基于人工免疫算法的分布式发电系统孤岛检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分布式发电在电力生产中所占比重的增加,对电力系统的影响越来越大,分布式发电与大电网的并列运行将引起一系列的问题,其中最重要的问题之一即为分布式发电系统的孤岛检测。孤岛检测方法主要可分为两大类——有源孤岛检测和无源孤岛检测。分布式发电系统有源孤岛检测方法虽然灵敏度高,但不可避免地将引起系统的供电质量下降和系统的不稳定,而现有的无源孤岛检测方法都存在非检测区大的缺点。本文在现有文献的基础上,针对分布式发电系统中谐波模式随分布式电源和负荷不断变化的问题,提出了基于人工免疫系统谐波功率模式识别的分布式发电系统无源孤岛检测方法
     首先研究分布式发电系统中谐波模式的表示方法,分析了电流谐波功率的计算和谐波功率状态空间映射。为减小状态空间的维数,将分布式发电系统中奇次谐波频谱分段积分,映射到二维状态空间。然后采用模式识别中的聚类分析研究了分布式发电系统的孤岛检测方法
     阴性选择算法是免疫系统识别外来抗原最基本的机理,本文通过分析人工免疫系统中阴性选择算法的二进制匹配规则,比较r-连续匹配规则、r-块匹配规则和Hamming距离匹配规则的性能,提出了具有检测规则的阴性选择算法,并采用遗传算法生成检测规则,从而使生成的规则数量最少并达到很好的非我状态空间覆盖。
     详细分析了生物免疫系统B细胞和T细胞识别外来抗原的机理,研究了B细胞基因重组和超变异机制,T细胞识别抗原时与B细胞的相互作用,提出了实现孤岛检测的T模块检测器和B模块检测器模型。T检测器直接用于检测分布式发电系统的孤岛谐波功率模式,T模块可以采用随机初始化方式生成,通过在孤岛检测过程不断学习新的谐波模式和调整其运行工作点,适应分布式发电系统中谐波模式的变化。B模块不直接用于检测孤岛运行状态的谐波模式,而是通过变异和克隆机制,与测量得到的外部编码向量相互作用,将其结果送到T模块,从而改进T模块在状态空间中的覆盖。为控制B模块的数量,B模块的克隆向量引入了死亡机制,这样实现了用有限的检测器检测几乎无限的电流谐波功率模式,并将算法的复杂程度限制到可实际应用的大小。
     实际应用中,要得到充分的分布式发电系统孤岛运行时的谐波模式一般很困难,因此本文将分布式发电系统并网运行的谐波模式作为有导师学习算法的输入,采用实数阴性选择算法提取孤岛谐波模式的非我样本。运用数值估计的方法,根据分布式发电系统并网运行的自我样本子集,估计出自我状态空间体积,计算出抗体覆盖非我状态空间的数量。然后采用模拟退火算法优化抗体集合在非我状态空间中的分布,通过神经网络分类算法实现孤岛模式的检测。
     本文采用电力系统电磁暂态仿真软件PSCAD和Matlab对所提出的孤岛检测算法进行了仿真计算,仿真结果证明了算法的正确性。
As the contribution of distributed generation to the electric power production increases, the effects on the power system grow more important. There will be a series of issues when the distributed generations are grid-connected. The one of the most important is the islanding detection. There are two kinds of islanding detection method: active islanding detection and passive islanding detection. Although the active islanding detection methods have high sensitive, the power quality degrading and system unstability will have to be added to the system by them. And there are non-detection zones in all current passive islanding methods. The distributed generation passive islanding detection methods based on the harmonic power pattern recognizing using artificial immune system are presented in the paper for solving issues of the harmonic pattern changes as the distributed generators and loads turn on or off.
     The harmonic patterns in distributed generation system are studied firstly. The algorithm of the current harmonic powers and the mapping of the state space of the harmonic power are analysized.The mapping of the harmonic powers state space using the integral of odd harmonic frequency spectrums is presented. An islanding detection method using clustering analysis is studied.
     The negative selecton is the basic mechanism to recognize intrusive foreign antigens for the nature immune system. The binary matching rules of the negative selection are analysized in this paper. The performance of the r-contiguous matching, r-chunk matching and Hamming distance maching rules is compared. A negative selection algorithm with detection rules is presented. Using genetic algorithm to evolve rules to cover the non-self space, the number of rules is very small as well as a good covering of the non-self space is gotten.
     According to the mechanisms of B celll and T cell recognizing the foreign antigen, the gene rearrangement and somatic mutation of B cell, T cell and B cell interaction as T cell recognizing antigen, the T module detectors and B module detectors are presented. The T-module is initialized by choosing points at random and can learn new patterns and tune the detection position when it is used to detect islanding. Using mutation and clone mechanism the B-module reacts to all frequently occurring state vector values and presents its results to the T-module. The B-module also plays a role in updating the T-module. A death mechanism is also introduced for the clone vectors of B-module for controlling the population of B-modules. Thereafter, the algorithms of islanding detection can almostly detection all the current harmonic power pattern. And the complexity of the algorithm is accessible for practical application.
     In practical application, it is difficult to get the enough pattern samples of distributed generaton islanding state. An approach to get the islanding harmonic pattern using the real negative selection algorithm is presented. The input of the algorithm is the harmonic patterns of the grid-connected distributed generation system. The volume of the self state space is caculated using the numerical analysis. Then, the distribution of antibody sets in the self sated space is optimized using simulated annealing algorithm. The islanding patterns is detected using artificial neural nentwork classifier.
     By using PSCAD and Matlab, various islanding operation conditions and normal load variation are simulated. And all the algorithms proposed in this paper are verified.
引文
1 W. El-Khattam, M. M. A. Salama. Distributed generation technologies, definitions and benefits. Electric Power Systems Research 2004, (71): 119-128
    
