孤雌胚胎干细胞移植治疗小鼠心肌梗死的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌梗死(MI)是冠心病中最严重的一种表现,致死率和死亡率极高,严重威胁着人类的健康。临床上对MI的疗法虽然能极大地降低死亡率,但因缺血导致的大量心肌细胞坏死不可逆转,病人的预后很不理想。干细胞研究的发展给MI的治疗带来了新的方向,干细胞移植已成为治疗MI的有效手段。大量的动物实验和临床试验表明,干细胞移植到缺血心肌后可有效减小梗死面积、抑制心室重构并显著改善心脏功能。
     胚胎干细胞(ESCs)由于其发育上的全能性一直被视为干细胞治疗中理想的细胞来源,将ESCs移植到缺血心肌中虽然能再生心肌细胞并发挥对损伤心肌的修复作用,但是有生成畸胎瘤的危险。孤雌胚胎干细胞(pESCs)可为ESCs提供另外一种来源,与ESCs具有类似的分化潜能,因而也是一种良好的干细胞来源。pESCs分离自人工激活的卵子发育成的孤雌囊胚,单性来源使其具有低免疫源性,并且可绕过一些伦理争议而被接受。目前还没有关于pESCs移植用于治疗MI的相关报导,我们旨在研究pESCs直接移植到小鼠梗死心脏后的分化情况、其对缺血心肌的修复作用、对心室重构和心功能的影响以及其直接移植的安全性等问题,并探讨相关机制。
     本论文应用小鼠心肌梗死模型来探究pESCs对缺血心肌的修复作用,在实验中我们设置了分离自受精卵来源的ESCs移植组为治疗的对照组。通过结扎小鼠(n=89)左前降支冠状动脉致心肌梗死,然后分别移植2.0×10~5pESCs或ESCs,不治疗组注射等量的生理盐水,同时设不结扎LAD的假手术组(n=21)。根据不同研究目的,动物分别于7天、14天、30天和90天处死。我们发现,移植7天时,pESCs可有效增加心肌局部一些促血管生成因子的表达,并显著抑制梗死区内的白细胞浸润。较长期研究显示,移植的pESCs可迁移到梗死区内,并在缺血心肌内环境中可分化成心肌样细胞和血管样细胞,从而参与损伤心肌的修复。对于心脏功能的检测发现,pESC组的心功能得到了显著的改善,并可维持较长时期。组织学分析表面移植pESCs可有效减小梗死面积,并可抑制左室胶原沉积、室腔膨大和心肌肥大等心梗后的心室重构。血管化分析显示pESCs移植可显著增强缺血心肌内的血管密度,进而改善梗死区的血供。值得注意的是,直到30天,移植pESCs的小鼠心脏中未发现有畸胎瘤生成,而ESCs移植组则生成较高比率的畸胎瘤(6/34),但是在长期研究中(90天),pESCs治疗组出现2例心肌内畸胎瘤,说明pESCs直接移植也有一定的安全隐患。
     总之,本论文首次阐明了pESCs有望作为治疗心肌梗死的良好干细胞来源,其移植可在缺血心肌内释放旁分泌因子、能够减缓炎症反应、可分化为心肌和血管样细胞、能有效促进血管新生、可显著改善心功能和心室重构情况,并且直接移植较ESCs的致瘤性低。
Myocardial infarction (MI), one kind of the most serious symptoms of coronaryheart disease, is one of the leading causes of morbidity and mortality in the world.The clinical treatments for MI can greatly reduce the mortality, however, theprognosis is not ideal since the necrosis of large amount of cardiomyocytes due toischemic damage can not be reversed. Recent advances in stem cell biology havebrought about considerable hopes for the development of novel therapeutic strategiessuch as stem cell transplantation, which has been considered as one promising andeffective approach. A great deal of animal experiments showed that stem celladministration could effectively reduce the infarct size, restrain the cardiacremodeling and improve the heart function.
     Embryonic stem cells (ESCs) are a promising source of cardiomyocytes for cardiactherapy owing to their germline competency. Transplantation of ESCs can regeneratecardiomyocytes and repair the damaged myocardium, while, the risk of teratomaformation bothers its application. Parthenogenetic embryonic stem cells (pESCs) canprovide an alternative source for ESCs with strong differentiation capacity and mayserve as attractive candidates for regenerative medicine and stem cell therapy. pESCsare derived from artificially activated oocytes without fertilization and therefore raiseminimal ethical concerns and reduce cell immunogenicity. Since there have been noreports about the use of pESCs in MI treatment, we thought to investigate theircardiac repair capacity and focused on the differentiation, the effect on cardiacremodeling and heart function and the safety issue by intramyocardial-deliveredpESCs into acute MI-modeling mice.
