人胚胎干细胞系与人孤雌胚胎干细胞系建立的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的胚胎干细胞是一类来源于哺乳动物原始生殖细胞和囊胚内细胞团的全能细胞,主要具有两方面显著特征:一是具有体外高度增殖和自我更新的能力,二是可被定向诱导分化成体内各种细胞类型。孤雌激活来源的人胚胎干细胞的基因型与卵子提供者的基因型完全相同,由其诱导分化的细胞用于机体移植完全不会引起免疫排斥。因此,人胚胎干细胞尤其是人孤雌胚胎干细胞具有巨大的医学研究价值与应用前景,如再生医学、人类发育生物学和细胞治疗等。本实验旨在建立稳定的、标准化的人胚胎干细胞体外培养方法,并且在保证人胚胎干细胞长期稳定传代培养的基础上,比较不同饲养层对维持人胚胎干细胞生长的作用影响,从而优化人胚胎干细胞的培养条件。与此同时,对培养体系进行改良,利用废弃卵母细胞获得的孤雌囊胚在改良的完全人源性培养条件下建立最接近临床标准的人孤雌胚胎干细胞系,为临床级人孤雌胚胎干细胞研究与应用奠定基础。
     对象与方法本实验收集天津市中心妇产科医院生殖医学中心试管婴儿治疗患者的不成熟卵母细胞和移植后剩余无冻存价值的废弃胚胎,征得患者夫妇双方同意并签署知情同意书后用于本实验。应用人包皮成纤维细胞作为饲养层,85%KnockOut DMEM、15%KnockOut血清替代物、4ng/mlbFGF培养基,建立人胚胎干细胞系,并且对其特异性标志物SSEA-3、SSEA-4、SSEA-1、TRA-1-60、 TRA-1-81、转录因子Oct-4,碱性磷酸酶,体内或体外分化能力作全面的鉴定。同时,对小鼠胚胎成纤维细胞、人包皮成纤维细胞、人胚胎肺组织成纤维细胞三种饲养层的形态、性状、维持人胚胎干细胞生长能力如干细胞平均克隆形成数量、未分化克隆率进行比较,筛选出本实验室条件下最适合的人胚胎干细胞饲养层,并且应用这种饲养层细胞建立人孤雌胚胎干细胞系。应用不成熟人卵母细胞作为研究对象,体外培养成熟后,采用电脉冲联合6-DMAP孤雌激活及自发激活获得孤雌囊胚,同时改良人孤雌胚胎干细胞的培养体系,完全应用人源性培养基、人源性饲养层细胞,并且在操作中尽量减少异源性因素干扰,使建立的人孤雌胚胎干细胞系最大可能接近临床级应用标准。
     结果利用本实验室建立的人胚胎干细胞培养方法和改良的同源性培养体系,分别建立了人胚胎干细胞系H-TJ1、H-TJ2和人孤雌胚胎干细胞系P-TJ,体外长期扩增均超过30代,经鉴定分别保持人胚胎干细胞和人孤雌胚胎干细胞的特性。接种在三种饲养层上的人胚胎干细胞均可以维持克隆样生长,生物学鉴定均符合人胚胎干细胞标准,但不同饲养层上克隆的形态差异大。相比于两种人来源饲养层,小鼠胚胎成纤维细胞作为经典的饲养层可以获得最多的人胚胎干细胞克隆,而作为同源性饲养层细胞,人包皮成纤维细胞饲养层明显优于另两种饲养层细胞,能很好地维持人胚胎干细胞增殖和未分化状态。
     结论本研究成功建立了人胚胎干细胞和人孤雌胚胎干细胞培养体系,应用废弃胚胎和经体外成熟的M1、GV期卵母细胞分离得到了人胚胎干细胞系和人孤雌胚胎干细胞系,并且维持其人胚胎干细胞特性和人孤雌胚胎干细胞特性。人包皮成纤维细胞作为同源性饲养层细胞,不仅可以避免异源性污染并且可以维持人胚胎干细胞系在体外长期稳定传代。经过改良完全同源性的培养体系可以良好地维持人孤雌胚胎干细胞的性状和长期传代,本研究建立的人孤雌胚胎干细胞系接近临床级人胚胎干细胞系标准,为人胚胎干细胞系真正用于临床研究和应用打下了基础。
Objective Embryonic stem cells are plouripotent cells derived from human primordial germ cells and inner cell mass of mammalian blastocyst. They are characterized by high proliferative and self renewal potential and ability to differentiate into many kinds of functional cell types. Parthenogenetic ES cells are derived from the ICM of a parthenogenetic blastocyst have developed from a single MⅡ oocyte and they only contain the maternal genome. As a result, these cells were regarded as tremendous potential resources for regenerative medicine, human developmental biology and cell-based therapies. The main goal of this study is to establish a stable and standard culture protocol of human ES cells in our own faculty. We support the prolonged undifferentiated growth of hES cells. To this end, the effects of three types of feeder cells for human ES maintenance were analyzed, in order to optimize the culture condition. At the same time, we also try to establish the clinical human embryonic stem cells line using the optimal culture condition and immature oocytes resources which could facilitate studies of therapeutic cloning for research and clinical applications.
