基于系统阻抗测量的有源孤岛保护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来环境和能源问题受到人们的高度关注,因此,投资少、能耗低的分布式发电技术在世界范围内得到了广泛的应用。随着分布式发电系统越来越多的接入电网,它对主电网的影响便成为了又一研究热题。当分布式发电系统因故障等原因与主电网解列后,分布式电源(DG)及其所带的一定容量的本地负荷就构成了一个独立于主电网运行的“孤岛”。孤岛内因功率不匹配等原因可能导致分布式电源和用户设备的损坏,同时也会影响本地负荷的供电电能质量,甚至会对电力维护人员造成伤害。因此迅速有效的孤岛检测技术对于分布式发电系统的安全稳定运行有着十分重要的意义。
     当前的各种孤岛检测方法根据其检测位置的不同大致可分为两大类:远程检测法和本地检测法。远程检测法准确、可靠,其孤岛检测准确性通常与分布式电源的类型无关,但是其经济性低,只适用于结构简单的分布式发电系统。本地检测法又可分为无源法和有源法。无源法(又称被动法)对电网影响小,但是有明显的检测盲区(Non-Detection Zone,NDZ);有源法(又称主动法)检测盲区小,检测精度高,但是加入的扰动信号有可能对系统电能质量造成不良影响,而且信号间的干扰一直是该类方法难以克服的缺陷。
     本文针对国内分布式发电系统的孤岛问题,提出了一种简单而有效的检测方法:在DG出口端任意两相之间设置一晶闸管,人为控制晶闸管周期性瞬时导通,从而造成DG出口端周期性瞬时相间短路,以产生一周期性暂态扰动电压和电流。基于该扰动电压、电流信号并结合系统阻抗测量技术可实时获得DG出口端的系统阻抗,通过实时监测该系统阻抗的变化即可迅速判断出DG是否处于孤岛状态。理论推导、仿真分析、模拟实验和现场试验都验证了该方法的有效性。
     本文第一章介绍了孤岛检测的研究意义以及国内外研究现状;第二章针对基于系统阻抗测量技术的孤岛检测方案原理进行了详细地分析,同时对扰动电压、电流信号的表达式进行了推导,建立了有效的孤岛检测判据,从理论上验证了所述孤岛检测方法的有效性;第三章基于理论分析的结果展开仿真研究,通过灵敏度分析验证了孤岛检测判据的有效性,同时分析了所述孤岛检测方法对系统电能质量的影响;由于信号间的干扰是现有各种本地有源孤岛检测法普遍存在问题,因此第四章分析了信号间的干扰对检测判据的影响;第五章搭建模拟实验平台,针对不同的实验条件进行了模拟实验测试和数据分析,同时将基于本课题制作的ZK-1型孤岛检测装置样机在莱州鲁能风力发电有限公司所属风场进行了现场试验测试,进一步验证了本文所述方案的有效性。
Nowadays, environmental and energy concerns related to power generation have been drawing much attention worldwide. As a consequence, renewable or low emission energy sources associated with distributed generation technologies have gained a lot of momentum in the power industry. Because of more and more distributed generators (DGs) connected in power distribution systems, the impact to main grid has been becoming a hot topic. But when the breaker which connects the main grid and the distributed generating system opens, the distributed generator and its local load are isolated to be an island. If DGs run into the islanding state, due to the mismatch between DGs and their local loads, it may cause damages to the user's power devices and the distributed generators. Meanwhile the power quality of power supply in the island may be impacted and the safety of the operators may be threatened. Thus, it is important for safe and stable distributed generations to detect islanding effectively.
     Depending on different detection positions, islanding detection methods can be roughly divided into two categories:remote and local method. Remote methods which usually have nothing to do with the type of DGs are efficient to detect islanding; however they involve high costs and only can be applied to some distributed generation with simple structure. Local methods can be divided into passive and active method. Passive methods are simple and have low influence on the grid, they tend to have large non-detection zones (NDZ); Active methods are more efficient than passive ones and have small NDZs, but if the disturbance injected is large, they may cause power quality problems and the interference between the signals is a defect which has not been overcame yet.
