几类非线性色散偏微分方程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性现象是自然界中普遍存在的一种重要现象。许多实际的非线性问题最终都可归结为非线性系统来描述。最近几十年来,物理、力学、化学、生物、工程、航空航天、医学、经济和金融等领域中诞生了许多非线性偏微分方程,但是由于方程的非线性以及本身的复杂性,使得对这些方程的研究具有很大的挑战性。本文研究了几类有着深刻物理背景的非线性色散偏微分方程,即广义Camassa-Holm方程,变形Camassa-Holm方程,广义Degasperis-Procesi方程,Fornberg-Whitham方程,和浸入K(2,2)方程。
     对于广义Camassa-Holm方程(3.18),研究了它的Cauchy问题,得到了尖峰孤立波解是方程(3.18)的Cauchy问题整体弱解的结论。并指出尖峰孤立波是轨道稳定的。研究了方程(3.18)的初边值问题(3.36),利用Kato定理证明了初边值问题(3.36)在适当函数空间上是局部适定性,结合守恒律得到了初边值问题(3.18)的两个blow up结果。还发现了方程(3.18)的一个隐性线性结构,并由此得到了它的一种多重解的叠加解,对于变形Camassa-Holm方程(3.17),研究了其行波解,数值模拟表明,该方程具有一类定义在半实轴上的精确行波解。
     对于广义Degasperis-Procesi方程(4.7),研究了它的一类初边值问题(4.11),同样得到了初边值问题(4.11)在适当函数空间上是局部适定性,利用微分不等式得到了初边值问题(4.11)的解的blow up结果。利用激波ansatz首先将方程(4.7)约化为一个常微分方程,然后通过求解此常微分方程得到了方程(4.7)由尖峰孤立波和反尖峰孤立波相互碰撞形成的一类特殊的波—激波的表达式。利用平面动力系统分叉方法结合数值模拟得到方程(4.7)的类扭结解和类反扭结解。同时还得到了方程(4.7)的峰状和谷状光滑孤立波解、尖峰孤立波解和周期波解,并指出尖峰孤立波可看作是光滑孤立波和周期波的极限。最后还发现了方程(4.7)的一个隐性线性结构,并由此得到了它的一种多重解的叠加解。
     对于Fornberg-Whitham方程(5.1),研究了其Cauchy问题,得到了其Cauchy问题在H~s(R)(s>3/2)空间中是局部适定的。利用分叉方法的得到了其光滑孤立波解、尖峰孤立波解和周期尖角子解,并指出尖峰孤立波可看作是光滑孤立波和周期波的极限。同时结合数值模拟得到了其类扭结解和类反扭结解。最后利用椭圆积分得到了方程(5.1)的反向环状孤立波解、峰状光滑孤立波解,以及其它各种周期解。
     对于浸入K(2,2)方程(6.7),利用平面动力系统分叉方法结合数值模拟得到了其类扭结解和类反扭结解。最后还得到了其峰状和谷状光滑孤立波解。
Nonlinearity is universal and important phenomenon in nature. Most nonlinear problems can be described by nonlinear equations.In recent years,many nonlinear partial differential equations were derived from physics,mechanics,chemistry,biology,engineering,aeronautics, medicine,economy,finance and many other fields.Because of the non-linearity and complexity of themselves,it is a big challenge to deal with them.In the paper,we study several nonlinear partial differential dispersive equations,that is,a generalized Camassa-Holm equation,a modified Camassa-Holm equation,a generalized Degasperis-Procesi equation,the Fornberg-Whitham equation and the osmosis K(2,2) equation.
     Firstly,we study a generalized Camassa-Holm equation(3.18).We prove that the obtained peaked solitary wave solution of Eq.(3.18) is a global weak solution to the Cauchy problem of Eq.(3.18).We also point out that the peaked solitary wave solution is orbital stable.In addition, we study an initial boundary value problem of Eq.(3.18).With the aim of Kato's theorem,we prove the initial and boundary value problem (3.36) is local well-posed in some function space.Two blow-up results are established by combining conservation law.We also investigate a modified Camassa-Holm equation(3.17).With the aim of numerical simulations,we show Eq.(3.17) has a type of travelling wave solution that defined on some semifinal interval and possessing some properties of kink wave solution or antikink wave solution.
     Secondly,we study a generalized Degasperis-Procesi equation(4.7). We study an initial boundary value problem of Eq.(4.7) and obtain that the initial and boundary value problem(4.11) is local well-posed in some function space,and also obtain a blow-up result.By the shock wave ansatz,we convert Eq.(4.7) into a group of ordinary differential equations,then obtain a special solution of Eq.(4.7),that is shock wave solution.It can be regard as the result of the collision of peakon and antipeakon. By using the bifurcation method of planar dynamical systems and the numerical simulations,we obtain the kink-like and antikink-like wave solutions of Eq.(4.7).Meanwhile,the smooth solitary wave solutions of peak and valley form,the peaked solitary wave solutions and the period cusp wave solutions of Eq.(4.7) are also obtained.We point out that the peaked solitary wave solutions can be regarded as the limit of smooth solitary wave solutions and also the period cusp wave solutions. In addition,we find an implicit linear structure in Eq.(4.7).According to the linear structure,we give the superposition of multi-solutions of Eq.(4.7).This is an interesting result.