     Materials and methods The donated immature oocytes and discarded embryos were collected from the Center for Reproductive Medicine, Tianjin Central Hospital for Obstetrics and Gynecology. The egg donors was clearly informed of all the study details and they signed detailed informed consent documents voluntarily. The culture condition of human ES cells is seeding the human ES cells on Mitomycin C treated human fibroblasts feeder layers. The medium contains85%KnockOut DMEM,15%KnockOut serum replacement,4ng/mL bFGF. We established human ES cells using the human feeder layers and the medium. The primary antibodies included SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81and AP and ability of differentiation in Vitro and in Vivo was identified. Then, human ES cells were seeded on mouse embryonic fibroblasts, human foreskin fibroblasts and human embryonic pulmonary fibroblasts cells respectively. The proliferation of human ES cells, such as morphology of colonies, colony number, the ratio of undifferentiated colonies and characterization of the human embryonic stem cell line were observed. Furthermore, based on the experience from human ES cell culture, using the human oocytes activated by the parthenogenetic activation, we did the basic research for establishment and qualification of human parthenogenetic embryonic stem cells. Meanwhile, we improved the culture system in order to facilitate the further study and application of such cells in research and clinical settings.
     Results With our culture method, human ES cell (H-TJ1&H-TJ2) and human parthenogenetic embryonic stem cell (P-TJ) form colonies, and express cell markers that characterize undifferentiated primate ES cells. All of the three feeder layers can ensure human ES colonies formed, maintain pluripotency, yet the morphology of colonies on different feeder layers varies obviously. There were more AP positive colonies and more cell quantity on mouse embryonic fibroblasts. As homologous feeder cells, the cloning efficiency on the human foreskin fibroblasts feeder layers was enough to enable to assure cell survival, and the differentiation rates were low enough to enable prolonged undifferentiated culture without continuous removal of the differentiated colonies from the culture. Human foreskin fibroblast feeder layer was better than the other two kinds of feeder cells.
     Conclusions We successfully established the culture system of human embryonic stem cells and human parthenogenetic embryonic stem cells. We also isolated human embryonic stem cells lines and human parthenogenetic embryonic stem cells line using the discarded embryos and in vitro maturation of MⅡ, GV oocytes, and maintained their characteristics of human embryonic stem cells and human parthenogenetic embryonic stem cells characteristics. Human foreskin fibroblasts could maintain the characters of the human embryonic stem cells and the long-term cultivation as homologous feeder cells. The modified cultural system could maintain human parthenogenetic embryonic stem cells long-term cultivation. The human parthenogenetic embryonic stem cells is close to clinical grade human embryonic stem cell line standards. This should facilitate studies of therapeutic and laid the foundation for the application.