     Focused on the problem of islanding, this paper proposes a new and effective islanding detection scheme:a thyristor is placed between any two phases just by the port of the distributed generator (DG). An artificial short time phase-to-phase short circuit is formed by triggering the thyristor periodically, so the transient disturbance current and voltage signal can be extracted out. Because of this, the frequency response of system can be acquired according to the theory of harmonic impedance, so that the impedance measured from DG port can be obtained. Whether the DG is islanding can be determined quickly by monitoring the changes of this impedance. This method is proved to be correct and effective by theoretical analysis, simulation, experimental test and field experiment.
     The first chapter introduces the significance of the study and the research status of islanding detection; the second chapter contains the detailed theoretical analysis about principle for the active islanding detection based on the harmonic impedance measurement technology and the derivation of the transient disturbance current and voltage signal, at the same time, the effective islanding detection criterion has been built; in Chapter Ⅲ, the simulation model according to the theoretical analysis is built and the effectiveness of islanding detection criterion is verified by the sensitivity analysis, in addition, simulation and analysis of the impact on power quality have been illustrated; the interaction among signals of various anti-islanding active schemes is an important concern in multi-DG systems, therefore this issue is discussed in ChapterⅣ; in the fifth chapter, an experimental test is carried out and the ZK-1islanding detection device made based on this scheme has been tested in a wind farm belonging to Laizhou Luneng Wind Power Corporation for field experiment, moreover, this method is proved again.
引文
[1]Electricity Association, G59/1, Recommendations for the connection of embedded generating plant to the regional electricity companies distribution systems. Electricity Association Std.,1991.
    [2]Philip P. Barker, Robert W. deMello. Determining the impact of distributed generation on power systems:Part 1-Radial distribution systems. Power Engineering Society Summer Meeting, IEEE,2000(3):1645-1656.
    [3]丁磊,潘贞存,王宾.分散电源并网对供电可靠性的影响分析.电力系统自动化,2007,31(20):89-93.
    [4]W. Freitas, Z. Huang, W. Xu. A practical method for assessing the effectiveness of vector surge relays for distributed generation applications. IEEE Trans. Power Delivery,2005,20(1):57-63.
    [5]El-Khattam W, Salama M M A. Distributed generation technologies, definitionsand benefits. Electric Power Systems Research,2004,71(2): 119-128.
    [6]王志群,朱守真,周双喜等.分布式发电对配电网电压分布的影响.电力系统自动化,2004,28(16):56-60.
    [7]郭小强,赵清林,邬伟扬.光伏并网发电系统孤岛检测技术.电工技术学报,2007,22(4):157-162.
    [8]曾议.分布式并网发电系统孤岛检测研究.[硕士学位论文].湖南:湖南大学,2009.
    [9]陈启明,王映斐,程尹曼,汪明媚.分布式发电并网系统中孤岛检测方法的综述研究.电力系统保护与控制,2011,39(6):147-154.
    [10]Charles J. Mozina. Interconnection Protection of IPP Generators at Commercial /Industrial Facilities. IEEE Trans. Industry Applications, vol.37, no.3, May/ June 2001, pp 681-689.
    [11]W. Xu, G. Zhang, C. Li, W. Wang, G. Wang, and J. Kliber. A power line signaling based technique for anti-islanding protection of distributed generators-part i:scheme and analysis. IEEE Tran. PowerDelivery, vol.22, no. 3, pp.1758-1766, July 2007.
    [12]W. Wang, J. Kliber, G. Zhang, W. Xu, B. Howell, and T. Palladino. A power line signaling based technique for anti-islanding protection of distributed generators-part ii:field test results. IEEE Tran. PowerDelivery, vol.22, no.3, pp.1767-1772, July 2007.
    [13]Bright C G. COROCOF. Comparison of rate of change of frequency protection. In:Proc of IEE Seventh International Conference on Developments in Power System Protection. Piscataway:IEEE,2001,70-73.
    [14]GUILLOT M, COLLOMBET C, BERTRAND P, et al. Protection of embedded generation connected to a distribution network and loss of mains detection[C]. Schneider Electric, France, CIRED 2001,18-21 June 2001, Conference Publication IEE 2001,482:82-85.