    2 程华,徐整.分布式发电中的储能技术.高压电器,2003,(3):53.56
    
    3 L. Chang, C. Diduch, and P. Cusack. Development of standards for interconnecting distributed generators with electric power systems. IEEE Canadian Conference on Electrical and Power Engineering. Montreal. May, 2003
    
    4 S. J. Ranade, N. R. Prasad, S. Omick, L. F. Kazda. A study of islanding in utility-connected residential photovoltaic systems. Part I - Models and analytical methods. IEEE Transactions on Energy Conversion 1989, 4(3): 436-441
    
    5 S. J. Ranade, N. R. Prasad, S. Omick, L. F. Kazda. A study of islanding in utility-connected residential photovoltaic systems, Part II - Case studies. IEEE Transactions on Energy Conversion 1989,4(4): 446-451.
    
    6 T. Funabashi, K. Koyanagi, R., A, Yokoyama. A review of islanding detection methods for distributed resources. 2003 IEEE Power Tech Conference Proceedings, Bologna Vol. 2, June 2003: 23-26
    
    7 Jun Yin, Liuchen Chang, C. Diduch. Recent developments in islanding detection for distributed power generation. 2004 Large Engineering systems Conference on Power Engineering. 28-30 July 2004:124-128
    
    8 M. A. Refern, O. Usta and G. Fielding. Protection against loss of utility grid supply for a dispersed storage and generation unit. IEEE Trans. Power Delivery. July 1993, 8(3): 948-954
    
    9 R. M. Rifaat. Critical considerations for utility/cogeneration inter-tie protection scheme configuration, IEEE Trans. Industry Applications. 1995, 31(5): 973-977
    
    10 M. Ropp, K. Aaker, J. Haigh, and N. Sabhah. Using power line carrier communications to prevent islanding. Proc. 28th IEEE Photovoltaic Specialists Conference. 2000:1675-1678
    
    11 C. S. Mozina. Interconnection protection of IPP generators at commercial/industrial facilities.IEEE Trans, industry Applications, 2001,37(3): 681-687
    