引文
[1]Rossant J. Stem cells from the mammalian blastocyst [J]. Stem Cells,2001,19 (6):477-482
    [2]Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos [J]. Nature,1981,292 (5819):154-156
    [3]Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells [J]. Proc Natl Acad Sci USA,1981,78 (12):7634-7638
    [4]Thomson JA, Marshall VS. Primate embryonic stem cells [J]. Curr Top Dev Biol, 1998,38:133-165
    [5]Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells [J]. PNAS,1998,95(23): 13726-13731
    [6]Lagarkova MA, Eremeev AV, Svetlakov AV, et al. Human embryonic stem cell lines isolation, cultivation, and characterization [J]. In Vitro Cell Dev Biol Anim, February 23,2010
    [7]Loser P, Schirm J, Guhr A, et al. Human embryonic stem cell lines and their use in international research [J]. Stem Cells,2010,28(2):240-246
    [8]Bradley CK, Chami O, Peura TT, et al. Derivation of three new human embryonic stem cell lines [J]. In Vitro Cell Dev Biol Anim, March 3,2010
    [9]Li C, Yang Y, Lu X, et al. Efficient derivation of Chinese human embryonic stem cell lines from frozen embryos [J]. In Vitro Cell Dev Biol Anim, February 26, 2010
    [10]Englund MC, Caisander Q Noaksson K, et al. The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking [J]. In Vitro Cell Dev Biol Anim, February 23,2010
    [11]Unger C, Skottman H, Blomberg P, et al. Good manufacturing practice and clinical-grade human embryonic stem cell lines [J]. Hum. Mol. Genet,2008,17 (R1):R48-R53
    [12]Gardner DK, Lane M, Stevens J, et al. Blastocyst score affects implantation and pregnancy outcome:towards a single blastocyst transfer [J]. Fertil Steril,2000; 73(6):1155-1158
    [13]Ilic D, Caceres E, Lu S, et al. Effect of karyotype on successful human embryonic stem cell derivation [J]. Stem Cells Dev,2010; 19(1):39-46
    [14]Bongso A, Fong CY, Ng SC, et al. Human embryonic behavior in a sequential human oviduct-endometrial coculture system [J]. Fertil Steril,1994, 61(5):976-978
    [15]Smith AG, Hoope ML. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells [J]. Dev Biol,1987,121(1):1-9
    [16]Erman B, Burki K. Establishment of a germ-line competent C57BL/6 embryonic stem cell [J]. Exp Cell Res,1991,197(2):254-258
    [17]Cheng L, Hammond H, Ye Zh, et al. Human Adult Marrow Cells Support Prolonged Expansion of Human Embryonic Stem Cells in Culture [J]. Stem Cells,2003,21(2):131-142
    [18]Park JH, Kim SJ, Oh EJ, et al. Establishment and Maintenance of Human Embryonic Stem Cells on STO, a Permanently Growing Cell Line [J]. Biol Reprod,2003,69(2):2007-2014
    [19]Miyamoto K, Hayashi K, Suzuki T, et al. Human Placenta Feeder Layers Support Undifferentiated Growth of Primate Embryonic Stem Cells [J]. Stem Cells,2004, 22(1):2-11
    [20]Amit M, Margulets V, Segev H, et al. Human feeder layers for human embryonic stem cells [J]. Biol Reprod,2003,68(6):2150-2156
    [21]Lee JB, Lee JE, Park J H, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition [J]. Biol Reprod,2005,72(1):42-49
    [22]Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluipotency and proliferative potential for prolonged periods of culture [J]. Dev Biol,2000,227(2):271-278
    [23]Koivisto H, Hyvarinen M, Stromberg AM, et al. Cultures of human embryonic stem cells:serum replacement medium or serum-containing media and the effect of basic fibroblast growth factor [J]. Reprod Biomed Onlin,2004,9(3): 330-337
    [24]Xu C, Inokurma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells [J]. Fertil Steril,2001,19(10):971-974
    [25]Dravid G, Hammond H, Cheng L. Culture of human embryonic stem cells on human and mouse feeder cells [J]. Methods Mol Biol,2006; 331:91-104
    [26]Sathananthan AH, Osianlis T. Human embryo culture and assessment for the derivation of embryonic stem cells (ESC) [J]. Methods Mol Biol,2010,584:1-20