    [15]HEGGIE G,YIP H.A multi-function relay for loss of mains protection [J] IEE Colloquium on System Implications of Embedded Generation and its Protection and Control,1998,277:1-4.
    [16]Cooper power systems product manual. UM30SV Vector Jump/Islanding Relay[Z]. Electric Apparatus Literature 150-23,1999.
    [17]REDFERN M A, BARRET J I, USTA O. A new microprocessor based islanding protection algorithm for dispersed storage and generation units [J]. IEEE Transactions on Power Delivery,1995,10 (3):1249-1254.
    [18]尹桂梁,杨丽君.分布式发电技术[M].北京:机械工业出版社,2008.9.
    [19]KANE P O, FOX B. Loss of mains detection for embedded generation by system impedance monitoring [C].Development in Power System Protection,25-27th March 1997,IEE Conference Publication 1997,434:95-98.
    [20]Motohashi J, Ichinose T, Ishikawa T, et al. Comparison of digital simulation and field test results of islanding detection system for synchronous generators. In:Proc of 2001 IEEE Power Engineering Society WinterMeeting. Piscataway:IEEE,1999,931-936.
    [21]J. E. Kim, J. S. Hwang. Islanding detection method of distributed generation units connected To power distribution system. International Conference on Power System Technology Proceedings, PowerCon,2000(2):643-647.
    [22]ANSI/IEEE. IEEE Guide for Interfacing Dispersed Storage and Generation Facilities with Electric Utility Systems. IEEE/ANSI Std.,1988.
    [23]P. Mahat, Zhe Chen, B. Bak-Jensen. Review of Islanding Detection Methods for Distributed Generation. DRPT 2008, pp.2743-2743, April 2008.
    [24]张有兵,穆淼婕,翁国庆.分布式发电系统的孤岛检测方法研究.电力系统保护与控制,2011,39(1):139-146.
    [25]KOBAYASHI H,TAKIGAWA K,HASHIMOTO E. Method for prevention islanding phenomenon on utility grid with a number of small scale PV systems[C]. Proceeding of the 21th IEEE Photovoltaic Specialists Conference, 1991:695-700.
    [26]De Mango F, Liserre M, Aquila A D, et al. Overview of anti-islanding algorithms for PV systems. Part 1:Passive methods. In:Proc of 2006 12th International Power Electronics and Motion Control Conference. Piscataway: IEEE,2007,1878-1883.
    [27]Kern G A. Sunsine300, utility interactive ac module anti-islanding test results. In:Proc of 1997 IEEE 26th Photovoltaic Specialists Conference. New York:IEEE,1997,1265-1268.
    [28]ROPP M, BEGOVIC M,ROHATGI A. Prevention of islanding in grid-connected photovoltaic systems[C]. Progress in Photovoltaics,1999,7:39-59.
    [29]Lucian A, Remus T, Frede B.A digital controlled PV-inverter with grid impedance estimation for ENS detection[J].IEEE Trans on Power Electronics, 2005,20(6):1480-1489.
    [30]W. Xu, K. Mauch, S. Martel. An assessment of the islanding detection methods and distributed generation islanding issues for Canada. A report for CANMET Energy Technology Centre-Varennes, Nature Resources Canada,65 pages.
    [31]张纯江,郭忠南,孟慧英.主动电流扰动法在并网发电系统孤岛检测中的应用.电工技术学报,2007,22(7):176-180.
    [32]韩耀鹏.基于可控短路技术的微电网孤岛检测技术研究.[硕士学位论文].山东:山东大学,2011.
    [33]J.Kliber, Wencong Wang, Wilsun Xu. Local Anti-Islanding Protection for Distributed Generators Based on Impedance Measurements. IEEE Electric Power Conference, pp.1-5, Oct.2008.
    [34]Yu Yuma S, Lchinose T, Kimoto K, et al. A high speed frequency shift method as a protection for islanding phenomena of utility interactive PV systems[J].Solar Energy Materials and Solar Cells,1994,35:477-486.