    12 Gwon-jong Yu etc. Boundary conditions of reactive-power-variation method and active-frequency-drift method for islanding detection of grid-connected photovoltaic inverters. Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005:1785- 1787
    
    13 J. Warm and W. H. Allen. Loss of mains protection. ERA conference on Circuit Protection for Industrial and Commercial Installations, London, UK. 1990: 1-12
    14 W. Freitas, Wilsun Xu, C. M. Affonso, Zhenyu Huang. Comparative analysis between ROCOF and vector surge relays for distributed generation applications. IEEE Transactions on Power Delivery, 2005, 20(2): 1315 -1324
    
    15 Sung-II Jang, Kwang-Ho Kim. An islanding detection method for distributed generations usingvoltage unbalance and total harmonic distortion of current. IEEE Transactions on Power Delivery, 2004, 19(2):745 - 752
    
    16 H. Kobayashi, K. Takigawa and E. Hashimoto. Method for preventing islanding phenomenon on utility grid with a number of small scale PV systems. Proc. 22~(nd) IEEE Photovoltaic Specialists Conf. 1991:695-700
    
    17 J. E. Kim and J. S. Hwang. Islanding detection method of distributed generation units connected to power distribution system. Proc. IEEE Power System Technology Conf. Dec. 2000. Vol. 2, 4-7: 643-647
    
    18 F. Bertling, S. Soter. A novel converter integrable impedance measuring method for islanding detection in grids with widespread use of decentrl generation. International Symposium on Power Electronics, Electrical Drivers, Automation and Motion, Taormina, Italy, 2006:s17, 12-16
    
    19 G. A. Smith, P. A. Onions and D. G. Infield. Predicting islanding operation of grid connected PVinverters. Proc. Inst. Elect. Eng.-Power Application. Jan. 2000. 147(1): 1-6
    
    20 G. A. Kern. SunSine 300: Utility interactive AC module anti-islanding test results. Proc. 26~(th) IEEE Photovoltaic Specialists conf. 1997: 1265-1268
    
    21 Jun Yin, Liuchen Chang, C. Diduch. A new total frequency deviation algorithm for anti-islanding protection in inverter-based DG systems. Canadian Conference on Electrical and Computer Engineering, 2005. May 1-4, 2005:570 - 573
    
    22 G. Hung, C. Chang and C. Chen. Automatic phase-shift method for islanding detection of gird-connected photovoltaic inverter. IEEE Trans. Energy Conversion. Mar. 2003, 18(1): 169-173
    
    23 M. E. Ropp, M. Begovic, A. Rohatgi, R. H. Bonn and S. Gonzalez. Determining the relative effectiveness of islanding detection methods using phase criteria and non-detection zones. IEEE Trans. Energy Conversion, Sept. 2000,15(3): 290-296
    
    24 N. K. Jerne. Towards a network theory of the immune system. Annual Immunology, 1974, 125: 373-389
    
    25 N. K. Jerne. The immune system. Scientific American, 1973, 229(1): 52-60
    
    26 J. D. Farmer, N. H. Packard, A. S. Perelson. The immune system: Adaptation and Machine Learning, Physica 22D, 1986: 187-204
    