     Thirdly,we study the Fornberg-Whitham equation(5.1).By Kato's theorem,we prove that the Cauchy problem of Eq.(5.1) is local well- posed with the initial data u_0∈H~s(R)(s>3/2).Employing the bifurcation method of planar dynamical systems we obtain the smooth solitary wave solutions of peak form,the peaked solitary wave solutions and the period cusp wave solutions of Eq.(5.1).We point out that the peaked solitary wave solutions can be regarded as the limit of smooth solitary wave solutions and also the period cusp wave solutions.Meanwhile,the kink-like and antikink-like wave solutions of Eq.(5.1) are obtained.We also make the numerical simulations of the reduced traveling wave system, and the numerical result showed that our theoretical results are correct.In addition,with the aim of elliptic integral,we obtain the inverted loop-like solitary wave solutions,the smooth solitary wave solutions of peak form,and many other period wave solutions of Eq.(5.1).
     Lastly,we study the osmosis K(2,2) equation Eq.(6.7).Employing the bifurcation method of planar dynamical systems and the numerical simulations,we obtain the kink-like and antikink-like wave solutions of Eq.(6.7).Meanwhile,the smooth solitary wave solutions of peak and valley form of Eq.(6.7) are also obtained.We point out that the peaked solitary wave solutions can be regarded as the limit of smooth solitary wave.
引文
[1]G.B.Whitham,Varantional methods and applications to water wave,Proc.R.Soc.Lond.A 299(1967) 6-25.
    [2]B.Fornberg,G.B.Whitham,A numerical and theoretical study of certain nonlinear wave phenomena,Phil.Trans.R.Soc.Lond.A 289(1978) 373-404.
    [3]R.Ivanov,On the integrability of a class of nonlinear dispersive wave equations,J.Nonlinear Math.Phys.1294(2005) 462-468.
    [4]R.Camassa,D.Holm,An integrable shallow water equation with peaked solitons,Phys.Rev.Lett.71(1993) 1661-1664.
    [5]H.H.Dal,Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,Acta Mech.127(1998) 193-207.
    [6]A.Constantin,W.Strauss,Stability of a class of solitary waves in compressible elastic rods,Phys.Lett.A 270(2000) 140-148.
    [7]J.Lenells,Conservation laws of the Camassa-Holm equation,J.Phys.A 38(2005)869-880.
    [8]A.Parker,Cusped solitons of the Camassa-Holm equation.I.Cuspon solitary wave and antipeakon limit,Chaos,Solitons and Fractals 34(2007) 730-739.
    [9]E.J.Parkes,V.O.Vakhnenko,Explicit solutions of the Camassa-Holm equation,Chaos,Solitons and Fractals 26(2005) 1309-1316.
    [10]R.Beals,Multipeakons and the classical moment problem,Adv.in Math.154(2000)229-257.
    [11]Z.R.Liu,R.Q.Wang,Z.J.Jing,Peaked wave solutions of Camassa-Holm equation,Chaos,Solitons and Fractals 19(2004) 77-92.
    [12]J.P.Boyd,Peakons and coshoidal waves:traveling wave solutions of the Camassa-Holm equation,Appl.Math.Comput.81(1997) 173-187.
    [13]Z.R.Liu,T.F.Qian,Peakons of the Camassa-Holm equation,Appl.Math.Model.26(2002) 473-480.
    [14]Y.Matsuno,Cusp and loop soliton solutions of short-wave models for the Camassa-Holm and Degasperis-Procesi equations,Phys.Lett.A 359(2006) 451-457.
    [15]J.Schiff,The Camassa-Holm equation:A loop group approach,Physica D 121(1998)24-43.
    [16]J.Lenells,Traveling wave solutions of the Camassa-Holm and Korteweg-de Vries equations,J.Nonlinear Math.Phys.11(2004) 508-520.
    [17]J.Lenells,Traveling wave solutions of the Camassa-Holm equation,J.Differ.Equ.217(2005) 393-430.
    [18]田立新,许刚,刘曾荣.Camassa-Holm方程凹凸尖峰及光滑孤立子解.应用数学和力学.2002,23(5):497-505.
    [19] S. Abbasbandy, E. J. Parkes, Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method, Chaos, Solitons and Fractals 36(2008) 581-591.
    