    [27]Thomson JA, Itskovitez-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts [J]. Science,1998,282(5391):1145-1147
    [28]Stojkovic P, Lako M, Stewart R. An Autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells [J]. Stem Cells,2005,23(3):306-314
    [29]Carpenter MK, Rosier ES, Fisk GJ, et al. Properties of four human embryonic stem cell lines maintained in a feeder-free culture system [J]. Dev Dyn,2004, 229(2):243-258
    [30]Rosler ES, Fisk GJ, Ares X, et al. Long-term culture of human embryonic stem cells in feeder-free conditions [J]. Dev Dyn,2004,229(2):259-274
    [31]Inzunza J, Sahlen S, Holmberg K, et al. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation [J]. Mol Hum Reprod, 2004,10(6):461-466
    [32]Cowan CA, Klimanskaya I, McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts [J]. N Engl Med,2004,350(13):1353-1356
    [33]Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro [J]. Nat Biotechnol,2000,18(4): 399-404
    [34]Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 [J]. Cell, 1998,95(3):379-391
    [35]Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells [J]. Cell Struct Funct,2001,26(3):137-148
    [36]Stoijkovic M, Lako M, Strachan T, et al. Derivation, growth and applications of human embryonic stem cells [J]. Reproduction,2004,128(3):259-267
    [37]Solter D, Gearhart J. Putting stem cells to work [J]. Science,1999,283(5407): 1468-1470
    [38]Martina K, Anne ML, Kelly DC, et al. Human embryonic stem cells:a source of mast cells for the study of allergic and inflammatory diseases [J]. Blood, Mar 2010,10
    [39]Stephenson EL, Mason C, Braude PR. Preimplantation genetic diagnosis as a source of human embryonic stem cells for disease research and drug discovery [J]. BJOG,2009,116(2):158-165
    [40]Chen H, Qian K, Hu J, et al. The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores [J]. Hum Reprod,2005,20 (8):2201-2206
    [41]Hovatta O, Mikkola M, Gertow K, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells [J]. Hum Reprod,2003,18 (7):1404-1409
    [42]Richards M, Fong CY, Chan WK, et al. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells [J]. Nat Biotechnol,2002,20 (9):933-936
    [43]Miyamoto K, Hayashi K, Suzuki T, et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells [J]. Stem Cells,2004; 22 (4):433-440
    [44]Gepstein L. Derivation and potential applications of human embryonic [J]. Stem cells. Circ Res,2002,91(10):866-876
    [45]Klimanskaya I, Chung Y, Meisner L, et al. Human embryonic stem cells derived without feeder cells [J]. Lancet,2005,365(9471):1636-1641
    [46]Genbacev O, Krtolica A, Zdravkovic T, et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders [J]. Fertil Steril, 2005,83(5):1517-1529
    [47]Beattie GM, Lopez AD, Bucay N, et al. Activin a Maintains Pluripotency of Human Embryonic Stem Cells in the Absence of Feeder Layers [J]. Stem Cells, 2005,23(4):489-495
    [48]Li Y, Powell S, Brunette E, et al. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products [J]. Biotechnol Bioeng,2005,91(6):688-698
    [49]Zhu WW, Li N, Wang F, et al. Different types of feeder cells for maintenance of human embryonic stem cells [J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2009, 31(4):468-72
    [50]Lengerke C, Kim K, Lerou P, et al.Differentiation potential of histocompatible parthenogenetic embryonic stem cells [J]. Ann N Y AcadSci,2007,1106(1): 209-218
    [51]Lin G, Ou YQ, Zhou X, et al. A highlyhomozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure [J]. Cell Res,2007,17(12):999-1007
    [52]Mai Q, Yu Y, Li T, et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts [J]. Cell Res,2007(12),17:1008-1019
    [53]Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts [J]. Cloning Stem Cells, 2007,9(3):432-449
    [54]Kim K, Ng K, Rugg-Gunn PJ, et al. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer [J]. Stem Cell,2007,1(3):346-352
