基于李对称分析的偏微分方程精确解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏微分方程又称数学物理方程,它来源于物理学、力学等自然科学及工程技术中所提出并建立的数学模型。早期的偏微分方程有根据牛顿引力理论推导出的描述引力势的拉普拉斯(Laplace)方程和泊松(Poisson)方程,还有描述波的传播的波动方程(wave equation),描述传热和扩散现象的热传导方程(heat equation)等,这些都是古典的偏微分方程。这些方程在偏微分方程理论的发展中发挥了重要的作用,时至今日,它们仍然是偏微分方程的基础和必学内容之一。自19世纪开始,随着工业革命的兴起和科学技术的发展,相继出现了大量新的偏微分方程,其中最基本的有描述电磁场变化的麦克斯韦方程(组),描述微观粒子的薛定谔方程,以及爱因斯坦方程、杨-米尔斯方程、反应扩散方程等等。随着现代科学和技术的进步,还将会不断涌现出新的越来越多的偏微分方程,尤其是非线性的偏微分方程或方程组。其中,非线性波方程是描述自然现象的一类重要数学模型,也是非线性数学物理特别是孤立子理论最前沿的研究课题之一。通过对非线性波方程的求解和定性分析的研究,有助于人们弄清系统在非线性作用下的运动变化规律,合理解释相关的自然现象,更加深刻地描述系统的本质特征,极大地推动相关学科如物理学、力学、应用数学以及工程技术的发展。
     本文以李(S.Lie)对称分析为基础和工具,综合运用动力系统的分支理论与方法、潘勒维尔(Painleve)分析、幂级数法(含推广的幂级数法)、待定系数法以及一些特殊的技巧与方法,研究偏微分方程的精确解及其相关的方程与解的性质。具体而言,即首先运用李对称分析得到方程的向量场或对称,然后利用相似约化将所研究的(非线性)偏微分方程化为常微分方程。这一步对方程而言可以说实现了实质性的转化,即把一个复杂的偏微分方程,包括各种非线性的、变系数的偏微分方程转化为一个常微分方程。接下来的工作就是研究这个常微分方程的解,求出了常微分方程的解,也就相应地得到了偏微分方程的解。这就是利用对称分析研究偏微分方程精确解的基本思路。当然,对称分析的作用远不止此,它与系统的可积性的研究还有着密切的关系,对称是系统本质属性的一种描述和刻画,它在偏微分方程与可积系统的研究中有着重要的意义与作用。这些我们将在研究偏微分方程精确解的同时一并加以介绍。至于如何研究约化得到的常微分方程,则主要涉及常微分方程与动力系统的理论与方法、幂级数法以及一些特殊的技巧与方法。
     本文的主要内容如下:
     第一章绪论。本章介绍了非线性科学的主要内容以及发展现状,综述了偏微分方程,尤其是非线性波方程的发展历史、研究现状、主要研究方法以及取得的主要成果。其中重点介绍了偏微分方程研究的主要方法,特别是对称分析在研究偏微分方程中的意义与作用。概括而言,这些方法各有特点,也都有各自的适用范围,都在特定的时期、特定的条件和各自的范围内发挥了应有的作用。有的方法可以说长盛不衰,历久弥新,至今还有强大的生命力,在偏微分方程的研究中仍然发挥着重要的作用。当然,任何一种方法都不是万能的,不会也不可能指望用一种方法解决所有的问题。本章的出发点是对各种主要的方法加以总结回顾,目的不是评判哪种方法的优劣,而是通过比较和总结,更好地继承和发扬其中蕴含的优秀的思想方法,从过去经典的思想与方法中汲取营养,更好地面向未来,进一步更深入地开展对现代偏微分方程及相关非线性科学的研究。
     第二章理论准备。在这一章,列举了本文所涉及的一些相关知识,如李群与李代数、对称与向量场、向量场的延拓、Painleve分析简介、动力系统的分支理论与方法以及雅可比(Jacobi)椭圆函数等。限于篇幅,有些内容只列出主要概念与结论,详细内容可查阅后面的相关参考文献,此处不展开叙述。单列本章的目的是考虑到李群与对称分析的相关理论与知识比较多,通过本章,对有关的理论知识有所了解,便于后面的具体运用。
     第三章基于李对称分析,研究了一般的Burgers'方程。该方程是一个既有非线性项又有二阶偏导项的非线性波方程,在理论和实践中有广泛的应用价值。它在一定条件下存在不同类型的孤波解,如冲击(震荡)波、稀疏波等。在流体力学、空气动力学的许多波动问题的研究中都要用到这个方程。例如在流体力学模型方程中,有线性Burgers'方程ut+aux=μuxx和非线性Burgers'方程ut+[f(u)]x=μuxx。当f(u)=1/2u2时,后者即为ut+uux=μuxx。在一定的初、边值条件下,可以得到这两类Burgers'方程的精确解,从而了解系统相应的流体力学性质。另外,Burgers'方程和许多重要的数学物理方程有着密切的联系,在非线性科学、流体力学以及工程技术中起着重要的基础性作用。在对称分析的基础上,首先求出了方程的群不变解以及任意次的迭代解。然后,利用对称约化将原方程化为各种形式的常微分方程,进而求出方程的精确解。其中应用了幂级数法(Power series method),得到了非线性、非自治的常微分方程严格的幂级数解,从而也就得到了相应的Burgers'方程的精确解,其中包含了不少新的显式精确解。
     第四章研究推广的mKdV方程,众所周知,KdV方程是非常著名的浅水波方程,它起源于对水波问题的研究,KdV型方程可以描述各种浅水波的运动,在流体力学中有着广泛的应用。特别地,对于修正的KdV型方程,最近的研究发现可用于描述宇宙环境中超新星周围以及土星环的尘埃离子的波动规律,对于天体力学和大气物理的研究有着重要的意义。首先,通过对称分析得到了它的向量场。然后,由一般到特殊地得到了一些特殊而经典的KdV、mKdV方程的向量场。接下来,通过对称约化将推广的mKdV方程化为常微分方程,为下一步求解作准备。本章的一个亮点是运用了动力系统的分支理论与方法,详细全面地得到了推广的mKdV方程的显式精确解,包括幂级数解,同时还研究了系统的动力学性质。
     第五章研究了一类短脉冲方程的精确解。短脉冲方程也是一类非常重要的非线性波方程,可以描述一些比较特殊的波。深入研究这类方程及其各种孤波解,对于了解一些特殊的波动问题具有重要意义。同时,该方程是一个重要的非线性数学物理方程,它在工程技术以及物理学、力学的许多领域都有重要应用。此方程不同于一般的非线性演化型方程,而是一个混合型的偏微分方程,这给对称分析带来了一定的困难。本章分别运用延拓法与待定系数法,得到了该方程的所有对称。其次,本章的另一特色是在运用动力系统的分支理论与方法研究方程的精确解时,引入了参数表示法,从而圆满地解决了解的显式表示问题。本章获得的这类短脉冲方程的精确解,都是用通常的方法难以得到的。
     第六章研究了一类变系数债券方程。变系数偏微分方程最初主要来源于数学物理问题及大量的工程技术问题,但是,随着社会的进步和现代科学技术的不断发展,在各种经济社会领域、生物化学与环保领域、通讯信息与金融证券等领域,由于实际的需要也提出了越来越多的偏微分方程,这些方程一般形式复杂,且常常是变系数的。本章研究的变系数方程在金融数学与金融工程中经常用到,尤其是在期权定价问题的研究中,这类偏微分方程发挥着日益重要的作用。偏微分方程理论与现代经济、金融研究相结合,正成为一种重要的发展趋势。首先,对两个具体的变系数债券方程进行了对称分析,分别得出了它们的向量场。然后,又分别求出了它们的单参数群与群不变解。第三,利用相似变换分别将它们约化为常微分方程。第四,进一步求出它们的精确解。本章在内容上与前几章的主要不同之处在于,一是对称分析,由于所研究的方程是变系数的,因此,对称分析要比常系数方程复杂得多。二是在求精确解时除了幂级数法之外,还用了待定系数法等一些特殊方法,从而得到了方程的显式精确解,收到了较好的效果。三是在本章最后,我们还就一般形式的变系数债券方程进行了讨论,得出了它的对称及相应的精确解。
     第七章研究了三个非线性演化方程。这类方程在非线性科学与工程技术中有着重要的意义与作用,是许多波动问题和力学问题的重要理论模型,在生物数学等领域也有着重要的应用。首先运用Painleve分析得到了它们的Painleve性质,以及相应的Backlund变换、截断展开式等。然后再通过对称分析,分别得到了它们的对称,并通过比较分析了Painleve分析与对称分析的异同。接着研究它们的精确解,除了基于对称分析的精确解,我们还得到了方程的基于Painleve截断展开的精确解。这些解的获得,是单独用任何一种方法所不可能得到的,这也说明了二者结合的意义和作用。另外,通过本章的研究可以发现,对于有些即使是不可积的方程,我们仍然可以利用对称分析与Painleve分析研究它们的精确解。我们知道,在可积系统的研究中,Painleve分析的主要作用是判断系统的可积性,但通过本章可以发现它还可以用于方程求解的研究。对称分析更是如此,无论是否可积,都可以通过对称分析研究方程的精确解。
     总之,本文研究的对象是偏微分方程,包括各种非线性的、变系数的方程。主要目的是求出方程的解,尤其是显式的精确解。所以,本文所采用的方法与工具与一般孤子与可积系统的研究有所不同,结果也不一样,可以说各有侧重。限于论文的主题,尽管系统的对称与可积性如守恒律(CL)、Backlund变换等有着密切的联系,但对系统的可积性不作过多的讨论,目的是使论文主题更突出。另外,这些方程都是重要的数学物理方程,深入研究这些方程的解及其相关性质,如Painleve性质、可积性以及各种形式的解,尤其是各种显式精确解,对于了解系统所描述的具体问题的性质与规律,有着重要的意义与作用。
     最后,在总结与展望中,首先概述了本文所获得的主要研究成果;然后,总结归纳了本文的主要创新点;最后,提出了围绕偏微分方程精确解的研究有待于进一步研究与思考的方向和问题。
Partial differential equations (PDEs), also called mathematical physics equations, are derived from the models of Physics, Mechanics and Engineering, etc. The earlier PDEs, such as Laplace equation and Poisson equation are based on the Newton's theory, wave equation, heat equation, and so on. And these equations are all classical PDEs. From the 19th century, a lot of new PDEs are derived, including the famous Maxwell system, Schrodinger equation, Einstein equation, Yang-Mills equation, and reaction-diffusion equation, etc. More and more PDEs, especially the nonlinear equations and systems will be derived owing to the progress of the modern science and technology. In addition, the nonlinear wave equations are important mathematical models for describing natural phe-nomena and one of the forefront topics in the studies of nonlinear mathematical physics, especially in the studies of soliton theory. The research on finding explicit and exact solu-tions of nonlinear wave equations and on analyzing the qualitative behavior of solutions of nonlinear wave equations can help us understand the motion laws of the nonlinear systems under the nonlinear interactions, explain the corresponding natural phenomena reasonably, describe the essential properties of the nonlinear systems more deeply, and promote greatly the development of engineering technology and related subjects such as physics, mechanics and applied mathematics.