     In the current study, we tested the cardiac repair effects and the safety issue ofpESCs transplantation on mouse MI model by direct comparison with those of ESCs.Mice (n=89) survived coronary ligation randomly received undifferentiated pESCs,ESCs, or saline. Sham-operated mice received no treatment (n=21). Animals weresacrificed in batches7,14,30and90days post MI on basis of different study purposes. After7days, pESCs transplantation promoted pro-angiogenic factorssecretion and reduced infiltrated leukocytes. Tissues regenerated from the engraftedpESCs in the infarcted myocardium were positive for cardiomyocyte, endothelial celland smooth muscle cell markers, indicating their cardiac and vascular differentiationin longer term studies. pESCs-treated hearts, superior to ESC group, showedprevented cardiac remodeling and enhanced angiogenesis in14and30days post MI.Heart contractile function was notably improved by administration of pESCs by30days and such benefits could be maintained three months. Furthermore, teratomafomation appeared in ESCs-treated mice in high proportion (6/34), but surprisinglynot found in pESCs-treated mice (0/30) by30days. Two intramyocardial teratomas,while, appeared in pESCs-grafted group in90days, which suggest the transplantationof pESCs was not absoultly safe.
     In conclusion, cardiac dysfunction and adverse ventricular remodeling post MIwere attenuated by pESCs transplantation, which may represent an effective andrelatively safer strategy for autologous cell therapy in females.
引文
[1] Braunwald E. Acute Coronary Syndromes A Companion to Braunwald's Heart Disease.Philadelphia, PA: Saunders/Elsevier.2011.
    [2]林曙光.当代心脏病学新进展2011.北京:人民军医出版社.2011.
    [3] Roger VL, Go AS, Lloyd-Jones DM, et al. Executive summary: heart disease and strokestatistics--2012update: a report from the American Heart Association. Circulation,2012,125(1):188-97.
    [4] Hsiao LC, Carr C, Chang KC, et al. Review Article: Stem Cell-based Therapy for IschemicHeart Disease. Cell Transplant,2012,12,[Epub ahead of print].
    [5] Akhmedov AT, Marin-Garcia J. Myocardial regeneration of the failing heart. Heart Fail Rev,2012,12,[Epub ahead of print].
    [6] Ptaszek LM, Mansour M, Ruskin JN, et al. Towards regenerative therapy for cardiacdisease. Lancet,2012,379(9819):933-42.
    [7]邹仲之.组织学与胚胎学.北京:人民卫生出版社.2002.
    [8]杨光华.病理学.北京:人民卫生出版社.2002.
    [9] Solomon SD, Pfeffer MA. Myocardial infarction, ventricular remodeling, andangiotensin-converting enzyme inhibition: Where we stand today. Am Heart J,1998,136(6):931-3.
    [10] Pfeffer MA. Left ventricular remodeling after acute myocardial infarction. Annu Rev Med,1995,46:455-66.
    [11] Chan W, Duffy SJ, White DA, et al. Acute left ventricular remodeling followingmyocardial infarction: coupling of regional healing with remote extracellular matrixexpansion. JACC Cardiovascular imaging,2012,5(9):884-93.
    [12] Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction.Experimental observations and clinical implications. Circulation,1990,81(4):1161-72.
    [13] Robbins SL, Kumar V, Cotran RS. Robbins and Cotran pathologic basis of disease.Philadelphia, PA: Saunders/Elsevier,2010.
    [14] Dimitrijevic M, Vasiljevic Z, Vuckovic-Dekic L, et al. The involvement of immunereactions in cardiac damage during acute myocardial infarction: role of cell-mediatedimmune response. Panminerva medica,1997,39(2):85-94.
    [15] Kobusiak-Prokopowicz M, Orzeszko J, Mazur G, et al. Chemokines and left ventricularfunction in patients with acute myocardial infarction. European journal of internal medicine,2007,18(4):288-94.
    [16] Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Naturereviews Cardiology,2011,8(5):292-300.
    [17] Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing andinflammation. Cardiovasc Res,2009,81(3):474-81.
    [18] Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardialinfarction. Cardiovasc Res,2002,53(1):31-47.
    [19] Kukielka GL, Hawkins HK, Michael L, et al. Regulation of intercellular adhesionmolecule-1(ICAM-1) in ischemic and reperfused canine myocardium. J Clin Invest,1993,92(3):1504-16.
    [20] Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction.International journal of cardiology,2008,130(2):147-58.