    [55]Hao J, Zhu W, Sheng C, et al. Human parthenogenetic embryonic stem cells:one potential resource for cell therapy [J]. Sci China C Life Sci,2009,52(7):599-602
    [56]Cibelli JB, Cunniff K, Vrana KE. Embryonic stem cells from parthenotes [J]. Methods Enzymol,2006,418:117-135
    [57]彭美莲,黄荷凤,金帆.卵母细胞人工孤雌激活研究进展[J].浙江大学学报(科学版),2007,36(3):307-311
    [58]Yi YJ, Park CS. Parthenogenetic development of porcine oocytes treated by ethanol, cycloheximide, cytochalasin B and 6-dimethylaminopurine [J]. Anim Reprod Sci,2005,86(3-4):297-304
    [59]Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y, Kohmoto K. Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos [J]. Development 1991; 113:789-795
    [60]Fulka J, Jung T, Moor RM. The fall of biological maturation promoting factor (MPF) and histone H1 kinase activity during anaphase and telophase in mouse oocytes [J]. Mol Reprod Dev,1992; 32(4):378-382
    [61]Naito K, Toyoda Y. Fluctuation of histone H1 kinase activity during meiotic maturation in porcine oocytes [J]. J Reprod Fertil,1991,93(4):467-473
    [62]Collas P, Sullivan EJ, Barnes FL. Histone H1 kinase activity in bovine oocytes following calcium stimulation [J]. Mol Reprod Dev,1993,34(2):224-231
    [63]Kikuchi K, Naito K, Daen FP, et al. Histone H1 kinase activity during in vitro fertilization of pig follicular oocytes matured in vitro [J]. Theriogenology,1995, 43(2):523-532
    [64]Gasparrini B, Boccia L, Rosa AD, et al. Chemical activation of buffalo(Bubalus bubalis) oocytes by different methods:effects of aging on post-parthenogenetic development [J]. Theriogenology,2004,62(9):1627-1637
    [65]Sengoku K, Takuma N, Miyamato T, et al. Nuclear dynamics of parthenogenesis of human oocytes:Effect of oocyte aging in vitro [J]. Gynecol Obstet Invest, 2004,58(3):155-159
    [66]Krivokharchenko A, Popova E, Zaitseva I, et al. Development of parthenogenetic rat embryos [J]. Biol Repod,2003,68(3):829-836
    [67]Sun XS, Yue KZ, Zhou JB, et al. In vitro spontaneous parthenogenetic activation of golden hamster oocytes [J].Theriogenology,2002,57(2):845-851
    [68]李媛,陈子江,赵立新,等.未成熟卵母细胞体外成熟后体外受精-胚胎移植成功分娩一例[J].中华男科学,2002,8(1):70-71
    [69]Hall V J, Compton D, Stojkovic P, et al. Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer [J]. Hum Reprod,2007,22(1): 52-62
    [70]Lin H, Lei J, Wininger D, et al. Multilineage potential of homozygous stem cells derived from metaphase II oocytes [J]. Stem Cells,2003,21(2):152-161
    [71]Marchant J. Human eggs supply 'ethical' stem cells [J]. Nature,2006, 441(7097):1038
    [72]Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts [J]. Cloning Stem Cells, 2007,9(3):432-449
    [73]Kono T. Genomic imprinting is a barrier to parthenogenesis in mammals [J]. Cytogenet Genome Res,2006,113(1-4):31-35
    [74]Stevens LC, Vamum DS, Eicher EM. Viable chimaeras produced from normal and parthenogenetic mouse embryos [J]. Nature,1977,269(5628):515-517
    [75]Fundele R, Norris ML, Barton SC, et al. Systematic elimination of parthenogenetic cells in mouse chimeras [J]. Development 1989,106:29-35
    [76]Kono T, Obata Y, Wu Q, et al. Birth of parthenogenetic mice that can develop to adulthood [J]. Nature,2004,428(6985):860-864
    [77]Cattanach BM, Barr JA, Evans EP, et al. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression [J]. Nat Genet,1992; 2(4):270-274
    [78]Glenn CC, Porter KA, Jong MTC, et al. Functional imprinting and epigenetic modification of the human SNRPN gene [J]. Hum Mol Genet,1993; 2:2001-2005
    [79]Sakatani T, Kaneda A, Iacobuzio-Donahue CA, et al. Loss if imprinting of Igf2 Alters Intestinal Maturation and Tumorigenesis in Mice [J]. Science,2005; 307: 1976-1978
    [80]Cassidy SB, Dykens E, Williams CA. Prader-Willi and Angelman syndromes: sister imprinted disorders [J]. Am J Med Genet,2000; 97(2):136-146
    [81]Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth [J]. PLoS One 2007; 2(9):e845