     In this paper, the exact and explicit solutions, the dynamical behavior and the inte-grable properties for PDEs are investigated from the viewpoint of bifurcation theory of dynamical systems, Painleve analysis, (generalized) power series method, method of un-determined coefficient and a lot of special techniques, based on the Lie symmetry analysis. In detail, firstly, we solve the vector field or symmetries for a PDE with the Lie symmetry analysis method. Then, we reduce the PDE to the ordinary differential equations (ODEs) by the similarity transformations, it is a significant progress for dealing with the exact solutions of a PDE. That is, we transform a complicated PDE, including the nonlinear equation, variable coefficient equation, etc., to a ODE. Thirdly, we deal with the ODEs with the various method, such as the bifurcation theory of dynamical systems, Painleve analysis, (generalized) power series method, method of undetermined coefficient and a lot of special techniques. This is the outline for studying the exact solutions for PDEs. As we all know, by employing the Lie symmetry analysis, we can also consider the the integrable property for PDEs. But this is not the theme for this thesis, so we will not investigate it in detail.
     The major works of this thesis are as follows.
     Chapter 1 is the introduction. In this chapter, the historical background, research developments, main methods and achievements of partial differential equations especially the nonlinear wave equations are summarized. The discovery, corresponding research approaches and recent advance of Lie symmetry analysis and Painleve analysis methods are introduced. The relationship between partial differential equations and dynamical behavior, Painleve properties along with the study on exact solutions of partial differential equations by using the Lie symmetry analysis method are presented.
     Chapter 2 is the preparation of theory. In this chapter, some preliminary knowledge of dynamical systems, theory of Lie groups and Lie algebras, prolongation of vector fields and the other basic mathematical theory and main results are introduced. This chapter is the preliminary knowledge of the thesis. For the sake of succinctness, we outline the summaries only. If it is necessary to learn some contents in detail, please consult the references.
     In Chapter 3, the Lie symmetry analysis method is performed for the general Burg-ers'equation. This equation is a nonlinear wave equation, and it is of great importance in both theory and applications. The equation has various solitary wave solutions, such as the shock wave solutions, sparse wave solutions, etc., so it is important to study the wave problems in fluid dynamics and aerodynamics. For example, in the model equations of fluid dynamics, we have the linear Burgers' equation ut+aux=μuxx and the nonlinear Burgers'equation ut+[f(u)]x=μuxx, respectively. In particular, if f(u)=1/2u2,then the latter is ut+uux=μuxx.Under the certain conditions, we can get the exact solutions for the two equations. Thus, the fluid dynamical property can be comprehended. More-over, the Burgers'equation can be transformed into other important mathematical physics equations such as the heat equation, so it plays a significant role in the nonlinear science, fluid dynamics and engineering.
     Based on the Lie symmetry analysis, we get the group-invariant solutions, iterated solutions. Then, by using the similarity reductions, we transform the general Burgers' equation to ordinary differential equations (ODEs), some of them are nonlinear and non- autonomous quations. Next, we deal with these ODEs by using the power series method and some special techniques, the exact solutions for the ODEs are obtained, so the solu-tions of the general Burgers'equation are presented simultaneously. Some new solutions are obtained for the first time in this chapter.
     In Chapter 4, we investigate the extended mKdV equation. As is well known, the KdV equation is a famous shallow water wave equation, and it comes of the studies on the water wave problems. The KdV type equations can depict the various shallow water wave moment, and they play an important role in fluid dynamics. The modified KdV (mKdV) equation, on the other hand, has recently been discovered, e.g., to model the dust-ion-acoustic waves in such cosmic environments as those in the supernova shells and Saturn's F-ring, etc.
     By using Lie symmetry analysis method, the vector field for the extended mKdV equation is obtained, and the vector fields of the several special classical KdV-type equa-tions are presented simultaneously. Then, by using the method of dynamical systems for the extended mKdV equation, all the exact solutions based on the Lie group method will be given. Especially, the bifurcations and traveling wave solutions are obtained. To guar-antee the existence of the above solutions, all parameter conditions are determined. Fur-thermore, the exact analytic solutions are considered by using the power series method. Such solutions for the equation are important in both applications and the theory of nonlin-ear science. Note that the vector fields of the several special classical KdV-type equations obtained in this way are a part of the vector fields rather than its complete vector fields, respectively. This reflect the intricacy of the Lie symmetry analysis. One of the highlight of the chapter is the method of dynamical systems. By employing this method, we discuss the dynamical behavior and get the all traveling wave solutions for the equation.
     In Chapter 5, the Lie symmetry analysis and the generalized symmetry method are performed for a short pulse equation (SPE). The SPEs are nonlinear wave equations also, it can depict some peculiar waves. It is of great importance in comprehending some special wave problems that the SPEs and its solitary wave solutions are investigated in detail. At the same time, the SPEs are important mathematical physics equations, it play a significant role in engineering and mechanics.
     Note that this equation is not a common evolution equation, but a mixed one. This brings some difficulty for the Lie symmetry analysis method. The symmetries for this equation are given. For the traveling wave solutions, the exact parametric representations are investigated. To guarantee the existence of the above solutions, all parameter condi-tions are determined. Furthermore, the exact analytic solutions are obtained by using the power series method. One of the highlight of the chapter is that we use the method of undetermined coefficient to solve the symmetries for the equation. Then, for getting the exact explicit solutions, the method of parameters are employed. It is not obtained by the general method for these solutions obtained in this chapter.
     In Chapter 6, we use Lie symmetry group methods to study a pair of bond pricing equations. The variable-coefficient PDEs are derived from the mathematical physics and engineering problems at first. Now, many PDEs are derived from society, biochemistry, environmental protection, information science, communication, finance and securities, etc., along with the progress of society and the development of science and technology. Moreover, these PDEs are complicated and variable-coefficient usually. The variable-coefficient PDEs in this chapter are of importance in financial mathematics and financial engineering, and it play an important role in bond price as well.
     The symmetries and similarity transformations for the two equations are provided, and all exact solutions are obtained. The general caseν≥2 are considered simultane-ously. We show that when the reduced equations are obtained, the generalized power se-ries method and special techniques can be used to find the exact solutions.When the inho-mogeneities of media and non-uniformity of boundaries are taken into account in various real physical situations, the variable-coefficient nonlinear evolution equations (NLEEs) can often provide more powerful and realistic models than their constant-coefficient coun-terparts in describing a large variety of real phenomena. On the other hand, the Lie sym-metry analysis are more complicated than the constant-coefficient equations. The other highlight of the chapter is the generalized power series method and the method of unde-termined coefficient are utilized for tackling the exact explicit solutions.
     In Chapter 7, the Painleve analysis and Lie symmetry methods are performed for the generalized KPP equation, Newell-Whitehead equation and its special case. These PDEs play an important role in nonlinear science and engineering, and they are mathematical models of many wave problems and mechanics. It is of importance also in biomathcmat-ics, etc.
     Firstly, the Painleve property and the symmetries are obtained. Meanwhile, the exact solutions generated from the symmetry transformations are considered. Especially, the exact analytic solutions are investigated by the power series method. In this chapter, we considered three nonlinear evolution equations, the Painleve analysis is the highlight for this chapter. By the Painleve analysis method, the Backlund transformations and truncated expansion are obtained. Moreover, by the truncated expansion, the exact solutions are investigated for the three equations.
     In Chapter 8, we summarize the main contents for the thesis firstly. Then, the points of innovation of this thesis are presented. At last, the prospect of further study for this direction are given.
引文
[1]Gleick J, Chaos:Making a New Science, New York:Viking Penguin Inc.,1988.中译本:《混沌开创新科学》,张椒誉译,上海译文出版社,1990.
    [2]傅新楚,关于非线性与复杂性.见:第九届全国现代数学和力学学术会议,上海:上海大学出版社,2004.
    [3]Poincare H, LesM ethodsN ouvellesd ela M ecaniqueL eleste.G authiers-Villar, Paris, 1893.
    [4]Kolmogorov A N, Doklady Akad and Naulk, USSR 98:1,1954.
    [5]Arnold V I, Russ.Math.Surveys,18:85,1963.
    [6]Moser J,Ann.Scuola Norm.Sup.PisaCl.Sci.,20:265,499,1966.
    [7]Lorenz F W,J.Atomos.Sci.,20:130,1963.
    [8]Grebogi C, Ott E, York J A, Phys.Rev.Lett.,64:1196,1990.
    [9]Pyragas K, Phys.Lett A,170:421,1992.
    [10]Pecora L M, Carroll T L, Phys.Rev.Lett.,64:821,1990.
    [11]Hu G, He K A, Phys.Rev.Lett.,71:3794,1993.