    [21] Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentiallymobilizes two monocyte subsets with divergent and complementary functions. The Journalof experimental medicine,2007,204(12):3037-47.
    [22] Tan J, Hua Q. Correlations between serum inflammation factors and left ventricularremodeling in acute ST segment elevation myocardial infarction. Yonsei medical journal,2012,53(3):501-7.
    [23] van den Akker F, Deddens JC, Doevendans PA, et al. Cardiac stem cell therapy to modulateinflammation upon myocardial infarction. Biochimica et biophysica acta,2012,12,[Epubahead of print].
    [24]裴雪涛主编.干细胞生物学.北京:科学出版社.2003.
    [25] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouseembryos. Nature,1981,292(5819):154-6.
    [26] Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line.Proc Natl Acad Sci U S A,1995,92(17):7844-8.
    [27] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived fromhuman blastocysts. Science,1998,282(5391):1145-7.
    [28] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic andadult fibroblast cultures by defined factors. Cell,2006,126(4):663-76.
    [29] Dyban AP, Noniashvili EM. Parthenogenesis in mammals. Ontogenez,1986,17(4):368-88.
    [30] Newman-Smith ED, Werb Z. Stem cell defects in parthenogenetic peri-implantationembryos. Development,1995,121(7):2069-77.
    [31] Lin H, Lei J, Wininger D, et al. Multilineage potential of homozygous stem cells derivedfrom metaphase II oocytes. Stem Cells,2003,21(2):152-61.
    [32] Brevini TA, Pennarossa G, Vanelli A, et al. Parthenogenesis in non-rodent species:developmental competence and differentiation plasticity. Theriogenology,2012,77(4):766-72.
    [33] Vrana KE, Hipp JD, Goss AM, et al. Nonhuman primate parthenogenetic stem cells. ProcNatl Acad Sci U S A,2003,100Suppl1(11):911-6.
    [34] Taylor CJ, Bolton EM, Pocock S, et al. Banking on human embryonic stem cells:estimating the number of donor cell lines needed for HLA matching. Lancet,2005,366(9502):2019-25.
    [35] Mizutani E, Jiang JY, Mizuno S, et al. Determination of optimal conditions forparthenogenetic activation and subsequent development of rat oocytes in vitro. The Journalof reproduction and development,2004,50(1):139-46.
    [36] Sritanaudomchai H, Pavasuthipaisit K, Kitiyanant Y, et al. Characterization andmultilineage differentiation of embryonic stem cells derived from a buffalo parthenogeneticembryo. Mol Reprod Dev,2007,74(10):1295-302.
    [37] Cibelli JB, Grant KA, Chapman KB, et al. Development-Parthenogenetic stem cells innonhuman primates. Science,2002,295(5556):819-12.
    [38] Liu W, Yin Y, Jiang Y, et al. Genetic and epigenetic X-chromosome variations in aparthenogenetic human embryonic stem cell line. J Assist Reprod Genet,2011,28(4):303-13.
    [39] Faucherre A, Jopling C. The heart's content-renewable resources. International journal ofcardiology,2012,[Epub ahead of print].
    [40] Bernstein HS, Srivastava D. Stem cell therapy for cardiac disease. Pediatric research,2012,71(4Pt2):491-9.
    [41] Hattori F, Fukuda K. Strategies for ensuring that regenerative cardiomyocytes functionproperly and in cooperation with the host myocardium. Experimental&molecularmedicine,2010,42(3):155-65.
    [42] Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: invitro cultivation and transplantation in diffusion chambers. Cell and tissue kinetics,1987,20(3):263-72.
    [43] Rose RA, Jiang H, Wang X, et al. Bone marrow-derived mesenchymal stromal cellsexpress cardiac-specific markers, retain the stromal phenotype, and do not becomefunctional cardiomyocytes in vitro. Stem Cells,2008,26(11):2884-92.
    [44] Orlic D, Kajstura J, Chimenti S, et al. Bone marrow stem cells regenerate infarctedmyocardium. Pediatr Transplant,2003,7Suppl3:86-8.
    [45] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-7.
    [46] Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation inpostinfarcted rat myocardium: short-and long-term effects. Circulation,2005,112(2):214-23.
    [47] Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection ofallogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A,2005,102(32):11474-9.
    [48] Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppressT-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood,2002,99(10):3838-43.
    [49] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrowstromal cells in vitro. J Clin Invest,1999,103(5):697-705.
    [50] Fukuhara S, Tomita S, Yamashiro S, et al. Direct cell-cell interaction of cardiomyocytes iskey for bone marrow stromal cells to go into cardiac lineage in vitro. J Thorac CardiovascSurg,2003,125(6):1470-80.