    27 A. S. Perelson. Immune network theory. Immunological Review, 1986, 10:5 -36
    
    28 F. J. Varela, J. Stewart. Dynamics of a class of immune network. Global Stability of IdiotypeInteractions, Theoretical Biology, 1990, 144:93-101
    29 H. Bersini, F. J. Varela. Hints for adaptive problem solving gleaned from immune networks. Proc. of the First Workshop on Parallel Solving from Nature, 1990:343-354
    30 G.W. Hoffman. A neural network model based on the analogy with the immune system. J. of Theoretical Biology, 1986, 122:33-67
    31 Jang-Sung Chu等,免疫算法与其它模拟进化优化算法的比较研究.电力情报,1998,(1):61-63
    32 A. Tarakanov, D. Dasgupta. A formal model of an artificial immune system. Biosystems, 2000, 55:151-158
    33 S. Forrest, A. Perleson, L. Alen. Self-nonself discrimination in a computer. Proc. of IEEE International Conference on Research in Security and Privacy, Oakland, USA, 1994:202-212
    34 D. Dasgupta. An overview of artificial immune systems and their applications. Artificial Immune Systems and Their Applications, 1999: 3-18
    35 D. Dasgupta. Using immunological principles in anomaly detection. Proc. of IEEE International Conference on Artificial Neural Networks in Engineering, St. Louis, 1996:10-13
    36 D. Dasgupta, S. Forrest. Novelty detection in time series data using ideas from immunology. Proc. of 1996 International Conference on 5th intelligent Systems, Reno, June,1996:19-21
    37 De Castro, Zuben Von. An evolutionary immune network for data clustering. Proc. Of the IEEE Symposium on Artificial Neural Networks, Brazil, 2000:84-89
    38 Y. Ishida. An Immune network model and its applications to process diagnosis. Systems and Computers, 1993, 24 (6): 38-45
    39 A. Ishiguro, Y. Watanabe, Y. Uchikawa. An immunological approach to dynamic behavior control for autonomous mobile robots. Proc. of international Conference on Intelligent Robots and Systems, Pittsburgh, USA, 1995, 1:495-500
    40 J. Timmis, M. J. Neal. A resource limited artificial immune system for data analysis. Knowledge-Based Systems, 2001, 14:121-130
    41 N. Mitsumoto, T. Fukuda, K. Shimojima, et al. Autonomous robotic system and biologically inspired immune swarm strategy as a multi-agent robotic system. Proc. IEEE International Conference on Robotics and Automation, Minneapolis, USA, 1995:2187-2192
    42 N. Mitsumoto, T. Hattori, T. Idogaki, et al. Self-organizing micro robotic system, Proc. 6th international Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995:261-270
    43 A. Ishiguro, S. Kuboshiki, S. Ichikawa, et al. Gait control of hexapod walling robots using mutual-coupled immune networks. Advanced Robotics, 1996, 10 (2): 179-195
    44 J.O. Kephart. A biologically inspired immune system for computers. Proc. of the Fourth International Workshop on Synthesis and Simulation of Living Systems, Massachusetts, UK, 1994: 130-139
    45 T. Okamoto, Y. Ishida. A distributed approach to computer virus detection and neutralization by autonomous and heterogeneous agents. Proc. of International Symposium on Autonomous Decentralized Systems, 1999:328-331
    46 张彦超等.一种基于免疫原理的网络入侵检测模型.计算机工程与应用,2002,10:159-162
    47 姜梅,沈延森,陈伟等.一种基于主物免疫系统的计算机抗病毒新技术.计算机应用研究,2001,6:69-71
    48 刘树林,王日新,黄文虎等.基于反面选择算法的压缩机振动在线监测方法研究.压缩机技术,2001,169(5):9-10
    49 D.F. McCoy, V. Devarajan. Artiticial immune systems and aerial image segmentation. Proc. of 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997, 1:867-872
    50 C.J. Gilbert, T. W. Routen. Associative memory in an immune system. Proc. of the 12th National Conference On Artificial Intelligence, Seattle, 1994:852-857
    51 郑德玲,梁瑞鑫,付冬梅等.人工免疫系统及人工免疫遗传算法在优化中的应用.北京科技大学大学学报,2003,10(3):57-59
    52 丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统.控制与决策,2001,15(4):443-446