    [12]Mandeldrot B B, The Fractal Geometry of Nature, W.H.Freeman company, New York,1982.
    [13]Feder J, Plenum Press, New York,1988.
    [14]Ablowitz M J, Clarkson P A, Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Notes Series 149, Cambridge: Cambridge University Press,1991.
    [15]Bullough R K, Caudrey P J, Solitons. Berlin:Springer-Verleg,1980.
    [16]Dodd R K, Eilbeck J C, Morris H C, Solitons and Nonlinear Equations.London: Academic Press,1984.
    [17]Drazin P G, Johnson R S, Solitons:An Intruduction. Cambridge:Cambridge Uni-versity Press,1988.
    [18]Gu Chaohao, Guo Bailin, Li Yishen et al, Soliton Theory and Its Applications. New York:Springer-Verleg,1995.
    [19]Remoissenet M, Waves Called Solitons:Concepts and Experiments. Berlin: Springer-Verleg,1996.
    [20]Infeld E, Rowlands G, Nonlinear Waves, Solitons and Chaos. Cambridge:Cam- bridge University Press,2000.
    [21]任学藻,廖旭,刘涛等,一维分子晶体中的极化子,原子与分子物理学报,2006,4(23):616-620.
    [22]李百文,郑春阳,宋敏等,高强度激光与等离子体相互作用中的受激Raman级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速,物理学报,2006,55(10):5325-5337.
    [23]吴紫标,光纤中的光孤子,大学物理,2000,19(3):40-41.
    [24]楼森岳,唐晓艳,非线性数学物理方法.北京:科学出版社,2006.
    [25]谷超豪,胡和生,周子翔,孤立子理论中的达布变换及其几何应用.上海:上海科学技术出版社,1999.
    [26]李翊神,孤子与可积系统.上海:上海科技教育出版社,1999.
    [27]Rogers C, Schief W K, Backlund and Darboux Transformations Geometry and Mod-ern Applications in Soliton Theory. Cambridge:Cambridge University Press,2002.
    [28]Regal C A, Greiner M, Jin D S, Nature,426:537,2003.
    [29]Szeftel J, Huang G X, Zhu S H, Phys.Rev.A,65:053605,2002.
    [30]Russell J S, Report on Waves, in:Report of the British Association for the Advance-ment of Science,1837, pp.417-496.
    [31]Russell J S, On waves, in:Report of 14th Meeting of the British Association for the Advancement of Science,1844, pp.311-390.
    [32]王振东,孤立子与孤立波,力学与实践,2005,27(5):86-88.
    [33]Airy G B, Tides and Waves. London:Encyclopedia Metropolitana,1845, 192(5):241-396.
    [34]Stokes G G, On the theory of oscillatory waves, Transactions of the Cambridge Philosophical Society,1847,8:441-455.
    [35]王丽霞,KdV方程的第二次导出,数学的实践与认识,2006,36(8):343-349.
    [36]Boussinesq M J, Theorie de l'intumescence appelee onde solitaire ou de translation se propageant dans un canal rectangulaire, C. R. Acad. Sc. Paris,1871,72:755-759.
    [37]Boussinesq M J, Theorie des ondes et des remous qui se propagent le long d'un canal rectangularie horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond, Journal de Mathematiques Pures et Appliquees,1872,17(2):55-108.
    [38]Boussinesq M J, Essai sur la theorie des eaux courants, Mem. Acad. Sci. Inst. Nat. France,1877,23(1):1-680.
    [39]Miles J W, The Korteweg-de Vries equation:a historical essay, Journal of Fluid Mechanics,1981,106:131-147.
    [40]Darrigol O, The spirited horse, the engineer, and the mathematician:Water waves in nineteenth-century hydrodynamics, Archive for History of Exact Sciences,2003, 58(1):21-95.
    [41]Rayleigh L, On Waves, Philosophical Magazine,1876,5(1):257-279.
    [42]McCowan J, On the solitary wave, Philosophical Magazine,1891,32(194):45-58.
    [43]Korteweg D J, de Vries G, On the change of form of long waves advancing in a rect-angular canal, and on a new type of long stationary waves, Philosophical Magazine, 1895,39(5):422-443.
    [44]Holden H, Peder D. Lax-Elements from his contributions to mathematics, A lecture at the Norwegian Academy of Science and Letters on March 17,2005.中译本:《对Lax(拉克斯)工作的通俗介绍—Peter. D. Lax对数学的主要贡献》,张同译,叶其孝校,数学译林,2005,2:121-127.
    [45]Fermi E, Pasta J R, Ulam S M, Studies on nonlinear problems. Los Alamos Science Laboratory Report La-1940,1955.
    [46]闫振亚,非线性波与可积系统:[博士学位论文].大连:大连理工大学,2002.
    [47]Zabusky N J, Kruskal M D, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physical Review Letters,1965,15(6):240-243.
    [48]陈登远,孤子引论.北京:科学出版社,2006,
    [49]Seeger A, Donth H, Kochendorfer A, Theorie der Versetzungen in eindimensionalen Atomreihen, Zeitschrift fur Physik,1953,134(2):173-193.
    [50]Perring J K, Skyrme T H R, A model unified field equation, Nuclear Physics,1962, 31:550-555.
    [51]申建伟,非线性波方程行波解分岔及其动力学行为的研究:[博士学位论文].西安:西北工业大学,2006.
    [52]Camassa R, Holm D D, An integrable shallow water equation with peaked solitons, Physical Review Letters,1993,71(11):1661-1664.
    [53]Kraenkel R A, Senthilvelan M, Zenchuk A I, Lie symmetry analysis and reduc-tions of a two-dimensional integrable generalization of the Camassa-Holm equation, Physics Letters A,2000,273(3):183-193.
    [54]Qian Tifei, Tang Minying, Peakons and periodic cusp waves in a generalized Camassa-Holm equation, Chaos Solitons and Fractal,2001,12(7):1347-1360.
    [55]Liu Zhengrong, Qian Tifei, Peakons of the Camassa-Holm equation, Applied Math-ematical Modelling,2002,26(3):473-480.
    [56]Tian Lixin, Sun Lu, Singular solitons of generalized Camassa-Holm models, Chaos, Solitons and Fractals,2007,32(2):780-799.
    [57]Wazwaz Abdul-Majid, New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations, Applied Mathematics and Com-putation,2007,186(1):130-141.
    [58]Holm D D, Marsden J E, Ratiu T S, The Euler-Poincare equations and semidirect products with applications to continuum theories, Advances in Mathematics,1998, 137(1):1-81.
    [59]Rosenau Philip, Hyman James M, Compactons:Solitons with finite wavelength, Physical Review Letters,1993,70(5):564-567.
    [60]Rosenau Philip, On solitons, compactons, and Lagrange maps, Physics Letters A, 1996,211(5):265-275.
    [61]Yan Zhenya, Bluman George, New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations, Computer Physics Commu-nications,2002,149(1):11-18.
    [62]Wazwaz Abdul-Majid, Compacton solutions and nonlinear dispersion, Applied Mathematics and Computation,2003,142(3):495-509.
    [63]Wazwaz Abdul-Majid, Compacton solutions of the Kawahara-type nonlinear disper-sive equation, Applied Mathematics and Computation,2003,145(1):133-150.
    [64]Wazwaz Abdul-Majid, Compacton solutions of higher order nonlinear dispersive KdV-like equations, Applied Mathematics and Computation,2004,147(2):449-460.
    [65]Zhang Jiefang, Meng Jianping, New localized coherent structures to the (2+1)-dimensional breaking soliton equation, Physics Letters A,2004,321(3):173-178.
    [66]He Jihuan, Wu Xuhong, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Solitons and Fractals,2006, 29(1):108-113.
    [67]Fan Xinghua, Tian Lixin, Compacton solutions and multiple compacton solu-tions for a continuum Toda lattice model, Chaos, Solitons and Fractals,2006, 29(4):882-894.
    [68]Feng Zhaosheng, Computations of soliton solutions and periodic solutions for the focusing branch of the nonlinear dispersive K(n, n) equations in higher-dimensional spaces, Applied Mathematics and Computation,2006,182(1):781-790.
    [69]Inc Mustafa, New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals,2007, 33(4):1275-1284.
    [70]Hasegawa A, Tappert F, Transmission of stationary nonlinear optical pulse in dis-persive dielectric fibers, Applied Physics Letters,1973,23(3):142-144.
    [71]Mollenaure L F, Stolen R H, Gordon J P, Experiment observation of picosec-ond pulse narrowing soliton in optical fibers, Physical Review Letters,1980, 45(13):1095-1098.
    [72]代红英,汪仲清,光纤孤立子与光孤子通信,重庆邮电学院学报,2004,16(6):77-80.
    [73]蔡炬,杨祥林,光孤子通信技术的现状与未来,半导体光电,2003,24(1):66-70.
    [74]刘喜莲,彭天翔,光孤子与光孤子通信,物理与工程,2002,12(5):37-41.
    [75]何淑贞,浅析光孤子通信技术,光纤通信,2002,24(4):28-30.
    [76]张翼,基于双线性方法的孤子可积系统:[博士学位论文].上海:上海大学,2004.
    [77]Asmar N H, Partial differential equations with Fourier series and boundary val-ueproblems, China Machine Press, Beijing,2005.
    [78]陈勇,孤立子理论中的若干问题的研究及机械化实现:[博士学位论文].大连:大连理工大学,2003.
    [79]Wahlquist Hugo D, Estabrook Frank B, Backlund transformation for solutions of the Korteweg-de Vries equation, Physical Review Letters,1973,31(23):1386-1390.
    [80]Rogers C, Shadwick W R, Backlund transformations and their application. New York:Academic Press,1982.
    [81]Darboux G, sur une proposition relative aux equations lineaires. Paris:Comptes Rendus Hebdomadaries des Seances de L'Academie des Science,1882.
    [82]Wadati Miki, Sanuki Heiji, Konno Kimiaki, Relationships among inverse method, Backlund transformation and an infinite number of conservation laws, Progress of Theoretical Physics,1975,53(2):419-436.