    [35]刘方锐,康勇,张宇.光伏并网逆变器的孤岛检测技术.电力科学与技术,2009,第24卷第1期:8-11.
    [36]刘芙蓉,王辉,康勇,段善旭.滑动频率偏移法在户用光伏孤岛检测中的应用.电源世界,2008,(8):40-43.
    [37]刘芙蓉,王辉,康勇,段善旭.滑模频率偏移法的孤岛检测盲区分析.电工技术学报.2009,第24卷第2期:178-182.
    [38]帅玲玲,温钱明.分布式发电孤岛检测的研究.江西电力,2009,第33卷第5期:13-15.
    [39]邓燕妮,桂卫华.一种低畸变的主动移频式孤岛检测算法.电工技术学报,2009,第24卷第4期:119-223.
    [40]肖巧景,张宇翔,郭敏.一种新的频率偏移技术在光伏并网发电系统孤岛检测中的应用.现代电子技术,2007,(1):107-108.
    [41]刘方锐,余蜜,张宇,段善旭,康勇.主动移频法在光伏并网逆变器并联运行下的孤岛检测机理研究.中国电机工程学报,2009,第29卷第12期:47-51.
    [42]Jose C. M. Vieira, Walmir Freitas, Wilsun Xu, Andre Morelato. An investigation on the nondetection zones of synchronous distributed generation anti-islanding protection. IEEE TRANSACTIONS ON POWER DELIVERY, 2008,23(2):593-600.
    [43]Chuttchaval Jeraputra,Prasad N. Enjeti. Development of a robust anti-islanding algorithm for utility interconnection of distributed fuel cell powered generation. IEEE TRANSACTIONS ON POWER ELECTRONICS,2004, 19(5):1163-1170.
    [44]刘芙蓉,康勇,段善旭,王志峰,王辉.主动移频式孤岛检测方法的参数优化.中国电机工程学报,2008,第28卷第1期:95-99.
    [45]Xu M, Melnik V N, Borup U. Modeling anti-islanding protection devices for photovoltaic systems[J]. Renewable Energy,2004,29(15):2195-2216.
    [46]曹海燕,田悦新.并网逆变器孤岛控制技术[J].电力系统保护与控制,2010,38(9):72-75.
    [47]Wang Xiaoyu, Freitas W, Wilsun Xu, et al. Impact of DG interface controls on the Sandia frequency shift anti-islanding method[J].IEEE Transactions on Energy Conversion,2007,22(3):792-794.
    [48]Seul-Ki Kim, Jin-Hong Jeon, Jong-Bo Ahn, Byongjun Lee,Sae-Hyuk Kwon. Frequency-Shift Acceleration Control for Anti-Islanding of a Distributed-Generation Inverter. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2010,57(2):494-504.
    [49]Vinod John, Zhihong Ye, Amol Kolwalka. Investigation of anti-islanding protection of power converter based distributed generators using frequency domain analysis. IEEE TRANSACTIONS ON POWER ELECTRONICS,2004, 19(5):1177-1183.
    [50]Xiaoyu Wang, Walmir Freitas, Venkata Dinavahi,Wilsun Xu. Investigation of Positive Feedback Anti-Islanding Control for Multiple Inverter-Based Distributed Generators. IEEE TRANSACTIONS ON POWER SYSTEMS, 2009,24(2):785-795.
    [51]Xiaoyu Wang, Walmir Freitas. Impact of positive feedback anti-islanding methods on small-signal stability of inverter-based distributed generation. IEEE TRANSACTIONS ON ENERGY CONVERSION,2008,23(3):923-931.
    [52]A. Robert and T. Deflandre, "Guide for assessing the network harmonic impedances," CIGRE 36.05, Working Group CC02 Rep., Mar.1993.
    [53]IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Standard 519,1992.
    [54]CIGRE Working Group 36-05, "Harmonics, characteristic parameters, methods of study, estimates of existing values in the network," Electra, no.77, pp.35-54, Jul.1981.
    [55]W. Wang, E. E. Nino, W. Xu. Harmonic impedance measurement using a thyristor-controlled short circuit. Generation, Transmission, and Distribution, IET,2007(1):707-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700