    53 任立红,丁永生等.采用DNA遗传算法优化设计的TS模糊控制系统控制与决策,2002,16(1):16-19
    54 丁永生,唐明浩.一种智能调节的反馈控制系统.自动化仪表,2001,22(10):5-7
    55 王煦法,张显俊等.一种基于免疫原理的遗传算法.小型微型计算机系统,1999,20(2):117-120
    56 王磊,潘进等.基于免疫策略的:进化算法,自然科学进展,2000,10(5):451-455
    57 王磊,潘进等.免疫算法.电子学报,2000,28(7):74-78
    58 王磊,潘进等.免疫规划.计算机学报,2000,23(8):806-812
    59 刘树林,黄文虎等.基于免疫系统的往复泵在线故障诊断方法.中国机械工程,2002,13(8):666-668
    60 刘树林,张嘉钟.基于免疫系统的旋转机械在线故障诊断.大庆石油学院学报,2001,25(4):69-72
    61 郑红.人工免疫红外测温方法研究.电子学报,2002,30(5):664-666
    62 李海峰,王海风等.免疫系统建模及其在电力系统电压调节中的应用.电力系统自动化,2001,(10):17-23
    63 白晓冰,曹阳,张维明等.基于人工免疫模型的网络入侵检测系统.计算机工程与应用,2002,(9):133-135
    64 杨晓宇,周佩玲,傅忠谦.人工.免疫与网络安全.计算机仿真,2001,18(6):83-85
    65 戴志锋,何军.一种基于主机分布式安全扫描的计算机免疫系统模型.计算机应用,2001,21(10):24-27
    66 莫宏伟,人工免疫系统原理与应用.哈尔滨:哈尔滨工业大学出版社,2002
    67 S. Forrest, B. Javornik, R. E. Smith & A. S. Perelson. Using Genetic Algorithms to Explore Pattern Recognition in the Immune System. Evolutionary Computation, 1993, 1 (3): 191-211.
    68 S. Forrest & A. Perelson. Computation and the Immune System. SIGBIO Newsletter Association for Computing Machinery, 1992, 12(2): 52-57.
    69 J.E. Hunt, D. E. Cooke. Learning Using an Artificial Immune System. Journal of Network and Computer Applications, 1996, 19:189-212.
    70 D. Dasgupta, Y. Cao, & C. Yang. An Immunogenetic Approach to Spectra Recognition. Proc. of GECCO'99, 1999: 149-155.
    71 J.H. Carter. The Immune System as a Model for Pattern Recognition and Classification. Journal of the American Medical Informatics Association, 2000, 7(1): 28-41.
    72 A.O. Tarakanov, V. A. Skormin. Pattern recognition by immunocomputing. Proceedings of the 2002 Congress on Evolutionary Computation. Vol. 1, 12-17 May 2002:938-943
    73 Ji-zhong Liu, Bo Wang. AIS hypermutation algorithm based pattern recognition and its application in ultrasonic defects detection. International Conference on Control and Automation, 2005. Vol. 2, 26-29 June 2005:1268-1272
    74 S.B. Leeb. A Conjoint Pattern Recognition Approach to NonIntrusive Load Monitoring, Ph.D. Thesis, MIT, Department of Electrical Engineering and Computer Science, 1993.
    75 S.B. Leeb, S. R. Shaw and J. L. Kirtley. Transient Event Detection in Spectral Envelope Estimates for Nonintrusive Load Monitoring. IEEE Transactions on Power Delivery, 1995, 10(3): 1200-1210.
    76 S.B. Leeb, B. C. Lesieutre and S. R. Shaw. Determination of Load Composition using Spectral Envelope Estimates. Proceedings of the 27th Annual North American Power Symposium, IEEE Power Engineering Society, Bozeman, Montana, October 2-3, 1995:230-236.
    77 S.R. Shaw, C. B. Abler, R. F. Lepard, D. Luo, S. B. Leeb and L. K. Norford. Instrumentation for High Performance Nonintrusive Electrical Load Monitoring. ASME Journal of Solar Energy Engineering, 1998, 120(3):45-51.
    78 E. Jacobsen and R. Lyons. The Sliding DFT. IEEE Signal Processing Magazine, 2003, 20(2): 74-80.
    79 S.R. Shaw, System Identification Techniques and Modeling for Nonintrusive Load Diagnostics, Ph.D. Thesis, MIT, Department of Electrical Engineering and Computer Science, 2000.
    80 徐政.电力系统谐波——基本原理、分析方法和滤波器设计.北京:机械工业出版社,2003年5月
    81 孙即祥等.现代模式识别.长沙:国防科技大学出版社,2002年1月
    82 Leandro N. de Castro and Jonathan Timmis. Artificial Immune System: A New Computational Intelligence Approach. Springer-Verlag London, 2002
    83 L.N. de Castro and F. J. V. Zuben. The clonal selection algorithm with engineering applications. Proceedings of GECCO'00 (workshop proceedings), 2004: 36-37.
    84 J. O. Kephart. A biologically inspired immune system for computers. Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems Artificial Life, R. A. Brooks and P. Maes, Eds. Cambridge, MA, USA: MIT Press, July 1994: 130-139.
    