    [83]Ablowitz M J, Kaup D J, Newell A C et al, Nonliear evolution equations of physical significance, Physical Review Letters,1973,31(2):125-127.
    [84]Gu Chaohao, Darboux transformations for a class of integrable systems in n vari- ables, Analyse, Varietes, et Physique, Proc. of Colloque International en l'honneur d'Yvonne Choquet-Bruhat, Kluwer,1992.
    [85]Gu Chaohao, On the interaction of solitons for a class of integrable systems in the space-time Rn+1, Letters in Mathematical Physics,1992,26(3):199-209.
    [86]Gu Chaohao, Zhou Zixiang, On Darboux transformations for soliton equations in high dimensional space-time, Letters in Mathematical Physical,1994,32(1):1-10.
    [87]Gu Chaohao, Hu Hesheng, A unified explicit form of Backlund transformations for generalized hierarchies of KdV equations, Letters in Mathematical Physics,1986, 11(4):325-335.
    [88]Gu Chaohao, On the Backlund transformations for the generalized hierar-chies of compound MKdV-SG equations, Letters in Mathematical Physics,1986, 12(1):31-41.
    [89]Hu Hesheng, Darboux Transformations Between △α= sinhα and △α= sinα and the Application to Pseudo-Spherical Congruences in R2,1, Letters in Mathematical Physics,1999,48(2):187-195.
    [90]Hu Hesheng, The geometry of sine-Laplace, sinh-Laplace equations, Proceedings of the 3rd Marcel Grossmann meeting on general relativity, Part B,1983, pp.1073-1078.
    [91]Gu Chaohao, Hu Hesheng, The soliton behavior of principal chiral fields, Tian-jin:Proceedings, Differential geometric methods in theoretical physics,1992, pp.501-510.
    [92]Hu Hesheng, Some nonexistence theorems for massive Yang-Mills fields and har-monic maps, Lecture Notes in Physics,1984,212:107-116.
    [93]Hu Hesheng, Letters in Mathematical PhysicsNonexistence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime, Letters in Mathematical Physics,1987,14(3):253-262.
    [94]Hu Hesheng, Wu Siye, Nonexistence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime (Ⅱ), Letters in Mathematical Physics,1987, 14(4):343-351.
    [95]Hu Xingbiao, Li Yong, Superposition formulae of a fifth-order KdV equation and its modified equation, Acta Mathematicae Applicatae Sinica,1988,4(1):46-54.
    [96]Hu Xingbiao, Clarkson P A, Backlund transformations and nonlinear superposi-tion formulae of a diferential-diference KdV equation, Journal of Physics A,1998, 31(5):1405-1414.
    [97]Hu Xingbiao, Zhu Zuonong, A Backlund transformation and nonlinear super-position formula for the Belov-Chaltikian lattice, Journal of Physics A,1998, 31(20):4755-4761.
    [98]Hirota R, Hu Xingbiao, Tang Xiaoyan, A vector potential KdV equation and vec-tor Ito equation:soliton solutions, bilinear Backlund transformations and Lax pairs, Journal of Mathematical Analysis and Applications,2003,288(1):326-348.
    [99]Xiao Ting, Zeng Yunbo, A new constrained mKP hierarchy and the generalized Darboux transformation for the mKP equation with self-consistent sources, Physica A,2005,353(1):38-60.
    [100]Zeng Yunbo, Zhu Yiqing, Xiao Ying et al, Canonical explicit Backlund transfor-mations with spectrality for constrained flows of soliton hierarchies, Physica A,2002, 303(3-4):321-338.
    [101]Zeng Yunbo, New factorization of the Kaup-Newell hierarchy, Physica D,1994, 73(3):171-188.
    [102]Li Yishen, Ma Wenxiu, Zhang Jin E, Darboux transformations of classical Boussi-nesq system and its new solutions, Physics Letters A,2000,275(1):60-66.
    [103]Li Yishen, Zhang Jin E, Darboux transformations of classical Boussinesq system and its multi-soliton solutions, Physics Letters A,2001,284(6):253-258.
    [104]Li Yishen, Zhang Jin E, Bidirectional soliton solutions of the classical Boussinesq system and AKNS system, Chaos, Solitons and Fractals,2003,16(2):271-277.
    [105]王明亮,白雪,齐次平衡原则与BTs,兰州大学学报,2000,36(3):12-17.
    [106]王明亮,李志斌,周宇斌,齐次平衡原理及其应用,兰州大学学报,1999,35(3):8-16.
    [107]Li Zhibin, Wang Mingliang, Travelling wave solutions to the two-dimensional KdV-Burgers equation, Journal of Physics A,1993,26(21):6027-6031.
    [108]李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报,1997,17(1):81-89.
    [109]Ma Wenxiu, Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources, Chaos, Solitons and Fractals,2005,26(5):1453-1458.
    [110]耿献国,二维Sawada-Kotera方程的Darboux变换,高校应用数学学报,1989,4(4):494497.
    [111]Li Wenmin, Geng Xianguo, Darboux transformation of a differential-difference equation and its explicit solutions, Chinese Physics Letters,2006,23(6):1361-1364.
    [112]耿献国,变形Boussinesq方程的Lax对和Darboux变换,应用数学学报,1998,11(3):324-328.
    [113]耿献国,MKP方程和Darboux变换,数学年刊(A辑),1990,11(3):265-268.
    [114]Zhou Ruguang, Jiang Qiaoyun, A Darboux transformation and an exact solution for the relativistic Toda lattice equation, Journal of Physics A,2005,38(35):7735-7742.
    [115]Gardner C S, Green J M, Kruskal M D et al, Method for solving the Korteweg-de Vries equation, Physical Review Letters,1967,19:1095-1097.
    [116]Lax P D, Integrals of nonlinear equations of evolution and solitary waves, Com-munications On Pure And Applied Mathematics,1968,21(5):467-490.
    [117]Zakharov V E, Shabat A B, Exact theory of two-dimensional self-focusing and one-dimensional modulation instability of waves in a nonlinear media, Soviet Physics JETP,1972,34(1):62-69.
    [118]郭柏灵,庞小峰,孤立子.北京:科学出版社,1987.
    [119]Zakharov V E, Shabat A B, Interaction between solitons in a stable medium, Soviet Physics JETP,1973,37(5):823-828.
    [120]Ablowitz M J, Kaup D J, Newell A C et al, Method for solving the Sine-Gordon equation, Physical Review Letters,1973,30:1262-1264.
    [121]Ablowitz M J, Kaup D J, Newell A C et al, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Applied Mathematics,1974,53:249-315.
    [122]Ablowitz M J, Segur H, Solitons and the Inverse Scattering Transform. Philadel-phia:Society for Industrial and Applied Mathematics (SIAM),1981.
    [123]Wahlquist H D, Estabrook F B, Prolongation structures of nonlinear evolution equations, Journal of Mathematical Physics,1975,16(1):1-7.
    [124]Estabrook F B, Wahlquist H D, Prolongation structures of nonlinear evolution equations. Ⅱ, Journal of Mathematical Physics,1976,17(7):1293-1297.
    [125]Wu Ke, Guo Hanying, Wang Shikun, Prolongation structures of nonlinear systems in higher dimensions, Communications in Theoretical Physics,1983,2:1425-1442.
    [126]Wang Shikun, Guo Hanying, Wu Ke, Inverse scattering transform and reg-ular Riemann-Hilbert problem, Communications in Theoretical Physics,1983, 2:1169-1175.
    [127]李翊神,汪克林,郭光灿等,非线性科学选讲.合肥:中国科学技术大学出版社,1992.
    [128]屠规彰,非巍兰方程的逆散射解法,应用数学和计算数学,1979,1:21-43.
    [129]李翊神,一类发展方程和谱的变形,中国科学(A辑),1982,25(5):385-390.
    [130]Case K M, Kac M, A discrete version of the inverse scattering problem, Journal of Mathematical Physics,1973,14(5):594-603.
    [131]Flaschka H, On the Toda lattice. Ⅱ-inverse-scattering solution, Progress of Theo-retical Physics,1974,51(3):703-716.
    [132]Ablowitz M J, Ladik J F, Nonlinear differential-difference equations, Journal of Mathematical Physics,1975,16(3):598-603.
    [133]刘希强,非线性发展方程显式解的研究:[博士学位论文].北京:中国工程物理研究院,2002.
    [134]倪皖荪,魏荣爵,水槽中的孤波.上海:上海科技教育出版社,1997.
    [135]Fokas A S, Its A R, The nonlinear Schrodinger equation on the interval, Journal of Physics A,2004,37(23):6091-6114.
    [136]Fokas A S, Its A R, Sung L Y, The nonlinear Schrodinger equation on the half-line, Nonlinearity,2005,18(4):1771-1822.
    [137]Dolye P W, Separation of variables for scalar evolution equations in one space dimension, Journal of Physics A,1996,29(23):7581-7595.
    [138]Doyle P W, Vassiliou P J, Separation of variables for the 1-dimensional non-linear diffusion equation, International Journal of Nonlinear Mechanics,1998, 33(2):315-326.
    [139]Zhdanov R Z, Separation of variables in the nonlinear wave equation, Journal of Physics A,1994,27(9):L291-L297.
    [140]Zhdanov R Z, Revenko I V, Fushchych W I, Orthogonal and non-orthogonal sepa-ration of variables in the wave equation utt-uxx+V(x)u=0, Journal of Physics A,1993,26(17):5959-5972.
    [141]曹策问,AKNS族的Lax方程组的非线性化,中国科学(A辑),1989,32(7):701-707.
    [142]Cao Cewen, Nonlinearization of the Lax system for AKNS hierarchy, Science in China (A),1990,33(5):528-536.
    [143]Cao Cewen, Geng Xianguo, C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy, Journal of Physics A,1990,23(18):4117-4125.