    [20] A. Constantin, W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000)603-610.
    
    [21] A. Constantin, W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci. 12 (2002) 415-422.
    
    [22] J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys. 11 (2004) 151-163.
    
    [23] J. Lenells, Stability of periodic peakons, Int. Math. Res. Not. 2004 (2004) 485-499.
    
    [24] S. Hakkaev, Stability of peakons for an integrable shallow water equation, Phys. Lett.A 354 (2006) 137-144.
    
    [25] K. E. Dika, L. Molinet, Stability of multipeakons, (2008) submitted.
    
    [26] A. Constantin, J. Escher, Global weak solutions for a shallow water equation, Ind.Univ. Math. J. 47 (1998) 1527-1545.
    
    [27] A. Constantin, L. Molinet, Global weak solutions for a shallow water equation, Comm.Math. Phys. 211 (2000) 45-61.
    
    [28] Z. P. Xin, P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math. 53 (2000) 1411-1433.
    
    [29] Z. P. Xin, P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differ. Equ. 27 (2002) 1815-1844.
    
    [30] A. Bressan, A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal. 183 (2007) 215-239.
    
    [31] Z. H. Guo, M. N. Jiang, Z. A. Wang, G. F. Zheng, Global weak solutions to the camassa-holm equation, Disc. Conti. Dyn. Sys. 21 (2008) 883-906.
    
    [32] A. Constantin, J. Escher, Global existence and blow-up for a shallow water equation,Annali Sc. Norm. Sup. Pisa 26 (1998) 303-328.
    
    [33] P. Li, P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ. 162 (2000) 27-63.
    
    [34] G. Rodriguez-Bianco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. 46 (2001) 309-327.
    
    [35] A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000) 321-362.
    
    [36] Y. Q. Liu, W. K. Wang, Global existence of solution to the Camassa-Holm equation,Nonlinear Anal. 60 (2005) 945-953.
    