    [82]Kono T, Obata Y, Yoshimzu T, et al. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse [J]. Nat Genet,1996,13(1):91-94
    [83]Kono T, Sotomaru Y, Katsuzawa Y, et al. Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 17.5 of gestation [J]. Dev Biol, 2002; 243(2):294-300
    [84]Brevini TA, Gandolfi F. Parthenotes as a source of embryonic stem cells [J]. Cell Prolif,2008,41[Suppl 1]:20-30
    [85]Mewma-smith ED, Werb Z. Stem cell defects in parthenogenetic peri-implantation embryos [J]. Development,1995,121(7):2069-2077
    [86]Pruksananonda K, Rungsiwiwut R, Numchaisrika P, et al. Development of human embryonic stem cell derivation [J]. J Med Assoc Thai,2009; 92(4): 443-450
    [87]Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro [J]. Nat Biotechnol,2000,18(4): 399-404
    [88]Chen H, Qian K, Hu J, et al. The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores [J]. Hum Reprod,2005, (8):2201-2206
    [89]Escobedo-Lucea C, Stojkovic M. Growth of human embryonic stem cells using derivates of human fibroblasts [J]. Methods Mol Biol,2010; 584:55-69
    [90]Li B, Peng QP, Lu WY et al. Growth of human embryonic stem cells in three different feeder layers [J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2008,12 (83):1586-1590
    [91]Christian U, Shuping G, Marie C, et al. Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells [J]. Hum Reprod,2009,24:2567-2581
    [92]Ellerstrom C, Strehl R, Moya K, et al. Derivation of a xeno-free human embryonic stem cell line [J]. Stem Cells,2006,24(10):2170-2176
    [93]Xu RH, Peck RM, Li DS, et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells [J]. Nature Methods, 2005,2:185-190
    [94]Chen HF, Chuang,CY, Shieh YK, et al. Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions [J]. Hum Reprod,2009,24:1114-1125
    [95]Islam MS, Ni Z, and Kaufman DS. Use of Human Embryonic Stem Cells to Understand Hematopoiesis and Hematopoietic Stem Cell Niche [J]. Curr Stem Cell Res Ther, Mar,2010
    [96]Tecirlioglu RT, Nguyen L, Koh K, et al. Derivation and maintenance of human embryonic stem cell line on human adult skin fibroblast feeder cells in serum replacement medium [J].In Vitro Cell Dev Biol Anim, February 23,2010
    [97]Strom S, Holm F, Bergstrom R, et al. Derivation of 30 human embryonic stem cell lines-improving the quality [J]. In Vitro Cell Dev Biol Anim, March 3,2010
    [98]Zhou, D Liu T, Zhou X, et al. Three key variables involved in feeder preparation for the maintenance of human embryonic stem cells [J]. Cell Biol Int,2009,33(7): 796-800
    [99]Chin AC, Padmanabhan J, Oh SK, et al. Mitomycin C Defined and serum-free media support undifferentiated human embryonic stem cell growth [J]. Stem Cells Dev, August 17,2009
    [100]Eremeev AV, Svetlakov AV, Polstianoy AM, et al. Derivation of a novel human embryonic stem cell line under serum-free and feeder-free conditions [J]. Dokl Biol Sci,2009,426:293-295
    [101]Jensen J, Hyllner J, Bjorquist P. Human embryonic stem cell technologies and drug discovery [J]. J Cell Physiol,2009,219(3):513-519
    [102]Chapman AR. The ethics of patenting human embryonic stem cells [J]. Kennedy Inst Ethics J,2009,19(3):261-288
    [103]Cohen CB. Ethical and policy issues surrounding the donation of cryopreserved and fresh embryos for human embryonic stem cell research [J]. Stem Cell Rev, 2009,5(2):116-122
    [104]Cibelli JB, Cunnif FK, Vrana KE. Embryonic stem cells from parthenotes [J]. Methods Enzymol,2006,418:117-135
    [1]Solter D, Gearhart J. Putting stem cells to work [J]. Science,1999,283(5407): 1468-1470
    [2]Lengerke C, Kim K, Lerou P, et al. Differentiation potential of histocompatible parthenogenetic embryonic stem cells [J]. Ann N Y AcadSci,2007,1106(1): 209-218
    [3]Lin G, Ou YQ, Zhou X, et al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure [J]. Cell Res,2007,17(12):999-1007