    [51] Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cellsimproves damaged heart function. Circulation,1999,100(19Suppl): II247-56.
    [52] Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellularcardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg,2000,120(5):999-1005.
    [53] Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to acardiomyocyte phenotype in the adult murine heart. Circulation,2002,105(1):93-8.
    [54] Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derivedcells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature,2003,425(6961):968-73.
    [55] Zhang S, Wang DC, Estrov Z, et al. Both cell fusion and transdifferentiation account for thetransformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo.Circulation,2004,110(25):3803-7.
    [56] Ishikawa F, Shimazu H, Shultz LD, et al. Purified human hematopoietic stem cellscontribute to the generation of cardiomyocytes through cell fusion. Faseb J,2006,20(7):950-2.
    [57] Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cellsgenerate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation.Nat Med,2004,10(5):494-501.
    [58] Gnecchi M, He HM, Noiseux N, et al. Evidence supporting paracrine hypothesis forAkt-modified mesenchymal stem cell-mediated cardiac protection and functionalimprovement. Faseb J,2006,20(6):661-9.
    [59] Li L, Zhang S, Zhang Y, et al. Paracrine action mediate the antifibrotic effect oftransplanted mesenchymal stem cells in a rat model of global heart failure. Molecularbiology reports,2009,36(4):725-31.
    [60] Gnecchi M, He HM, Liang OD, et al. Paracrine action accounts for marked protection ofischemic heart by Akt-modified mesenchymal stem cells. Nat Med,2005,11(4):367-8.
    [61] Ohnishi S, Sumiyoshi H, Kitamura S, et al. Mesenchymal stem cells attenuate cardiacfibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett,2007,581(21):3961-6.
    [62] Markel TA, Wang Y, Herrmann JL, et al. VEGF is critical for stem cell-mediatedcardioprotection and a crucial paracrine factor for defining the age threshold in adult andneonatal stem cell function. Am J Physiol Heart Circ Physiol,2008,295(6): H2308-14.
    [63] Crisostomo PR, Abarbanell AM, Wang M, et al. Embryonic stem cells attenuate myocardialdysfunction and inflammation after surgical global ischemia via paracrine actions. Am JPhysiol Heart Circ Physiol,2008,295(4): H1726-35.
    [64] Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genesencoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivoarteriogenesis through paracrine mechanisms. Circ Res,2004,94(5):678-85.
    [65] Waszak P, Alphonse R, Vadivel A, et al. Preconditioning enhances the paracrine effect ofmesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stemcells and development,2012,21(15):2789-97.
    [66] Yoon YS, Wecker A, Heyd L, et al. Clonally expanded novel multipotent stem cells fromhuman bone marrow regenerate myocardium after myocardial infarction. J Clin Invest,2005,115(2):326-38.
    [67] Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improvescardiac function in a rat model of dilated cardiomyopathy. Circulation,2005,112(8):1128-35.
    [68] Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrow cells cancontribute to functional improvement of the infarcted heart by protecting cardiomyocytesfrom ischemic injury. Am J Physiol Heart Circ Physiol,2006,291(2): H886-93.
    [69] Stagg J, Galipeau J. Immune plasticity of bone marrow-derived mesenchymal stromal cells.Handbook of experimental pharmacology,2007,1(80):45-66.
    [70] Du YY, Zhou SH, Zhou T, et al. Immuno-inflammatory regulation effect of mesenchymalstem cell transplantation in a rat model of myocardial infarction. Cytotherapy,2008,10(5):469-78.
    [71] Dixon JA, Gorman RC, Stroud RE, et al. Mesenchymal cell transplantation and myocardialremodeling after myocardial infarction. Circulation,2009,120(11Suppl): S220-9.
    [72] Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mousehematopoietic stem cells. Science,1988,241(4861):58-62.
    [73] Osawa M, Nakamura K, Nishi N, et al. In vivo self-renewal of c-Kit+Sca-1+Lin(low/-)hemopoietic stem cells. J Immunol,1996,156(9):3207-14.
    [74] Yeh ET, Zhang S, Wu HD, et al. Transdifferentiation of human peripheral bloodCD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth musclecells in vivo. Circulation,2003,108(17):2070-3.
    [75] Belema Bedada F, Technau A, Ebelt H, et al. Activation of myogenic differentiationpathways in adult bone marrow-derived stem cells. Molecular and cellular biology,2005,25(21):9509-19.
    [76] CE M, MH S, H R, et al. Haematopoietic stem cells do not transdifferentiate into cardiacmyocytes in myocardial infarcts. Nature,2004,428(6983):5.