    [37] Y. Liu, Global existence and blow-up solutions for a nonlinear shallow water equation,Math. Ann. 335 (2006) 717-735.
    [38]Z.Y.Yin,Well-posedness,global solutions and blow up phenomena for a nonlinearly dispersive wave equation,J.Evol.Equ.4(2004) 391-419.
    [39]Y.Zhou,Blow-up of solutions to a nonlinear dispersive rod equation,Calc.Var.25(2005) 63-77.
    [40]A.Constantin,On the blow-up of solutions of a periodic shallow water equation,J.Nonlinear Sci.10(2000) 391-399.
    [41]E.Wahlen,On the blow-up of solutions to the periodic Camassa-Holm equation,Nonlinear Differ.Equ.Appl.13(2007) 643-653.
    [42]A.Constantin,J.Escher,Wave breaking for nonlinear nonlocal shallow water equations,Acta Mathematica 181(1998) 229-243.
    [43]K.H.,Kwek,H.J.Gao,W.N.Zhang,C.C.Qu,An initial boundary problem of Camassa-Holm equation,J.Math.Phys.41(2000) 8279-8285.
    [44]杨灵娥,郭柏灵.浅水波方程的初边值问题.数学理论与应用.2003,23(1):1-10.
    [45]S.Ma,S.Ding,On the initial boundary value problem for a shallow water equation,J.Math.Phys.45(2004) 3479-3497.
    [46]A.Boutet de Monvel,D.Shepelsky,The Camassa-Holm equation on the half-line,C.R.Acad.Sci.Paris,Ser.I 341(2005) 611-616.
    [47]X.S.Zhu,W.K.Wang,Blow-up of the solutions of the initial boundary value problem of Camassa-Holm equation,Wuhan Univ.J.Natural Sci.,10(2005) 961-965.
    [48]J.Escher,Z.Y.Yin,Initial boundary value problems of the Camassa-Holm equation,Comm.Partial Differ.Equ.33(2008) 377-395.
    [49]Z.R.Liu,Z.Y.Ouyang,A note on solitary waves for modified forms of Camassa-Holm and Degasperis-Procesi equations,Phys.Lett.A 366(2007) 377-381.
    [50]J.W.Shen,W.Xu,Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,Chaos,Solitons and Fractals 26(2005)1149-1162.
    [51]B.G.Zhang,S.Y.Li,Z.R.Liu,Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi equations,Phys.Lett.A 372(2008) 1867-1872.
    [52]S.A.Khuri,New ans(a|¨)tz for obtaining wave solutions of the generalized Camassa-Holm equation,Chaos,Solitons and Fractals 25(2005) 705-710
    [53]L.X.Tian,J.L.Yin,New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations,Chaos,Solitons and Fractals 20(2004)289-299.
    [54]L.X.Tian,X.Y.Song,New peaked solitary wave solutions of the generalized Camassa-Holm equation,Chaos,Solitons and Fractals 19(2004) 621-637.
    [55]A.M.Wazwaz,New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations,Appl.Math.Comput.186(2007) 130-141.
    [56]L.J.Zhang,L.Q.Chen,X.W.Huo,Peakons and periodic cusp wave solutions in a generalized Camassa-Holm equation,Chaos,Solitons and Fractals 30(2006) 1238-1249.
    [57]T.F.Qian.,M.Y.Tang,Peakons and periodic cusp wave in a generalized Camassa-Holm equation,Chaos,Solitons and Fractals 12(2001) 1347-1360.
    [58]A.M.Wazwaz,Peakons,kinks,compactons and solitary patterns solutions for a family of Camassa-Holm equations by using new hyperbolic schemes,Appl.Math.Comput.182(2006) 412-424.
    [59]Y.Zheng,S.Y.Lai,Peakons,solitary patterns and periodic solutions for generalized Camassa-Holm equations,Phys.Lett.A 372(2008) 4141-4143.
    [60]Z.R.Liu,B.L.Guo,Periodic blow-up solutions and their limit forms for the generalized Camassa-Holm equation,Progr.in Natural Sci.18(2008) 259-266.
    [61]L.X.Tian,L.Sun,Singular solitons of generalized Camassa-Holm models,Chaos,Solitons and Fractals 32(2007) 780-799.
    [62]A.M.Wazwaz,Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations,Phys.Lett.A 352(2006) 500-504.
    [63]L.X.Tian,M.Fu,Solitary wave solutions to the modified form of Camassa-Holm equation by means of the homotopy analysis method,Chaos,Solitons and Fractals 32(2007) 538-546.
    [64]S.L.Xie,W.G.Rui,X.C.Hong,The compactons and ceneralized kink waves to a generalized Camassa-Holmequation,Rostock.Math.Kolloq.61(2006) 31-48.
    [65]C.S.Liu,The classification of travelling wave solutions and superposition of multisolutions to Camassa-Holm equation with dispersion,Chinese Phys.16(2007) 1832-1837.
    [66]E.Yomba,The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm,and generalized nonlinear Schr(o|¨)dinger equations,Phys.Lett.A 372(2008) 215-222.
    [67]张文岭.广义Camassa-Holm方程的有界行波解.工程数学学报,2006,23(3):381-398.
    [68]殷久利,田立新.一类非线性方程的compacton解及其移动compacton解.物理学报,2004,53(9):2821-2827.
    [69]孙璐,田立新.广义色散Camassa-Holm模型的奇异孤子.物理学报,2007,56(7):3668-3674.
    [70]O.Lopes,Stability of peakons for the generalized Camassa-Holm equation,Elec.J.Differ.Equ.,2002(2002) 1-12.
    [71]S.Hakkaev,K.Kirchev,On the well-posedness and stability of peakons for a generalized Camassa-Holm equation,Int.J.Nonlinear Sci.1(2006) 139-148.
    [72]H.Holden,X.Raynaud,Global conservative solutions of the generalized hyperelasticrod wave equation,J.Differ.Equ.233(2007) 448-484.