    [4]Mai Q, Yu Y, Li T, et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts [J]. Cell Res,2007,17(12):1008-1019
    [5]Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts [J]. Cloning Stem Cells, 2007,9(3):432-449
    [6]Kim K, Ng K, Rugg-Gunn PJ, et al. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer [J]. Cell Stem Cell,2007,1(3):346-352
    [7]Hao J, Zhu W, Sheng C, et al. Human parthenogenetic embryonic stem cells:one potential resource for cell therapy [J]. Sci China C Life Sci,2009,52(7):599-602
    [8]Cibelli JB, Cunniff K, Vrana KE. Embryonic stem cells from parthenotes [J]. Methods Enzymol,2006,418:117-135
    [9]Loser P, Schirm J, Guhr A, et al. Human embryonic stem cell lines and their use in international research [J]. Stem Cells,2010,28(2):240-246
    [10]彭美莲,黄荷凤,金帆.卵母细胞人工孤雌激活研究进展[J].浙江大学学报(科学版),2007,36(3):307-311
    [11]Yi YJ, Park CS. Parthenogenetic development of porcine oocytes treated by ethanol, cycloheximide, cytochalasin B and 6-dimethylaminopurine [J]. Anim Reprod Sci,2005,86(3-4):297-304
    [12]Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y, Kohmoto K. Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos [J]. Development,1991,113:789-795
    [13]Fulka J, Jr., Jung T, Moor RM. The fall of biological maturation promoting factor (MPF) and histone H1 kinase activity during anaphase and telophase in mouse oocytes [J]. Mol Reprod Dev,1992,32(4):378-382
    [14]Naito K, Toyoda Y. Fluctuation of histone H1 kinase activity during meiotic maturation in porcine oocytes [J]. J Reprod Fertil,1991,93(4):467-473
    [15]Collas P, Sullivan EJ, Barnes FL. Histone H1 kinase activity in bovine oocytes following calcium stimulation [J]. Mol Reprod Dev,1993,34(2):224-231
    [16]Kikuchi K, Naito K, Daen FP, et al. Histone H1 kinase activity during in vitro fertilization of pig follicular oocytes matured in vitro [J]. Theriogenology,1995, 43(2):523-532
    [17]Gasparrini B, Boccia L, Rosa AD, et al. Chemical activation of buffalo(Bubalus bubalis) oocytes by different methods:effects of aging on post-parthenogenetic development [J]. Theriogenology,2004,62(9):1627-1637
    [18]Sengoku K, Takuma N, Miyamato T, et al. Nuclear dynamics of parthenogenesis of human oocytes:Effect of oocyte aging in vitro [J]. Gynecol Obstet Invest, 2004,58(3):155-159
    [19]Krivokharchenko A, Popova E, Zaitseva I, et al. Development of parthenogenetic rat embryos [J]. Biol Repod,2003,68(3):829-836
    [20]Sun XS, Yue KZ, Zhou JB, et al. In vitro spontaneous parthenogenetic activation of golden hamster oocytes [J].Theriogenology,2002,57(2):845-851
    [21]李媛,陈子江,赵立新,等.未成熟卵母细胞体外成熟后体外受精-胚胎移植成功分娩一例[J].中华男科学,2002,8(1):70-71
    [22]Hall V J, Compton D, Stojkovic P, et al. Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer [J]. Hum Reprod,2007,22(1): 52-62
    [23]Lin H, Lei J, Wininger D, et al. Multilineage potential of homozygous stem cells derived from metaphase Ⅱ oocytes [J]. Stem Cells,2003,21(2):152-161
    [24]Marchant J. Human eggs supply 'ethical' stem cells [J]. Nature,2006, 441(7097):1038
    [25]Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells,2007, 9(3):432-449
    [26]Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 [J]. Cell, 1998,95(3):379-391
    [27]Kono T. Genomic imprinting is a barrier to parthenogenesis in mammals [J]. Cytogenet Genome Res,2006,113(1-4):31-35
    [28]Stevens LC, Vamum DS, Eicher EM. Viable chimaeras produced from normal and parthenogenetic mouse embryos [J]. Nature,1977,269(5628):515-517
    [29]Fundele R, Norris ML, Barton SC, et al. Systematic elimination of parthenogenetic cells in mouse chimeras [J]. Development 1989,106:29-35
    [30]Kono T, Obata Y, Wu Q, et al. Birth of parthenogenetic mice that can develop to adulthood [J]. Nature,2004,428(6985):860-864
    [31]Cattanach BM, Barr JA, Evans EP, et al. A candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression [J]. Nat Genet,1992,2(4):270-274