    [144]Cao Cewen, Geng Xianguo, Wu Yongtang, From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation, Journal of Physics A,1999,32(46):8059-8078.
    [145]Cheng Yi, Li Yishen, The constraint of the Kadomtsev-Petviashvili equation and its special solutions, Physics Letters A,1991,157(1):22-26.
    [146]Li Yishen, Ma Wenxiu, Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints, Chaos, Solitons and Fractals,2000, 11(5):697-710.
    [147]Lou Senyue, Chen Lili, Formal variable separation approach for nonintegrable models, Journal of Mathematical Physics,1999,40(12):6491-6500.
    [148]Zeng Yunbo, Separation of variables for the constrained flows, Journal of Mathe-matical Physics,1997,38(1):321-329.
    [149]Zeng Yunbo, Ma Wenxiu, Separation of variables for soliton equations via their binary constrained flows, Journal of Mathematical Physics,1999,40(12):6526-6557.
    [150]Zeng Yunbo, Ma Wenxiu, The construction of canonical separated variables for binary constrained AKNS flow, Physica A,1999,274(4):505-515.
    [151]Ma Wenxiu, Geng Xianguo, New completely integrable Neumann systems related to the perturbation KdV hierarchy, Physics Letters B,2000,475(1):56-62.
    [152]Ma Wenxiu, Chen Min, Do symmetry constraints yield exact solutions? Chaos, Solitons and Fractals,2007,32(4):1513-1517.
    [153]Qiao Zhijun, Modified r-matrix and separation of variables for the modified Korteweg-de Vries (MKdV) hierarchy, Physica A,1997,43(1):129-140.
    [154]Qiao Zhijun, Zhou Ruguang, Discrete and continuous integrable systems possess-ing the same non-dynamical r-matrix, Physics Letters A,1997,235(1):35-40.
    [155]Zhou Zixiang, Nonlinear constraints and soliton solutions of 1+2-dimensional three-wave equation, Journal of Mathematical Physics,1998,39(2):986-997.
    [156]Zhou Ruguang, Ma Wenxiu, Classical r-matrix structures of integrable mappings related to the Volterra lattice, Physics Letters A,1997,235(1):35-40.
    [157]Lou Senyue, Lu Jizong, Special solutions from the variable separation approach: the Davey-Stewartson equation, Journal of Physics A,1996,29(14):4209-4215.
    [158]Lou Senyue, On the coherent structures of the Nizhnik-Novikov-Veselov equation, Physics Letters A,2000,277(2):94-100.
    [159]Lou Senyue, (2+1)-dimensional compacton solutions with and without completely elastic interaction properties, Journal of Physics A,2002,35(49):10619-10628.
    [338]Tang Xiaoyan, Lou Senyue, Zhang Ying, Localized excitations in (2+1)-dimensional systems, Physical Review E,2002,66(4):046601-046617.
    [161]Tang Xiaoyan, Lou Senyue, Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems, Journal of Mathematical Physics,2003,44(9):4000-4025.
    [162]Zhdanov R Z, Conditional Lie-Backlund symmetry and reduction of evolution equations, Journal of Physics A,1995,28(13):3841-3850.
    [163]Qu Changzheng, Group classification and generalized conditional symmetry reduc-tion of the nonlinear diffusion-convection equation with a nonlinear source, Studies in Applied Mathematics,1997,99(2):107-136.
    [164]Qu Changzheng, Exact solutions to nonlinear diffusion equations obtained by a generalized conditional symmetry method, IMA Journal of Applied Mathematics, 1999,62(3):283-302.
    [165]Qu Changzheng, Zhang Shunli, Liu Ruochen, Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source, Physica D,2000, 144(1):97-123.
    [166]Qu Changzheng, He Wenli, Dou Jihong, Separation of variables and exact solutions of generalized nonlinear Klein-Gordon equations, Progress of Theoretical Physics, 2001,105(3):379-398.
    [167]Qu Changzheng, Estevez P G, On nonlinear diffusion equations with x-dependent convection and absorption, Nonlinear Analysis,2004,57(4):549-577.
    [168]Zhang Shunli, Lou Senyue, Qu Changzheng, Variable separation and exact solu-tions to generalized nonlinear diffusion equations, Chinese Physics Letters,2002, 19(12):1741-1744.
    [169]Zhang Shunli, Lou Senyue, Qu Changzheng, Functional variable separation for generalized (1+2)-dimensional nonlinear diffusion equations, Chinese Physics Let-ters,2005,22(5):1029-1032.
    [170]Zhang Shunli, Lou Senyue, Qu Changzheng, Functional variable separation for ex-tended (1+2)-dimensional nonlinear wave equations, Chinese Physics Letters,2005, 22(11):2731-2734.
    [171]Zhang Shunli, Lou Senyue, Variable separation and derivative-dependent func-tional separable solutions to generalized nonlinear wave equations, Communications in Theoretical Physics,2004,41(2):161-174.
    [172]Zhang Shunli, Lou Senyue, Derivative-dependent functional separable solutions for the KdV-type equations, Physica A,2004,335(3):430-444.
    [173]Zhang Shunli, Lou Senyue, Qu Changzheng, New variable separation ap-proach:application to nonlinear diffusion equations, Journal of Physics A,2003, 36(49):12223-12242.
    [174]Zhang Shunli, Lou Senyue, Qu Changzheng, The derivative-dependent func-tional variable separation for the evolution equations, Chinese Physics,2006, 15(12):2765-2776.
    [175]Hirota Ryogo, Exact solution of the Korteweg-de Vries equation for multiple col-lisions of solitons, Physical Review Letters,1971,27(18):1192-1194.
    [176]Hirota Ryogo, Satsuma Junkichi, A variety of nonlinear network equations gener-ated from the Backlund transformation for the Toda lattice, Progress of Theoretical Physics Supplement,1976,59:64-100.
    [177]Matsuno Y, Bilinear Transformation Method. New York:Academic Press,1984.
    [178]Hu Xingbiao, Rational solutions of integrable equations via nonlinear superposi-tion formulae, Journal of Physics A,1997,30(23):8225-8240.
    [179]Hu Xingbiao, Zhu Zuonong, Some new results on the Blaszak-Marciniak lattice: Backlund transformation and nonlinear superposition formula, Journal of Mathemat-ical Physics,1998,39(9):4766-4772.
    [180]Wu Yongtang, Hu Xingbiao, A new integrable differential-difference system and its explicit solutions, Journal of Physics A,1999,32(8):1515-1521.
    [181]Hu Xingbiao, Tam Honwah, Some new results on the Baszak-Marciniak 3-field and 4-field lattices, Reports on Mathematical Physics,2000,46(1):99-105.
    [182]Tam Honwah, Ma Wenxiu, Hu Xingbiao et al, The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited, Journal of the Physical Society of Japan, 2000,69(1):45-52.
    [183]Hu Xingbiao, Ma Wenxiu, Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Physics Letters A,2002, 293(3-4):161-165.
    [184]Boiti M, Leon J J P, Manna M et al, On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions, Inverse Problems,1986,2(3):271-279.
    [185]Boiti M, Leon J J P, Manna M et al, On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane, Inverse Problems,1987,3(1):25-36.
    [186]Radha R, Lakshmanan M, Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations, Journal of Mathemati-cal Physics,1994,35(9):4746-4756.
    [187]Lou Senyue, Generalized dromion solutions of the (2+1)-dimensional KdV equa-tion, Journal of Physics A,1995,28(24):7227-7232.
    [188]Zhang Jiefang, Abundant dromion-like structures to the (2+1) dimensional KdV equation, Chinese Physics,2000,9(1):1-4.
    [189]Lou Senyue, Ruan Hangyu, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation, Journal of Physics A,2001,34(2):305-316.
    [190]Wang Mingliang, Solitary wave solutions for variant Boussinesq equations, Physics Letters A,1995,199(3-4):169-172.
    [191]Wang Mingliang, Exact solutions for a compound KdV-Burgers equation, Physics Letters A,1996,213(5-6):279-287.
    [192]Wang Mingliang, Zhou Yubin, Li Zhibin, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Physics Letters A,1996,216(1):67-75.
    [193]Tian Bo, Gao Yitian, New families of exact solutions to the integrable disper-sive long wave equations in 2+1-dimensional spaces, Journal of Physics A,1996, 29(11):2895-2903.
    [194]Fan Engui, Zhang Hongqing, A note on the homogeneous balance method, Physics Letters A,1998,246(5):403-406.
    [195]Fan Engui, Zhang Hongqing, New exact solutions to a system of coupled KdV equations, Physics Letters A,1998,245(5):389-392.
    [196]张解放,长水波近似方程的多孤子解,物理学报,1998,47(9):1416-1420.
    [197]张解放,变更Boussinesq方程和Kupershmidt方程的多孤子解,应用数学和力学,2000,21(2):171-175.
    [198]闫振亚,张鸿庆,Brusselator反应扩展模型的Auto-Darboux变换和精确解,应用数学和力学,2001,22(5):477-482.
    [199]Bluman G, Cole J, General similarity solution of the heat equation, Journal of Mathematics and Mechanics,1969,18(5):1025-1042.
    [200]Bluman G,Kumei S, Symmetries and Differential Equations. New York:Springer-Verlag,1989.
    [201]Olver P J, Applications of Lie Groups to Differential Equations. Berlin:Springer-Verlag,1986.
    [202]Clarkson P A, Kruskal M D, New similarity reductions of the Boussinesq equation, Journal of Mathematical Physics,1989,30(10):2201-2213.
    [203]Clarkson P A, Nonclassical symmetry reductions for the Boussinesq equation, Chaos, Solitons and Fractals,1995,5(12):2261-2301.
    [204]Clarkson P A, Mansfield E L, Symmetry reductions and exact solutions of shallow water wave equations, Acta Applicandae Mathematicae,1995,39(1-3):245-276.
    [205]Alexeyev A A, A multidimensional superposition principle:classical solitons Ⅲ, Physics Letters A,2005,335(2-3):197-206.