    [73]L.X.Tian,Y.X.Wang,Global conservative solutions of the generalized Camassa-Holm equation,Int.J.Nonlinear Sci.5(2008) 195-202.
    [74]Z.Y.Yin,On the Cauchy problem for the generalized Camassa-Holm equation,Nonlinear Anal.66(2007) 460-471.
    [75]吴书印,殷朝阳.弱耗散Camassa-Holm方程解的blowup及衰减性质.应用数学学报.2007,30(6):997-1003.
    [76]D.P.Ding,L.X.Tian,G.Xu,The study on solutions to Camassa-Holm equation with weak dissipation,Commu.Pure Appl.Anal.5(2006) 483-492.
    [77]D.P.Ding,L.X.Tian,The study of solution of dissipative camassa-holm equation on total space,Int.J.Nonlinear Sci.1(2006) 37-42.
    [78]O.G.Mustafa,On the Cauchy problem for a generalized Camassa-Holm equation,Nonlinear Anal.64(2006) 1382-1399.
    [79]Wee Keong Lim,Global well-posedness for the viscous Camassa-Holm equation,J.Math.Anal.Appl.326(2007) 432-442.
    [80]丁丹平,田立新.耗散Camassa-Holm方程的吸引子.应用数学学报.2004,27(3):536-545.
    [81]L.X.Tian,J.L.Fan,R.H.Tian,The attractor on viscosity peakon b-family of equations,Int.J.Nonlinear Sci.,4(2007)163-170.
    [82]M.Stanislavova,A.Stefanov,Attractors for the viscous Camassa-Holm equation,Disc.Conti.Dyn.Sys.,18(2007) 159-186.
    [83]L.E.Yang,B.L.Guo,global attractor for Camassa-Holm type equations with dissipative term,Acta Mathematica Scientia 25B(2005) 621-62.
    [84]Y.P.Fu,B.L.Guo,Almost periodic solution of one dimensional viscous Camassa-Holm equation,Acta Mathematica Scientia,27B(2007) 117-124.
    [85]A.Degasperis,M.Procesi:Asymptotic integrability.In:Symmetry and Perturbation Theory,edited by A.Degasperis,G.Gaeta,Singapore:World Scientific,1999,pp.23-37.
    [86]A.Degasperis,D.D.Holm,A.N.W.Hone,A new integral equation with peakon solutions,Theo.Math.Phys.133(2002) 1463-1474.
    [87]H.R.Dullin,G.A.Gottwald,D.D.Holm,Camassa-Holm,Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,Fluid Dyn.Res.33(2003) 73-79.
    [88]Z.Y.Yin,On the Cauchy problem for an integrable equation with peakon solutions,Ill.J.Math.47(2003) 649-666.
    [89]Z.Y.Yin,Global existence for a new periodic integrable equation,J.Math.Anal.Appl.283(2003) 129-139.
    [90]Z.Y.Yin,Global solutions to a new integrable equation with peakons,Ind.Univ.Math.J.53(2004) 1189-1210.
    [91]Z.Y.Yin,Well-posedness,blow up,and global existence for an integrable shallow water equation,Disc.Conti.Dyn.Sys.11(2004) 393-411.
    [92]Y.Liu,Z.Yin,Global existence and blow-up phenomena for the Degasperis-Procesi equation,Comm.Math.Phys.267(2006) 801-820.
    [93]Y.Zhou,Blow-up phenomena for the integrable Degasperis-Procesi equation,Phys.Lett.A 328(2004) 157-162.
    [94]J.Escher,Y.Liu,Z.Y.Yin,Shock waves and blow-up phenomena for the periodic Degasperis equation,Ind.Univ.Math.J.56(2007) 187-117.
    [95]Z.Y.Yin,Global weak solutions to a new periodic integrable equation with peakon solutions,J.Funct.Anal.212(2004) 182-194.
    [96]J.Escher,Y.Liu,Z.Y.Yin,Global weak solutions and blow-up structure for the Degasperis-Procesi equation,J.Funct.Anal.241(2006) 457-485.
    [97]G.M.Coclite,K.H.Karlsen,On the well-posedness of the Degasperis-Procesi equation,J.Funct.Anal.233(2006) 60-91.
    [98]H.Lundmark,J.Szmigielski,Multi-peakon solutions of the Degasperis-Procesi equation,Inverse Problems 19(2003) 1241-1245.
    [99]Y.Matsuno,Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit,Inverse Problems 21(2005) 1553-1570.
    [100]Z.J.Qiao,M-Shape peakons,dehisced solitons,cuspons and new l-peak solitons for the Degasperis-Procesi equation,Chaos,Solitons and Fractals 37(2008) 501-507.
    [101]G.P.Zhang,Z.J.Qiao,Cuspons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition,Math.Phys.Anal.Geom.10(2007)205-225.
    [102]J.Lenells,Traveling wave solutions of the Degasperis-Procesi equation,J.Math.Anal.Appl.306(2005) 72-82.
    [103]H.Lundmark,Formation and dynamics of shock waves in the Degasperis-Procesi equation,J.Nonlinear Sci.17(2007) 169-198.
    [104]G.M.Coclite,K.H.Karlsen,N.H.Risebro,Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation,IMA J.Numer.Anal.doi:10.1093/imanum/drum003(2007)
    [105]J.Escher,Wave breaking and shock waves for a periodic shallow water equation,Phil.Trans.R.Soc.A 365(2007) 2281-2289.
    [106]Z.W.Lin,Y.Liu,Stability of peakons for the Degasperis-Procesi equation,(2008)submitted.
    [107]J.Escher,Z.Y.Yin,On the initial boundary value problems for the Degasperis-Procesi equation,Phys.Lett.A 368(2007) 69-76.
    [108]L.X.Tian,X.M.Li,On the well-posedness problem for the generalized Degasperis-Procesi equation,Int.J.Nonlinear Sci.2(2006) 67-76.
    [109] L. X. Tian, X. M. Li, Well-posedness for a new completely integrable shallow water wave equation, Int. J. Nonlinear Sci. 4 (2007) 83-91.
    