    [32]Glenn CC, Porter KA, Jong MTC, et al. Functional imprinting and epigenetic modification of the human SNRPN gene [J]. Hum Mol Genet,1993,2: 2001-2005
    [33]Sakatani T, Kaneda A, Iacobuzio-Donahue CA, et al. Loss if imprinting of Igf2 Alters Intestinal Maturation and Tumorigenesis in Mice [J]. Science,2005,307: 1976-1978
    [34]Cassidy SB, Dykens E, Williams CA. Prader-Willi and Angelman syndromes: sister imprinted disorders [J]. Am J Med Genet,2000,97(2):136-146
    [35]Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth [J]. PLoS One,2007,2(9):e845
    [36]Kono T, Obata Y, Yoshimzu T, et al. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse [J]. Nat Genet,1996,13(1):91-94
    [37]Kono T, Sotomaru Y, Katsuzawa Y, et al. Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 17.5 of gestation [J]. Dev Biol, 2002,243(2):294-300
    [38]Brevini TA, Gandolfi F. Parthenotes as a source of embryonic stem cells [J]. Cell Prolif,2008,41[Suppl 1]:20-30
    [39]Mewma-smith ED, Werb Z. Stem cell defects in parthenogenetic peri-implantation embryos [J]. Development,1995,121(7):2069-2077
    [40]Gepstein L. Derivation and potential applications of human embryonic [J]. Stem cells. Circ Res,2002,91(10):866-876
    [41]Cheng L, Hammond H, Ye Zh, et al. Human Adult Marrow Cells Support Prolonged Expansion of Human Embryonic Stem Cells in Culture [J]. Stem Cells, 2003,21(2):131-142
    [42]Park JH, Kim SJ, Oh EJ, et al. Establishment and Maintenance of Human Embryonic Stem Cells on STO, a Permanently Growing Cell Line [J]. Biol Reprod,2003,69(2):2007-2014
    [43]Miyamoto K, Hayashi K, Suzuki T, et al. Human Placenta Feeder Layers Support Undifferentiated Growth of Primate Embryonic Stem Cells [J]. Stem Cells,2004, 22(1):2-11
    [44]Amit M, Margulets V, Segev H, et al. Human feeder layers for human embryonic stem cells [J]. Biol Reprod,2003,68(6):2150-2156
    [45]Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro [J]. Nat Biotechnol,2000,18(4): 399-404
    [46]Chen H, Qian K, Hu J, et al. The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores [J].Hum Reprod,2005, (8):2201-2206
    [47]Escobedo-Lucea C, Stojkovic M. Growth of human embryonic stem cells using derivates of human fibroblasts [J]. Methods Mol Biol,2010,584:55-69
    [48]Li B, Peng QP, Lu WY et al. Growth of human embryonic stem cells in three different feeder layers [J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2008,12 (83):1586-1590
    [49]Christian U, Shuping G, Marie C, et al. Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells [J]. Hum Reprod,2009,24:2567-2581
    [50]Ellerstrom C, Strehl R, Moya K, et al. Derivation of a xeno-free human embryonic stem cell line [J]. Stem Cells,2006,24(10):2170-2176
    [51]Xu RH, Peck RM, Li DS, et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells [J]. Nature Methods, 2005,2:185-190
    [52]Chen HF, Chuang, CY, Shieh YK, et al. Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions [J]. Hum Reprod,2009,24:1114-1125
    [53]Chapman AR. The ethics of patenting human embryonic stem cells [J]. Kennedy Inst Ethics J,2009,19(3):261-288
    [54]Cohen CB. Ethical and policy issues surrounding the donation of cryopreserved and fresh embryos for human embryonic stem cell research [J]. Stem Cell Rev, 2009,5(2):116-122
    [55]Cibelli JB, Cunnif FK, Vrana KE. Embryonic stem cells from parthenotes [J]. Methods Enzymol,2006,418; 117-135
    [56]Martina K, Anne ML, Kelly DC, et al. Human embryonic stem cells:a source of mast cells for the study of allergic and inflammatory diseases [J]. Blood,2010; 10
    [57]Stephenson EL, Mason C, Braude PR. Preimplantation genetic diagnosis as a source of human embryonic stem cells for disease research and drug discovery [J]. BJOG,2009,116(2):158-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700