    [77] Kajstura J, Rota M, Whang B, et al. Bone marrow cells differentiate in cardiac cell lineagesafter infarction independently of cell fusion. Circ Res,2005,96(1):127-37.
    [78] Rota M, Kajstura J, Hosoda T, et al. Bone marrow cells adopt the cardiomyogenic fate invivo. Proc Natl Acad Sci U S A,2007,104(45):17783-8.
    [79] Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt maturehaematopoietic fates in ischaemic myocardium. Nature,2004,428(6983):668-73.
    [80] Zhang S, Shpall E, Willerson JT, et al. Fusion of human hematopoietic progenitor cells andmurine cardiomyocytes is mediated by alpha4beta1integrin/vascular cell adhesionmolecule-1interaction. Circ Res,2007,100(5):693-702.
    [81] Ribatti D. The discovery of endothelial progenitor cells. An historical review. Leukemiaresearch,2007,31(4):439-44.
    [82] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cellsfor angiogenesis. Science,1997,275(5302):964-7.
    [83] Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascularbiology. Circ Res,2004,95(4):343-53.
    [84] Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adultendothelial progenitor cells into functionally active cardiomyocytes. Circulation,2003,107(7):1024-32.
    [85] Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation ofautologous endothelial progenitor cells for therapeutic neovascularization of myocardialischemia. Circulation,2003,107(3):461-8.
    [86] Jujo K, Ii M, Losordo DW. Endothelial progenitor cells in neovascularization of infarctedmyocardium. J Mol Cell Cardiol,2008,45(4):530-44.
    [87] Yang C, Zhang ZH, Li ZJ, et al. Enhancement of neovascularization with cord bloodCD133+cell-derived endothelial progenitor cell transplantation. Thromb Haemost,2004,91(6):1202-12.
    [88] Burlacu A, Grigorescu G, Rosca AM, et al. Factors secreted by mesenchymal stem cells andendothelial progenitor cells have complementary effects on angiogenesis in vitro. Stemcells and development,2012,12,[Epub ahead of print].
    [89] Soonpaa MH, Kim KK, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleationduring murine development. Am J Physiol,1996,271(5Pt2): H2183-9.
    [90] Anversa P, Palackal T, Sonnenblick EH, et al. Hypertensive cardiomyopathy. Myocytenuclei hyperplasia in the mammalian rat heart. J Clin Invest,1990,85(4):994-7.
    [91] Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divideafter myocardial infarction. The New England journal of medicine,2001,344(23):1750-7.
    [92] Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardialregeneration. Physiological reviews,2005,85(4):1373-416.
    [93] Leri A, Barlucchi L, Limana F, et al. Telomerase expression and activity are coupled withmyocyte proliferation and preservation of telomeric length in the failing heart. Proc NatlAcad Sci U S A,2001,98(15):8626-31.
    [94] Linke A, Muller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing,clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiacfunction. Proc Natl Acad Sci U S A,2005,102(25):8966-71.
    [95] Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent andsupport myocardial regeneration. Cell,2003,114(6):763-76.
    [96] Parmacek MS. Cardiac stem cells and progenitors: developmental biology and therapeuticchallenges. Transactions of the American Clinical and Climatological Association,2006,117(2):39-55; discussion55-6.
    [97] Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A,2003,100(21):12313-8.
    [98] Hierlihy AM, Seale P, Lobe CG, et al. The post-natal heart contains a myocardial stem cellpopulation. FEBS Lett,2002,530(1-3):239-43.
    [99] Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cellsfrom human and murine heart. Circ Res,2004,95(9):911-21.
    [100] Chimenti I, Gaetani R, Barile L, et al. Isolation and expansion of adult cardiacstem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murinehearts. Methods Mol Biol,2012,879:327-38.
    [101] Bu L, Jiang X, Martin-Puig S, et al. Human ISL1heart progenitors generate diversemultipotent cardiovascular cell lineages. Nature,2009,460(7251):113-7.
    [102] Chamuleau SA, Vrijsen KR, Rokosh DG, et al. Cell therapy for ischaemic heart disease:focus on the role of resident cardiac stem cells. Neth Heart J,2009,17(5):199-207.
    [103] Flynn A, O'Brien T. Stem cell therapy for cardiac disease. Expert Opin Biol Ther,2011,11(2):177-87.
    [104] Pfister O, Mouquet F, Jain M, et al. CD31-but Not CD31+cardiac side population cellsexhibit functional cardiomyogenic differentiation. Circ Res,2005,97(1):52-61.
    [105] Dawn B, Stein AB, Urbanek K, et al. Cardiac stem cells delivered intravascularly traversethe vessel barrier, regenerate infarcted myocardium, and improve cardiac function. ProcNatl Acad Sci U S A,2005,102(10):3766-71.