    [110] L. X. Tian, M. J. Ni, Blow-up Phenomena for the Degasperis-Procesi equation with strong dispersive term, Int. J. Nonlinear Sci. 3 (2007) 187-194.
    
    [111] L. X. Tian, M. J. Ni, Blow-up Phenomena for the periodic Degasperis-Procesi equation with strong dispersive term, Int. J. Nonlinear Sci. 2 (2006) 177-182.
    
    [112] G. C. Fang, W. Y. Chen, Z. Hu, Well-posedness of the solution to D-P Equation with dispersive term, Int. J. Nonlinear Sci. 5 (2008) 125-132.
    
    [113] E. Yusufoglu, New solitonary solutions for modified forms of DP and CH equations using Exp-function method, Chaos, Solitons and Fractals, (2008) in press.
    
    [114] H. C. Ma, Y. D. Yu, D. J. Ge, New exact traveling wave solutions for the modified form of Degasperis-Procesi equation, Appl. Math. Comput. 203 (2008) 792-798.
    
    [115] Q. D. Wang, M. Y. Tang, New exact solutions for two nonlinear equations, Phys. Lett.A 372 (2008) 2995-3000.
    
    [116] L. J. Zhang, L. Q. Chen, X. W. Huo, Bifurcations of smooth and nonsmooth traveling wave solutions in a generalized degasperis-procesi equation, J. Comput. Appl. Math.205 (2007) 174-185.
    
    [117] J. W. Shen, W. Xu, Smooth and non-smooth travelling wave solutions of generalized Degasperis-Procesi equation, Appl. Math. Comput. 182 (2006) 1418-1429.
    
    [118] L. Q. Yu, L. X. Tian, X. D. Wang, The bifurcation and peakon for Degasperis-Procesi equation, Chaos, Solitons and Fractals 30 (2006) 956-966.
    
    [119] P. Rosenau, J. M. Hyman, Compactons: solitons with finite wavelengths, Phys. Rev.Lett. 70 (1993) 564-567.
    
    [120] A. M. Wazwaz, Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl. Math. Comput. 138 (2003) 309-319.
    
    [121] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, Int. J.Nonlinear Sci. Numer. Simulat. 6 (2005) 207-208.
    
    [122] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals 30 (2006) 700-708.
    
    [123] J. H. He, X. H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Solitons and Fractals 29 (2006) 108-113.
    
    [124] H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys. B 20 (2006) 1141-1199.
    
    [125] L. Xu, Variational approach to solitons of nonlinear dispersive K(m,n) quations,Chaos, Solitons and Fractals 37 (2008) 137-143.
    