    [206]Conte R, Invariant painleveanalysis of partial differential equations, Physics Let-ters A,1989,140(7-8):383-390.
    [207]Pickering A, A new truncation in Painleve analysis, Journal of Physics A,1993, 26(17):4395-4405.
    [208]Pickering A, The singular manifold method revisited, Journal of Mathematical Physics,1996,37(4):1894-1927.
    [209]Parkes E J, Duffy B R, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Computer Physics Communica-tions,1996,98(3):288-300.
    [210]Malfliet Willy, Solitary wave solutions of nonlinear wave equations, American Journal of Physics,1992,60(7):650-654.
    [211]Malfliet Willy, Hereman Willy, The tanh method:Ⅰ. Exact solutions of nonlinear evolution and wave equations, Physica Scripta,1996,54(6):563-568.
    [212]Malfliet Willy, Hereman Willy, The tanh method:Ⅱ. Perturbation technique for conservative systems, Physica Scripta,1996,54(6).569-575.
    [213]Fan Engui, Extended tanh-function method and its applications to nonlinear equa-tions, Physics Letters A,2000,277(4-5):212-218.
    [214]Wazwaz A M, A sine-cosine method for handling nonlinear wave equations, Math-ematical and Computer Modelling,2004,40(5-6):499-508.
    [215]Lou Senyue, Ni Guangjiong, The relations among a special type of solutions in some (D+1)-dimensional nonlinear equations, Journal of Mathematical Physics, 1989,30(7):1614-1620.
    [216]Hereman W, Banerjee P P, Korpel A et al, Exact solitary wave solutions of nonlin-ear evolution and wave equations using a direct algebraic method, Journal of Physics A,1986,19(5):607-628.
    [217]田畴,李群及其在微分方程中的应用.北京:科学出版社,2001.
    [218]邵丹,邵亮,郭紫,李群.北京:科学出版社,2008.
    [219]田畴,Burgers方程的新的强对称、对称和李代数,中国科学(A辑),1987,30(10):1009-1018.
    [220]李翊神,朱国城,一个谱可变演化方程的对称,科学通报,1986,31(19):1449-1453.
    [221]Li Yishen, Zhu Guocheng, New set of symmetries of the integrable equations, Lie algebra and non-isospectral evolution equations.Ⅱ. AKNS system,1986, Journal of Physics A,19(18):3713-3725.
    [222]朱国城,季孝达,可积方程新的对称、李代数及谱可变演化方程,科学通报,1988,33(13):972-976.
    [223]Lou Senyue, A note on the new similarity reductions of the Boussinesq equation, Physics Letters A,1990,151(3-4):133-135.
    [224]Lou Senyue, Similarity solutions of the Kadomtsev-Petviashvili equation, Journal of Physics A,1990,23(13):L649-L654.
    [225]Lou Senyue, Ruan Hangyu, Chen Defang et al, Similarity reductions of the KP equation by a direct method, Journal of Physics A,1991,24(7):1455-1467.
    [226]Lou Senyue, Tang Xiaoyan, Lin Ji, Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method, Journal of Mathematical Physics,2000,41(12):8286-8303.
    [227]Lou Senyue, Symmetries of the Kadomtsev-Petviashvili equation, Journal of Physics A,1993,26(17):4387-4394.
    [228]Tian Lixin, Yin Jiuli, New peakon and multi-compacton solitary wave solu-tions of fully nonlinear sine-Gordon equation, Chaos, Solitons and Fractals,2005, 24(1):353-363.
    [229]Zhang Jiefang, Dai Chaoqing, Xu Changzhi et al, Solutions with separated vari-ables and breather structures in the (1+1)-dimensional nonlinear systems, Physics Letters A,2006,352(6):511-519.
    [230]Liu Zhengrong, Lin Qingmei, Li Qixiu, Integral approach to compacton solutions of Boussinesq-like B(m,n) equation with fully nonlinear dispersion, Chaos, Solitons and Fractals,2004,19(5):1071-1081.
    [231]Liu Zhengrong, Long Yao, Compacton-like wave and kink-like wave of GCH equa-tion, Nonlinear Analysis:Real World Applications,2007,8(1):136-155.
    [232]Yan Zhenya, New compacton-like and solitary patterns-like solutions to non-linear wave equations with linear dispersion terms, Nonlinear Analysis,2006, 64(5):901-909.
    [233]Yan Zhenya, An improved algebra method and its applications in nonlinear wave equations, Chaos, Solitons and Fractals,2004,21(4):1013-1021.
    [234]Inc Mustafa, Exact and numerical solitons with compact support for nonlinear dispersive K(m, p) equations by the variational iteration method, Physica A,2007, 375(2):447-456.
    [235]Inc Mustafa, New compact and noncompact solutions of the K(k,n) equations, Chaos, Solitons and Fractals,2006,29(4):895-903.
    [236]Wazwaz Abdul-Majid, Exact and explicit travelling wave solutions for the nonlin-ear Drinfeld-Sokolov system, Communications in Nonlinear Science and Numerical Simulation,2006,11(3):311-325.
    [237]Wazwaz Abdul-Majid, The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K(n, n)-Burger equations, Physica D,2006, 213(2):147-151.
    [238]Wazwaz Abdul-Majid, Compacton solutions of the Kawahara-type nonlinear dis-persive equation, Applied Mathematics and Computation,2003,145(1):133-150.
    [239]张鸿庆,弹性力学方程组一般解的统一理论,大连理工大学学报,1978,17(3):23-27.
    [240]范恩贵,孤立子和可积系统:[博士学位论文].大连:大连理工大学,1998.
    [241]张鸿庆,吴方向,一类偏微分方程组的一般解及其在壳体理论中的应用,力学学报,1992,24(6):700-707.
    [242]张鸿庆,吴方向,构造板壳问题基本解的一般方法,科学通报,1993,38(7):671-672.
    [243]张鸿庆,冯红,构造弹性力学位移函数的机械化算法,应用数学和力学,1995,16(4):315-322.
    [244]张鸿庆,冯红,非齐次线性算子方程组一般解的代数构造,大连理工大学学报,1994,34(3):249-255.
    [245]闫振亚,张鸿庆,一类非线性演化方程新的显式行波解,物理学报,1999,48(1):1-5.
    [246]闫振亚,张鸿庆,具有三个任意函数的变系数KdV-MKdV方程的精确类孤子解,物理学报,1999,48(11):1957-1961.
    [247]闫振亚,张鸿庆,非线性浅水波近似方程组的显式精确解,物理学报,1999,48(11):1962-1968.
    [248]Li Jibin, Zhang Lijun, Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation, Chaos, Solitons and Fractals,2002,14(4):581-593.
    [249]Zhang Lijun, Li Jibin, Bifurcations of traveling wave solutions in a coupled non-linear wave equation, Chaos, Solitons and Fractals,2003,17(5):941-950.
    [250]Li Jibin, Li Hong, Li Shumin, Bifurcations of travelling wave solutions for the generalized Kadomtsev-Petviashili equation, Chaos, Solitons and Fractals,2004, 20(4):725-734.
    [251]Li Jibin, Li Ming, Bounded travelling wave solutions for the (n+1)-dimensional sine-and sinh-Gordon equations, Chaos, Solitons and Fractals,2005, 25(5):1037-1047.
    [252]Li Jibin, Exact explicit travelling wave solutions for (n+l)-dimensional Klein-Gordon-Zakharov equations, Chaos, Solitons and Fractals,2007,34(3):867-871.
    [253]Geng Yixiang, He Tianlan, Li Jibin, Exact travelling wave solutions for the (n+1)-dimensional double sine-and sinh-Gordon equations, Applied Mathematics and Computation,2007,188(2):1513-1534.
    [254]Shen Jianwei, Xu Wei, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos, Solitons and Fractals, 2005,26(4):1149-1162.
    [255]Shen Jianwei, Li Jibin, Xu Wei, Bifurcations of travelling wave solutions in a model of the hydrogen-bonded systems, Applied Mathematics and Computation, 2005,171(1):242-271.
    [256]Shen Jianwei, Xu Wei, Jin Yanfei, Bifurcation method and traveling wave solution to Whitham-Broer-Kaup equation, Applied Mathematics and Computation,2005, 171(2):677-702.
    [257]Shen Jianwei, Xu Wei, Smooth and non-smooth travelling wave solutions of gen-eralized Degasperis-Procesi equation, Applied Mathematics and Computation,2006, 182(2):1418-1429.
    [258]Liu Zhengrong, Chen Can, Compactons in a general compressible hyperelastic rod, Chaos, Solitons and Fractals,2004,22(3):627-640.
    [259]Liu Zhengrong, Yang Chenxi, The application of bifurcation method to a higher- order KdV equation, Journal of Mathematical Analysis and Applications,2002, 275(1):1-12.
    [260]Feng Dahe, Li Jibin, Lii Junliang et al, The improved Fan sub-equation method and its application to the Boussinesq wave equation, Applied Mathematics and Computa-tion, in press,2007.
    [261]Feng Dahe, Li Jibin, Exact explicit travelling wave solutions for the (n+1)-dimensional Φ6 field model, Physics Letters A,2007,369(4):255-361.
    [262]Cole J D, Perturbation Methods in Applied Mathematics. Waltham:Blaisdell Pub-lishing Company,1968.
    [263]Nayfeh A H, Problems in Perturbation. New York:John Wiley & Sons,1985.
    [264]Murdock J A, Perturbations:Theory and Methods. New York:John Wiley & Sons, 1991.
    [265]戴世强,邓学莹,段祝平等,20世纪理论和应用力学十大进展,力学进展,2001,31(3):322-326.
    [266]汪淳,同伦分析方法在流体力学中的应用:[博士学位论文].上海:上海交通大学,2003.
    [267]廖世俊,超越摄动—同伦分析方法导论.北京:科学出版社,2006.
    [268]Hilton P J, An Introduction to Homotopy Theory. Cambridge:Cambridge Univer-sity Press,1953.