    85 Y. Ishida. An immune network approach to sensor-based diagnosis for self organization. Complex Systems, 1996, 10: 73-90.
    
    86 D. Dasgupta. Immunity-based intrusion detection system: a general framework. Proceedings of the 22nd national information systems security conference, Oct. 1999: 147-160.
    
    87 P. Harmer, G. Williams, P. Gnusch, and G. Lamont. An Artificial Immune System Architecture for Computer Security Applications. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 252-280.
    
    88 D. Bradley and A. Tyrrell. Immunotronics: Hardware fault tolerance inspired by the immune system. Proceedings of the 3rd International Conference on Evolvable Systems (ICES2000), vol. 1801. Springer-Verlag, Inc., 2000: 11-20.
    
    89 A. Tarakanov and D. Dasgupta. An immunochip architecture and its emulation. 2002 NASA/DoD Conference on Evolvable Hardware, 2002:341-344.
    
    90 P. Hajela, J. Yoo, and J. Lee. GA based simulation of immune networks - applications in structural optimization. Journal of Engineering Optimization, 2004, (29): 131-149
    
    91 C. A. Coello Coello and N. Cruz Cortes. An approach to solve multiobjective optimization problems based on an artificial immune system. First International Conference on Artificial Immune Systems. J. Timmis and P. J. Bentley, Eds. Canterbury,UK: University of Kent at Canterbury Printing Unit, Sept. 2002: 212-221.
    
    92 L. N. De Castro and F. J. Von Zuben. Automatic determination of radial basis function: An immunity-based approach. International Journal of Neural Systems, 2001, 1(3): 239-251,.
    
    93 L. N. de Castro and F. J. Von Zuben. An immunological approach to initialize feed forward neural network weights. International Conference on Artificial Neural Networks and Genetic Algorithms, 2001: 126-129.
    
    94 S. Forrest, A. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination in a computer. Proceedings IEEE Symposium on Research in Security and Privacy. Los Alamitos, CA: IEEE Computer Society Press, 1994: 202-212.
    
    95 J. Balthrop, F. Esponda, S. Forrest, and M. Glickman. Coverage and generalization in an artificial immune system. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), San Francisco, CA: Morgan Kaufmann Publishers, 9-13 July 2002: 3-10.
    
    96 王小平,曹立明.遗传算法──理论、应用与软件实现.西安:西安交通大学出版社,2002年1月
    
    97 R. N. Germain. MHC-Associaied Antigen Processing, Presentation, and Recognition Adolescence, Maturity and Beyond. The Immunologist, 1995, 3(5): 185-190.
    
    98 S. Tonegawa. Somatic Generation of Antibody Diversity. Nature, 1983, 302: 575-581.
    99 A.S. Perelson. Immune network theory. Immunological Review, 1986, 10:5-36
    100 De Castro, Zuben Von. An evolutionary immune network for data clustering. Proc. of the IEEE Symposium on Artificial Neural Networks. Brazil, 2000:84-89
    101 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 1983, 220(4598): 671-680.
    102 D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, Optimization by simulated annealing: an experimental evaluation; part 1, graph partitioning. Operations Research, 1989, 37(6): 865-892.
    103 高隽.人工神经网络原理及仿真实例.北京:机械工业出版社,2003年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700