    [126] A. M. Wazwaz, General compactons solutions and solitary patterns solutions for modified nonlinear dispersive equations mK(n, n) in higher dimensional spaces, Math. Comput. Simulat. 59 (2002) 519-531.
    [127]A.M.Wazwaz,Compact and noncompact structures for a variant of KdV equation in higher dimensions,Appl.Math.Comput.132(2002) 29-45.
    [128]Y.Chen,B.Li,H.Q.Zhang,New exact solutions for modified nonlinear dispersive mK(m,n) equations in higher dimensions spaces,Math.Comput.Simul.64(2004)549-559.
    [129]B.He,Q.Meng,W.Rui,Y.Long,Bifurcations of travelling wave solutions for the mK(n,n) equation,Comm.Nonlinear Sci.Numer.Simulat.13(2008) 2114-2123.
    [130]Z.Y.Yan,Modified nonlinearly dispersive mg(m,n,k) equations:I.New compacton solutions and solitary pattern solutions,Comput.Phys.Comm.152(2003) 25-33.
    [131]Z.Y.Yan,Modified nonlinearly dispersive mK(m,n,k) equations:Ⅱ.Jacobi elliptic function solutions,Comput.Phys.Comm.153(2003) 1-16.
    [132]A.Biswas,1-soliton solution of the K(m,n) equation with generalized evolution,Phys.Lett.A 372(2008) 4601-4602.
    [133]Y.G.Zhu,K.Tong,T.C.Lu,New exact solitary-wave solutions for the K(2,2,1) and K(3,3,1) equations,Chaos,Solitons and Fractals 33(2007) 1411-1416.
    [134]C.H.Xu,L.X.Tian,The bifurcation and peakon for K(2,2) equation with osmosis dispersion,Chaos,Solitons and Fractals(2008) in press.
    [135]A.Constantin,V.S.Gerdjikov,R.I.Ivanov,Inverse scattering transform for the Camassa-Holm equation,Inverse Problems 22(2006) 2197-2207.
    [136]H.W.Zhu,B.Tian,B(a|¨)cklund transformation in bilinear form for a higher-order nonlinear Schr(o|¨)dinger equation,Nonlinear Anal.Real World Appl.,(2008) in press.
    [137]A.M.Wazwaz,Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili(Lax-KP)equation,Appl.Math.Comput.201(2008) 790-799.
    [138]L.X.Tian,J.L.Yin,Multi-compacton and double symmetric peakon for generalized Ostrovsky equation,Chaos,Solitons and Fractals 35(2008) 991-995.
    [139]T.(O|¨)zer,Symmetry group analysis and similarity solutions of variant nonlinear longwave equations,Chaos,Solitons and Fractals 38(2008) 722-730.
    [140]X.Feng,Exploratory approach to explicit solution of nonlinear evolution equations,Int.J.Theor.Phys.39(2000) 207-222.
    [141]J.H.He,Application of homotopy perturbation method to nonlinear wave equations,Chaos,Solitons and Fractals 26(2005) 695-700.
    [142]J.S.Kamdem,Z.J.Qiao,Decomposition method for the Camassa-Holm equation Chaos,Solitons and Fractals 31(2007) 437-447.
    [143]A.M.Wazwaz,The variational iteration method for solving linear and nonlinear systems of PDEs,Comput.Math.Appl.54(2007) 895-902.
    [144]J.H.He,X.H.Wu,Exp-function method for nonlinear wave equations,Chaos,Solitons and Fractals 30(2006) 700-708.
    [145] A. M. Wazwaz, Generalized forms of the phi-four equation with compactons, solitons and periodic solutions, Math. Comput. Simulat. 69 (2005) 580-588.
    
    [146] A. M. Wazwaz, Multiple-soliton solutions of two extended model equations for shallow water waves, Appl. Math. Comput. 201 (2008) 790-799.
    
    [147] I. Mustafa, New solitary wave solutions with compact support and Jacobi elliptic function solutions for the nonlinearly dispersive Boussinesq equations, Chaos, Solitons and Fractals 37 (2008) 792-798.
    
    [148] T. Geng, W. R. Shan, A new application of Riccati equation to some nonlinear evolution equations, Phys. Lett. A, 372 (2008) 1626-1630.
    
    [149] Y. Feng, H. Q. Zhang, A new auxiliary function method for solving the generalized coupled Hirota-Satsuma KdV system, Appl. Math. Comput. 200 (2008) 283-288.
    
    [150] E. Yomba, A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations, Phys. Lett. A 372(2008) 1048-1060.
    
    [151] S. Zhang, T. C. Xia, An improved generalized F-expansion method and its application to the (2 + 1)-dimensional KdV equations, Comm. Nonlinear Sci. Numer. Simulat. 13(2008) 1294-1301.
    
    [152] C. Q. Dai, X. Cen, S. S. Wu, Exact solutions of discrete complex cubic Ginzburg-Landau equation via extended tanh-function approach, Comput. Math. Appl. 56 (2008)55-62.
    
    [153] M. F. El-Sabbagh, A.T. Ali, New generalized Jacobi elliptic function expansion method,Comm. Nonlinear Sci. Numer. Simulat. 13 (2008) 1758-1766.
    
    [154] L. N. Song, Q. Wang, Y. Zheng, H. Q. Zhang, A new extended Riccati equation rational expansion method and its application, Chaos, Solitons and Fractals 31 (2007) 548-556.
    
    [155] Q. Liu, J. M. Zhu, B. H. Hong, A modified variable-coefficient projective Riccati equation method and its application to (2+1)-dimensional simplified generalized Broer-Kaup system, Chaos, Solitons and Fractals, 37 (2008) 1383-1390.
    
    [156] Y. Zheng, Y. Y. Zhang, H. Q. Zhang, Generalized Riccati equation rational expansion method and its application, Appl. Math. Comput. 189 (2007) 490-499.
    
    [157] S. S. Ray, An application of the modified decomposition method for the solution of the coupled Klein-Gordon-Schrodinger equation, Comm. Nonlinear Sci. Numer. Simulat.13 (2008) 1311-1317.
    