    [106] Wang X, Hu Q, Nakamura Y, et al. The role of the sca-1+/CD31-cardiac progenitor cellpopulation in postinfarction left ventricular remodeling. Stem Cells,2006,24(7):1779-88.
    [107] de Boer TP, van Veen TA, Jonsson MK, et al. Human cardiomyocyte progenitorcell-derived cardiomyocytes display a maturated electrical phenotype. J Mol Cell Cardiol,2010,48(1):254-60.
    [108] Kumar D, Kamp TJ, LeWinter MM. Embryonic stem cells: differentiation intocardiomyocytes and potential for heart repair and regeneration. Coron Artery Dis,2005,16(2):111-6.
    [109] Chen Y, Amende I, Hampton TG, et al. Vascular endothelial growth factor promotescardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol,2006,291(4): H1653-8.
    [110] Behfar A, Hodgson DM, Zingman LV, et al. Administration of allogenic stem cells dosed tosecure cardiogenesis and sustained infarct repair. Ann N Y Acad Sci,2005,1049:189-98.
    [111] Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improvescardiac function in postinfarcted rats. J Appl Physiol,2002,92(1):288-96.
    [112] Nelson TJ, Ge ZD, Van Orman J, et al. Improved cardiac function in infarcted mice aftertreatment with pluripotent embryonic stem cells. The anatomical record Part A, Discoveriesin molecular, cellular, and evolutionary biology,2006,288(11):1216-24.
    [113] Hodgson DM, Behfar A, Zingman LV, et al. Stable benefit of embryonic stem cell therapyin myocardial infarction. Am J Physiol Heart Circ Physiol,2004,287(2): H471-9.
    [114] Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murineembryonic stem cells in the heart: teratoma formation and immune response. Faseb J,2007,21(7):1345-57.
    [115] Gilbert DM. The future of human embryonic stem cell research: addressing ethical conflictwith responsible scientific research. Med Sci Monitor,2004,10(5): Ra99-Ra103.
    [116] Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from humanembryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. NatBiotechnol,2007,25(9):1015-24.
    [117] Tang C, Lee AS, Volkmer JP, et al. An antibody against SSEA-5glycan on humanpluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol,2011,29(9):829-34.
    [118] Singla DK, Sobel BE. Enhancement by growth factors of cardiac myocyte differentiationfrom embryonic stem cells: a promising foundation for cardiac regeneration. Biochemicaland biophysical research communications,2005,335(3):637-42.
    [119] Glass C, Singla DK. MicroRNA-1transfected embryonic stem cells enhance cardiacmyocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in theinfarcted heart. Am J Physiol Heart Circ Physiol,2011,301(5): H2038-49.
    [120] Pasha Z, Wang Y, Sheikh R, et al. Preconditioning enhances cell survival anddifferentiation of stem cells during transplantation in infarcted myocardium. CardiovascRes,2008,77(1):134-42.
    [121] Yoshida Y, Yamanaka S. iPS cells: a source of cardiac regeneration. J Mol Cell Cardiol,2011,50(2):327-32.
    [122] Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation ofcardiovascular cells from mouse induced pluripotent stem cells. Circulation,2008,118(5):498-506.
    [123] Nelson TJ, Martinez-Fernandez A, Yamada S, et al. Repair of acute myocardial infarctionby human stemness factors induced pluripotent stem cells. Circulation,2009,120(5):408-16.
    [124] Mauritz C, Martens A, Rojas SV, et al. Induced pluripotent stem cell (iPSC)-derived Flk-1progenitor cells engraft, differentiate, and improve heart function in a mouse model ofacute myocardial infarction. Eur Heart J,2011,32(21):2634-41.
    [125] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adulthuman fibroblasts by defined factors. Cell,2007,131(5):861-72.
    [126] Duinsbergen D, Salvatori D, Eriksson M, et al. Tumors originating from inducedpluripotent stem cells and methods for their prevention. Ann N Y Acad Sci,2009,1176:197-204.
    [127] Mali P, Ye Z, Hommond HH, et al. Improved efficiency and pace of generating inducedpluripotent stem cells from human adult and fetal fibroblasts. Stem Cells,2008,26(8):1998-2005.
    [128] Esteban MA, Wang T, Qin B, et al. Vitamin C enhances the generation of mouse andhuman induced pluripotent stem cells. Cell Stem Cell,2010,6(1):71-9.
    [129] Yoshida Y, Takahashi K, Okita K, et al. Hypoxia enhances the generation of inducedpluripotent stem cells. Cell Stem Cell,2009,5(3):237-41.
