzheng Zhang. Islanding Detection Assessment of Multi-Inverter Systems With Active Frequency Drifting Methods. Power Delivery, IEEE Transactions on Power Delivery, Jan. 2008, vol.23, no.1:480-486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700