    [158] A. Elhanbaly, M. A. Abdou, Exact travelling wave solutions for two nonlinear evolution equations using the improved F-expansion method, Mathe. Comput. Model. 46 (2007)1265-1276.
    
    [159] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,Adv. in Math. Suppl. Stud., Stud, in Appl. Math. 8 (1983) 93-128.
    
    [160] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in:Spectral Theory and Differential Equations, Lecture Notes in Math.,Springer-Verlag, Berlin 448 (1975) 25-70.
    [161]T.Kato,On the Korteweg-de Vreis equation,Manuscripta Math 28(1979) 89-99.
    [162]T.Kato,On the Cauchy problem for the(generalized) Korteweg-de Vries equation,Stud.in Appl.Math.8(1983) 93-128.
    [163]A.Constantin,Existence of permanent and breaking waves for a shallow water equation:a geometric approach,Ann.Inst.Fourier 50(2000) 321-362.
    [164]T.Kato,G.Ponce,Commutator estimates and the Euler and Navier-Stokes equations,Comm.Pure Appl.Math.41(1988) 891-907.
    [165]B.L.Guo,Z.R.Liu,Two new types of bounded waves of CH-γ equation,Science in China Ser.A Mathematics 48(2005) 1618-1630.
    [166]M.Y.Tang,W.L.Zhang,Four types of bounded wave solutions of CH-γ equation,Sci.China Ser.A 50(2007) 132-152.
    [167]Z.R.Liu,Q.Li,Q.Lin,New bounded traveling waves of Camassa-Holm equation,Int.J.Bifur.Chaos 14(2004) 3541-3556.
    [168]Z.R.Liu,L.Yao,Compacton-like wave and kink-like wave of GCH equation,Nonlinear Anal.Real World Appl.8(2007) 136-155.
    [169]C.Chen,M.Tang,A new type of bounded waves for Degasperis-Procesi equation,Chaos,Solitons and Fractals 27(2006) 698-704.
    [170]G.G.Doronin,N.A.Larkin,KdV equation in domains with moving boundaries,J.Math.Anal.Appl.328(2007) 503-517.
    [171]Pham Loi Vu,The initial-boundary value poblem for the Korteweg-de Vries equation on the positive quarter-plane,J.Nonlinear Math.Phys.14(2007),28-43.
    [172]E.J.Parkes,The stability of solutions of Vakhnenko's equation,J.Phys.A Math.Gen.26(1993) 6469-6475.
    [173]P.F.Byrd,M.D.Friedman.Handbook of elliptic integrals for engineers and scientists.Springer:Berlin,1971
    [174]M.Abramowitz,I.A.Stegun.Handbook of mathematical functions.Dover:New York,1972
    [175]J.L.Bona,S.M.Sun,B.Y.Zhang,Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane,Ann.I.H.Poincare-AN,(2008) in press.
    [176]J.B.Li,Z.R.Liu,Smooth and non-smooth traveling waves in a nonlinearly dispersive equation,Appl.Math.Model.25(2000) 41-56.
    [177]A.D.D.Craik,The origins of water wave theory,Ann.Rev.Fluid Mech.36(2004)1-28.
    [178]T.B.Benjamin,J.L.Bona and J.J.Mahoney,Model equations for long waves in nonlinear dispersive systems,Phil.Trans.Roy.Soc.London A 227(1972) 47-78.
    [179]J.Escher,Z.Y.Yin,Initial boundary value problems for nonlinear dispersive wave equations,J.Func.Anal.,(2008) in press.
    [180]F.O.Minotti,S.Dasso,Formulation of subgrid stresses for large-scale fluid equations,Phys.Rev.E 63(2000) 1-7.
    [181]L.X.Tian,G.L.Gui,Y.Liu,On the well-posedness problem and the scattering problem for the Dullin-Gottwald-Holm equation,Comm.Math.Phys.257(2005) 671-704.
    [182]A.Pazy.Semigroup of Linear Operators and Applications to Partial Differential Equations.New York:Springer-Verlag,1983
    [183]K.Yosida.Functional Analysis.Berlin/New York:Springer-Verlag,1966
    [184]D.Luo,et al.Bifurcation theory and methods of dynamical systems.World Scientific Publishing Co.:London,1997
    [185]R.S.Johnson.A modern introduction to the mathematical theory of water waves.Cambridge University Press:Cambridge,1997
    [186]J.J.Stoker.1957 Water waves.Interscience Publ.Inc.:New York,1957
    [187]G.B.Whitham.Linear and nonlinear waves.J.Wiley & Sons:New York,1974
    [188]J.B.Li,H.H.Dai.On the study of singular nonlinear traveling wave equations:dynamical system approach.Science Press:Beijing,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700