    [130] Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors isgreatly improved by small-molecule compounds. Nat Biotechnol,2008,26(7):795-7.
    [131] Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells bydirect delivery of reprogramming proteins. Cell Stem Cell,2009,4(6):472-6.
    [132] Okita K, Nagata N, Yamanaka S. Immunogenicity of induced pluripotent stem cells. CircRes,2011,109(7):720-1.
    [133] T Z, ZN Z, Z R, et al. Immunogenicity of induced pluripotent stem cells. Nature,2011,474(7350):4.
    [134] Polo JM, Liu S, Figueroa ME, et al. Cell type of origin influences the molecular andfunctional properties of mouse induced pluripotent stem cells. Nat Biotechnol,2010,28(8):848-55.
    [135] Masuda S. Risk of teratoma formation after transplantation of induced pluripotent stemcells. Chest,2012,141(4):1120-1; author reply1.
    [136] Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cellsdevelop teratoma more efficiently and faster than human embryonic stem cells regardlessthe site of injection. Stem Cells,2010,28(9):1568-70.
    [137] Hipp J, Atala A. Tissue engineering, stem cells, cloning, and parthenogenesis: newparadigms for therapy. Journal of experimental&clinical assisted reproduction,2004,1(1):3.
    [138] Kono T, Obata Y, Ogawa H.[Prevention of parthenogenesis by genomic imprinting inmammals]. Tanpakushitsu kakusan koso Protein, nucleic acid, enzyme,2004,49(13):2123-30.
    [139] Kono T. Genomic imprinting is a barrier to parthenogenesis in mammals. Cytogenetic andgenome research,2006,113(1-4):31-5.
    [140] Li C, Chen Z, Liu Z, et al. Correlation of expression and methylation of imprinted geneswith pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet,2009,18(12):2177-87.
    [141] Jelinic P, Shaw P. Loss of imprinting and cancer. The Journal of pathology,2007,211(3):261-8.
    [142] Chen Z, Liu Z, Huang J, et al. Birth of parthenote mice directly from parthenogeneticembryonic stem cells. Stem Cells,2009,27(9):2136-45.
    [143] Liu Z, Hu Z, Pan XH, et al. Germline competency of parthenogenetic embryonic stem cellsfrom immature oocytes of adult mouse ovary. Hum Mol Genet,2011,20(7):1339-52.
    [144] Kang H, Sung J, Jung HM, et al. Insulin-like growth factor2promotes osteogenic celldifferentiation in the parthenogenetic murine embryonic stem cells. Tissue engineering PartA,2012,18(3-4):331-41.
    [145] Kwak M, Hong S, Yu SL, et al. Parthenogenetic embryonic stem cells with H19siRNA-mediated knockdown as a potential resource for cell therapy. International journalof molecular medicine,2012,29(2):257-62.
    [146] Sanchez-Pernaute R, Studer L, Ferrari D, et al. Long-term survival of dopamine neuronsderived from parthenogenetic primate embryonic stem cells (Cyno-1) after transplantation.Stem Cells,2005,23(7):914-22.
    [147] Jiang H, Sun B, Wang W, et al. Activation of paternally expressed imprinted genes in newlyderived germline-competent mouse parthenogenetic embryonic stem cell lines. Cell Res,2007,17(9):792-803.
    [148] Gong SP, Kim H, Lee EJ, et al. Change in gene expression of mouse embryonic stem cellsderived from parthenogenetic activation. Hum Reprod,2009,24(4):805-14.
    [149] Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologousintracoronary mononuclear bone marrow cell transplantation in humans. Circulation,2002,106(15):1913-8.
    [150] Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells andRegeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation,2002,106(24):3009-17.
    [151] Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells andregeneration enhancement in acute myocardial infarction: final one-year results of theTOPCARE-AMI Trial. J Am Coll Cardiol,2004,44(8):1690-9.
    [152] Leistner DM, Fischer-Rasokat U, Honold J, et al. Transplantation of progenitor cells andregeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final5-yearresults suggest long-term safety and efficacy. Clinical research in cardiology: officialjournal of the German Cardiac Society,2011,100(10):925-34.
    [153] Bolli R, Chugh AR, D'Amario D, et al. Cardiac stem cells in patients with ischaemiccardiomyopathy (SCIPIO): initial results of a randomised phase1trial. Lancet,2011,378(9806):1847-57.
    [154] Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transferin patients with ST-segment elevation myocardial infarction: double-blind, randomisedcontrolled trial. Lancet,2006,367(9505):113-21.