    [269]Sen S, Topology and Geometry for Physicists. Florida:Academic Press,1983.
    [270]Liao Shijun, An approximate solution technique not depending on small param-eters:A special example, International Journal of Non-Linear Mechanics,1995, 30(3):371-380.
    [271]Liao Shijun, A kind of approximate solution technique which does not depend upon small parameters-II. An application in fluid mechanics, International Journal of Non-Linear Mechanics,1997,32(5):815-822.
    [272]Liao Shijun, An explicit, totally analytic approximate solution for Blasius'viscous flow problems, International Journal of Non-Linear Mechanics,1999,34(4):759-778.
    [273]Liao Shijun, An analytic approximation of the drag coefficient for the viscous flow past a sphere, International Journal of Non-Linear Mechanics,2002,37(1):1-18.
    [274]Liao Shijun, A uniformly valid analytical solution of two-dimensional viscous flow over a semi-infinite flat plate, Journal of Fluid Mechanics,1999,385:101-128.
    [275]Liao Shijun, Campo A, Analytic solutions of the temperature distribution in Blasius viscous flow problems, Journal of Fluid Mechanics,2002,453:411-425.
    [276]He Jihuan, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals,2004,19(4):847-851.
    [277]He Jihuan, Application of homotopy perturbation method to nonlinear wave equa-tions, Chaos, Solitons and Fractals,2005,26(3):695-700.
    [278]He Jihuan, Homotopy perturbation method for bifurcation of nonlinear prob-lems, International Journal of Nonlinear Sciences and Numerical Simulation,2005; 6(2):207-208.
    [279]王雨顺,孤立波方程的辛和多辛算法的构造和计算:[博士学位论文].北京:中国科学院数学和系统科学研究院,2001.
    [280]张芷芬,丁同仁,黄文灶等,微分方程定性理论.北京:科学出版社,2003.
    [281]廖晓听,稳定性的理论、方法和应用.武昌:华中科技大学出版社,1999.
    [282]时宝,张德存,盖明久,微分方程理论及其应用.北京:国防工业出版社,2005.
    [283]高慧贞,黄启宇,微分方程定性与稳定性理论.福州:福建科学技术出版社,1993.
    [284]Poincare J, Memoire sur les courbes definies par une equation differentielle, Jour-nal de Mathematiques Pures et Appliouees,1881,7(3):375-422.
    [285]Poincare J, Memoire sur les courbes definies par une equation differentielle, Jour-nal de Mathematiques Pures et Appliouees,1882,8:251-296.
    [286]Poincare J, Memoire sur les courbes definies par une equation differentielle, Jour-nal de Mathematiques Pures et Appliouees,1885,1(4):167-244.
    [287]Poincare J, Memoire sur les courbes definies par une equation differentielle, Jour-nal de Mathematiques Pures et Appliouees,1986,2:151-217.
    [288]聂灵沼,丁石孙,代数学引论.北京:高等教育出版社,2000.
    [289]Birkhoff G D, Dynamical systems. New York:American Mathematical Society College Publication,1927.
    [290]Birkhoff G D, Stability and the equations of dynamics, American Journal of Math-ematics,1927,49(1):1-38.
    [291]Birkhoff G D, Stabilita e periodicita nella dinamica, Periodico di Matematiche, 1926,6(4):262-271.
    [292]Andronov A A, Pontryagin, Systemes Grossiers, Doklady Akademii Nauk SSSR, 1937,14:247-251.
    [293]李继彬,冯贝叶,稳定性,分支与混沌.昆明:云南科技出版社,1995.
    [294]刘式达,刘式适,叶其孝,非线性演化方程的显式行波解,数学的实践与认识,1998,28(4):289-301.
    [295]刘式达,刘式适,孤立波与同宿轨道,力学与实践,1991,13(4):9-15.
    [296]张芷芬,李承治,郑志明等,向量场的分叉理论基础.北京:高等教育出版社,1997.
    [297]陆启韶,分叉与奇异性.上海:上海科技教育出版社,1997.
    [298]Rosenau Philip, Nonlinear dispersion and compact structures, Physical Review Letters,1994,73(13):1737-1741.
    [299]Rosenau Philip, On nonanalytic solitary waves formed by a nonlinear dispersion, Physics Letters A,1997,230(5-6):305-318.
    [300]Rosenau Philip, On a class of nonlinear dispersive-dissipative interactions, Physica D,1998,123(4):525-546.
    [301]Li Y A, Olver P J, Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system Ⅰ:Compactons and peakons, Discrete and Continuous Dynamical Systems,1997,3(3):419-432.
    [302]Li Y A, Olver P J, Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system Ⅱ:Complex analytic behavior and convergence to non-analytic aolutions, Discrete and Continuous Dynamical Systems,1998, 4(1):159-191.
    [303]Li Y A, Olver P J, Rosenau P, Non-analytic solutions on nonlinear wave models, Technical Report 1591, Institute of Mathematics and Applications, Minnesota,1998.
    [304]Li Jibin, Liu Zhengrong, Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Applied Mathematical Modelling,2000,25(1):41-56.
    [305]Li Jibin, Liu Zhengrong, Traveling wave solutions for a class of nonlinear disper-sive equations, Chinese Annals of Mathematics,2002,23(3):397-418.
    [306]Li Jibin, Shen Jianwei, Travelling wave solutions in a model of the helix polypep-tide chains, Chaos, Solitons and Fractals,2004,20(4):827-841.
    [307]Li Jibin, Zhang Jixiang, Bifurcations of travelling wave solutions for the gener-alization form of the modified KdV equation, Chaos, Solitons and Fractals,2004, 21(4):899-913.
    [308]Li Hong, Sun Shaorong, Li Jibin, Bifurcations of travelling wave solutions for the Boussinesq equations, Applied Mathematics and Computation,2006,175(1):61-71.
    [309]Feng Dahe, He Tianlan, Lu Junliang, Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation, Applied Mathematics and Computa-tion,2007,185(1):402-414.
    [310]Feng Dahe, Lii Junliang, Li Jibin et al, Bifurcation studies on travelling wave solu-tions for nonlinear intensity Klein-Gordon equation, Applied Mathematics and Com-putation,2007,189(1):271-284.
    [311]Shen Jianwei, Xu Wei, Li Wei, Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons, Chaos, Solitons and Fractals,2006, 27(2):413-425.
    [312]Li Jibin, Wu Jianhong, Zhu Huaiping, Travelling waves for an integrable higher or-der KdV type wave equations, International Journal of Bifurcation and Chaos,2006, 16(8):2309-2324.
    [313]Li Jibin, Dai Huihui, On the Study of Singular Nonlinear Travelling Wave Equa-tions:Dynamical System Approach.Beijing:Science Press,2007.
    [314]黄琳,稳定性理论.北京:北京大学出版社,1992.
    [315]寇春海,变异Lyapunov方法与非线性系统的稳定性分析:[博士学位论文].上海:上海交通大学,2002.
    [316]邢秀侠,广义Fisher方程(组)及粘性平衡律方程行波解的稳定性:[博士学位论文].北京:首都师范大学,2005.
    [317]Henry D, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840, New York:Springer-Verlag,1981.
    [318]Sattinger D H, On the stability of waves of nonlinear parabolic systems, Advances in Mathematics,1976,22(3):312-255.
    [319]Wu Yaping, The stability of travelling fronts for quasilinear Burgers-type equa-tions, Advance in Mathmatics (China),2002,31(4):363-371.
    [320]Evans J W, Nerve axon equation:Ⅰ. linear approximations, Indiana University Mathematics Journal,1972,21(9):877-885.
    [321]Evans J W, Nerve axon equation:Ⅱ. stability at rest, Indiana University Mathemat-ics Journal,1972,22(1):75-90.
    [322]Evans J W, Nerve axon equation:Ⅲ. stability of the nerve impulse, Indiana Uni-versity Mathematics Journal,1972,22(6):577-593.
    [323]Evans J W, Nerve axon equation:Ⅳ. the stable and the unstable impulse, Indiana University Mathematics Journal,1975,24(12):1169-1190.
    [324]Jones C K R T, Stability of the travelling wave solutions of the FitzHugh-Nagumo system, Transaction of the American Mathematical Society,1984,286(2):431-469.
    [325]Alexander J, Gardner R, Jones T J, A topolocal invariant arising in the stability analysis of traveling waves, Journal fur die Reine und Angewandte Mathematik,1990, 410:167-212.
    [326]Pego R L, Weinstein M I, Eigenvalues, and instabilities of solitary waves, Philo-sophical Transactions of the Royal Society A,1992,340(1656):47-94.
    [327]Kapitula Todd, The Evans function and generalized melnikov integrals, SIAM Journal on Mathematical Analysis,1998,30(2):273-297.
    [328]Kapitula Todd, Sandstede Bjorn, Stability of bright solitary-wave solutions to per-turbed nonlinear Schrodinger equations, Physica D,1998,124(1):58-103.
    [329]Derks G, Doelman A, van Gils S A et al, Travelling waves in a singularly perturbed sine-Gordon equation, Physica D,2003,180(1):40-70.
    [330]Oh M, Zumbrun K, Stability of periodic solutions of conservation laws with vis-cosity:analysis of the Evans function, Archive for Rational Mechanics and Analysis, 2003,166(2):99-166.
    [331]Oh M, Zumbrun K, Stability of periodic solutions of conservation laws with vis-cosity:Pointwise Bounds on the Green Function, Archive for Rational Mechanics and Analysis,2003,166(2):167-196.
    [332]Sandstede Bjorn, Stability of travelling waves, Handbook of Dynamical Systems II, North-Holland,2002, pp.983-1055.
    [333]Bridges T J, Derks G, Gottwald G, Stability and instability of solitary waves of the fifth-order KdV equation:a numerical framework, Physica D,2002,172(4):190-216.
    [334]Brin L Q, Numerical testing of the stability of viscous shock waves, Mathematics of Computation,2000,70(235):1071-1088.
    [335]Lou S Y, Generalized symmetries and w∞, algebras in three dimensional Coda field theory, Phys.Rev.Lett.,71:4099-4102,1993.
    [336]Lou S Y, Similarity reductions of the kp equation by a direct method, J.Phys.A,23: L694,1990.
    [337]Olver P J, Direct reduction and differential constraints, Proc.R.Soc.Lond.A,444: 509,1994.
    [338]Tang X Y, Lou S Y, Lin J, Similarity and conditional similarity reductions of a ( 2+1)-dimensional kdv equation via a direct method, J.Math.Phys.,41:8286,2000.
    [339]李诩神,程艺,新KdV方程族的对称和守恒量中国科学A,31:1-7,1988.
    [340]程艺,汪启存,田畴,李诩神,Burgers'方程簇的对称,Backlund变换和Painleve性质之间的关系.应用数学学报,14:180-184,1991.
    [341]曹瑞,一些非线性发展方程的精确解:[硕士学位论文].成都:四川师范大学,2006.
    [342]李继彬,浑沌与Melnikov方法.重庆:重庆大学出版社,1989.
    [343]Byrd P F, Friedman M D, Handbook of Elliptic Integrals for Engineers and Physi-cists. Berlin:Springer-Verlag,1954.
    [344]Matveev V B, Salle M A, Darboux Transformation and Solitons. Berlin:Springer-Verlag,1991.
    [345]Hirota Ryogo, Satsuma Junkichi, Soliton solutions of a coupled Korteweg-de Vries equation, Physics Letters A,1981,85(8-9):407-408.
    [346]Tian Lixin, Yin Jiuli, New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations, Chaos, Solitons and Fractals,2004, 20(4):289-299.
    [347]Wazwaz Abdul-Majid, Solutions of compact and noncompact strucures for non-linear Klein-Gordon-type equation, Applied Mathematics and Computation,2003, 134(2-3):487-500.
    [348]Wazwaz Abdul-Majid, Solitons and periodic solutions for the fifth-order KdV equation, Applied Mathematics Letters,2006,19(11):1162-1167.
    [349]Wazwaz Abdul-Majid, Analytic study on nonlinear variants of the RLW and the PHI-four equations, Communications in Nonlinear Science and Numerical Simula-tion,2007,12(3):314-327.
    [350]Yan Zhenya, Zhang Hongqing, New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics, Physics Letters A, 1999,252(6):291-296.
    [351]Yan Zhenya, New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Physics Letters A,2001,292(1-2):100-106.
    [352]Zhou Yubin, Wang Mingliang, Wang Yueming, Periodic wave solutions to a coupled KdV equations with variable coefficients, Physics Letters A,2003, 308(1):31-36.
    [353]Wang Mingliang, Zhou Yubin, The periodic wave solutions for the Klein-Gordon-Schrodinger equations, Physics Letters A,2003,318(1-2):84-92.
    [354]Zhang Sheng, New exact solutions of the KdV-Burgers-Kuramoto equation, Physics Letters A,2006,358(5-6):414-420.
    [355]Fan Engui, Uniformly constructing a series of explicit exact solutions to non-linear equations in mathematical physics, Chaos, Solitons and Fractals,2003, 16(5):819-839.
    [356]El-Wakil S A, Abdou M A, The extanded Fan sub-equation method and its appli-cations for a class of nonlinear evolution equations, Chaos, Solitons and Fractals, in press,2006.
    [357]Sawada Katuro, Kotera Takeyasu, A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Progress of Theoretical Physics,1974, 51(5):1355-1367.
    [358]Zait R A, Backlund transformations, cnoidal wave and travelling wave solutions of the SK and KK equations, Chaos, Solitons and Fractals,2003,15(4):673-678.
    [359]Caudrey P J, Dodd R K, Gibbon J D, A new hierarchy of Korteweg-de Vries equa-tions, Proceedings of the Royal Society of London, Series A:Mathematical and Phys-ical Sciences,1976,351(1666):407-422.
    [360]Satsuma Junkichi, Kaup D J, A Backlund transformation for a higher order Korteweg-de Vries equation, Journal of the Physical Society of Japan,1977, 43(2):692-697.
    [361]Hu Xingbiao, Bullough Robin, A Backlund transformation and nonlinear superpo-sition formula of the Caudrey-Dodd-Gibbon-Kotera-Sawada hierarchy, Journal of the Physical Society of Japan,1998,67(3):772-777.
    [362]徐惠益,Sawada—Kotera方程的Backlund变换及其精确解,苏州大学学报,2005,21(1):24-27.
    [363]Parker A, On soliton solutions of the Kaup-Kupershmidt equation. Ⅰ. Direct bilin-earisation and solitary wave, Physica D,2000,137(1):25-33.
    [364]Parker A, On "regular" and "anomalous" solitons of fifth-order equations and an iteration method, Reports on Mathematical Physics,2000,46(2):217-224.
    [365]Wazwaz Abdul-Majid, Aboundant solitons solutions for several forms of the fifth-order KdV equations by using the tanh method, Applied Mathematics and Computa-tion,2006,182(1):283-300.
    [366]Wazwaz Abdul-Majid, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Applied Mathematics and Computa- tion,2007,184(2):1002-1014.
    [367]Kaya Dogan, Salah M. El-Sayed, On a generalized fifth order KdV equations, Physics Letters A,2003,310(1):44-51.
    [368]Qasem M. Al-Mdallal, Muhammad I. Syam, Sine-Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation, Chaos, Solitons and Fractals,2007,33(5):1610-1617.
    [369]Zhang Yi, New n-soliton solutions for the Sawada-Kotera equation, Journal of Shanghai University (English Edition),2004,8(2):132-133.
    [370]Lou Shenyue, Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation, Physics Letters A,1993,175(1):23-26.
    [371]林机,局域空间激子的相互作用和对称约化的研究:[博士后学位论文].上海:上海交通大学,2004.
    [372]唐云,对称性分岔理论基础.北京:科学出版社,1998.
    [373]韩茂安,顾圣士,非线性系统的理论和方法.北京:科学出版社,2001.
    [374]顾圣士,微分方程和动力系统.上海:上海大学出版社,2000.
    [375]Benjamin T B, Bona J L, Mahoney J J, Model equations for long waves in nonlinear dispersive media, Philosophical Transactions of The Royal Society of London Series A-Mathematical Physical and Engineering Sciences,1972,272(1220):47-78.
    [376]廖毕丰,邵喜高,王廷春,RLW方程的一个新的守恒差分格式,烟台大学学报,2006,19(1):12-15.
    [377]张鲁明,常谦顺,正则长波方程的一个新的差分方法,数值计算与计算机应用,2000,21(4):247-254.
    [378]Parker A, On exact solutions of the regularized long-wave equation:A direct ap-proach to partially integrable equations. Ⅰ. Solitary wave and solitons, Journal of Mathematical Physics,1995,36(7):3498-3505.
    [379]Parker A, On exact solutions of the regularized long-wave equation:A direct ap-proach to partially integrable equations.Ⅱ. Periodic solutions, Journal of Mathemati-cal Physics,1995,36(7):3506-3519.
    [380]Yan Zhenya, New soliton solutions with compact support for a family of two-parameter regularized long-wave Boussinesq equations, Communications in Theo-retical Physics,2002,37(6):641-644.
    [381]Yan Zhenya, New families of exact solitary patterns solutions for the nonlinearly dispersive R(m,n) equations, Chaos, Solitons and Fractals,2003,15(5):891-896.
    [382]Inc Mustafa, New compacton solutions of nonlinearly dispersive R(m,n) equations, Communications in Theoretical Physics,2006,45(3):389-394.
    [383]Inc Mustafa, New exact solitary pattern solutions of the nonlinearly dispersive R(m,n) equations, Chaos, Solitons and Fractals,2006,29(2):499-505.
    [384]韩茂安,朱德明,微分方程分支理论.北京:煤炭工业出版社,1994.
    [385]张锦炎,冯贝叶,常微分方程几何理论与分支问题.北京:北京大学出版社,2000.
    [386]罗定军,张祥,董梅等,动力系统的定性与分支理论.北京:科学出版社,2001.
    [387]Wiggins S, Global Bifurcations and Chaos. New York:Springer-Verlag,1988.
    [388]李保安,李向正,罗娜等,n维Klein-Gordon方程的一种解法,河南科技大学学报,2004,25(1):78-81.
    [389]张学龙,游阳明,k-原子体系与强相互作用,原子与分子物理学报,2000,17(1):162-165.
    [390]田立新,于水猛,非线性强度KG型方程精确解和多重Copacton解,江苏大学学报,2005,26(3):227-230.
    [391]Tian Lixin, Yu Shuimeng, Nonsymmetrical compacton and multi-compacton of nonlinear intensity Klein-Gordon equation, Chaos, Solitons and Fractals,2006, 29(2):282-293.
    [392]周渊,陈静,赖绍永,二维Boussinesq水波系统的孤立子波解,四川师范大学学报,2007,30(2):164-166.
    [393]李正彪,戴正德,经典Boussinesq方程的新同宿轨和孤立子解,云南大学学报,2006,28(4):285-288.
    [394]谢元喜,唐驾时,用改进的试探函数法求解Boussinesq方程,安阳工学院学报,2005,6:73-76.
    [395]Allen M A, Rowlands G, On the transverse instabilities of solitary waves, Physics Letters A,1997,235(2):145-146.
    [396]曾听,张鸿庆,(2+1)维Boussinesq方程的Backlund变换与精确解,物理学报,2005,54(4):1476-1480.
    [397]Chen Yong, Yan Zhenya, Zhang Hongqing, New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation, Physics Letters A,2003,307(2):107-113.
    [398]林麦麦,段文山,吕克璞,Hirota方法求解Boussinesq方程,西北师范大学学报,2007,43(1):39-53.
    [399]Wazwaz A M, Variants of the two-dimensional Boussinesq equation with com-pactons, solitons, and periodic solutions, Computers and Mathematics with Applica-tions,2005,49(2-3):295-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700