    [155] Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrowcells in acute myocardial infarction. The New England journal of medicine,2006,355(12):1199-209.
    [156] Osterziel KJ. Improved clinical outcome after intracoronary administration ofbone-marrow-derived progenitor cells in acute myocardial infarction: final1year results ofthe REPAIR-AMI trial. Eur Heart J,2007,28(5):638.
    [157] Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer aftermyocardial infarction:5-year follow-up from the randomized-controlled BOOST trial. EurHeart J,2009,30(24):2978-84.
    [158] Horii T, Kimura M, Morita S, et al. Loss of genomic imprinting in mouse parthenogeneticembryonic stem cells. Stem Cells,2008,26(1):79-88.
    [159] Frank DU, Carter KL, Thomas KR, et al. Lethal arrhythmias in Tbx3-deficient mice revealextreme dosage sensitivity of cardiac conduction system function and homeostasis. ProcNatl Acad Sci U S A,2012,109(3): E154-63.
    [160] Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling andtherapy. Circ Res,2008,103(11):1204-19.
    [161] Liao YH, Cheng X. Autoimmunity in myocardial infarction. International journal ofcardiology,2006,112(1):21-6.
    [162] Buja LM, Vela D. Cardiomyocyte death and renewal in the normal and diseased heart.Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology,2008,17(6):349-74.
    [163] Cheng ZK, Ou LL, Zhou X, et al. Targeted migration of mesenchymal stem cells modifiedwith CXCR4gene to infarcted myocardium improves cardiac performance. Mol Ther,2008,16(3):571-9.
    [164] Min JY, Yang Y, Sullivan MF, et al. Long-term improvement of cardiac function in ratsafter infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg,2003,125(2):361-9.
    [165] Nian M, Lee P, Khaper N, et al. Inflammatory cytokines and postmyocardial infarctionremodeling. Circ Res,2004,94(12):1543-53.
    [166] Xie CQ, Zhang J, Xiao Y, et al. Transplantation of human undifferentiated embryonic stemcells into a myocardial infarction rat model. Stem cells and development,2007,16(1):25-9.
    [167] Dang CV, Resar LM, Emison E, et al. Function of the c-Myc oncogenic transcription factor.Exp Cell Res,1999,253(1):63-77.
    [168] Nadal-Ginard B, Kajstura J, Leri A, et al. Myocyte death, growth, and regeneration incardiac hypertrophy and failure. Circ Res,2003,92(2):139-50.
    [169] Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal inhumans. Science,2009,324(5923):98-102.
    [170] Kajstura J, Gurusamy N, Ogorek B, et al. Myocyte turnover in the aging human heart. CircRes,2010,107(11):1374-86.
    [171] Parmacek MS, Epstein JA. Cardiomyocyte renewal. The New England journal of medicine,2009,361(1):86-8.
    [172] Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of theneonatal mouse heart. Science,2011,331(6020):1078-80.
    [173] Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: aparadigm shift in human myocardial biology. Circ Res,2011,109(8):941-61.
    [174] Segers VFM, Lee RT. Stem-cell therapy for cardiac disease. Nature,2008,451(7181):937-42.
    [175] Hoover-Plow J, Gong Y. Challenges for heart disease stem cell therapy. Vascular health andrisk management,2012,8:99-113.
    [176] Ransohoff KJ, Wu JC. Advances in cardiovascular molecular imaging for tracking stem celltherapy. Thromb Haemost,2010,104(1):13-22.
    [177] Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nature reviewsClinical oncology,2011,8(11):677-88.
    [178] Chang YL, Chen SJ, Kao CL, et al. Docosahexaenoic acid promotes dopaminergicdifferentiation in induced pluripotent stem cells and inhibits teratoma formation in rats withParkinson-like pathology. Cell Transplant,2012,21(1):313-32.
    [179] Zhang Q, Jiang J, Han P, et al. Direct differentiation of atrial and ventricular myocytes fromhuman embryonic stem cells by alternating retinoid signals. Cell Res,2011,21(4):579-87.
    [180] Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from humanpluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl AcadSci U S A,2012,109(27): E1848-57.
    [181] Pagani FD, DerSimonian H, Zawadzka A, et al. Autologous skeletal myoblasts transplantedto ischemia-damaged myocardium in humans. Histological analysis of cell survival anddifferentiation. J Am Coll Cardiol,2003,41(5):879-88.
    [182] Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cellinjury in ischemic myocardium. Circulation,1986,74(5):1124-36.
    [183] Ii M, Nishimura H, Iwakura A, et al. Endothelial progenitor cells are rapidly recruited tomyocardium and mediate protective effect of ischemic preconditioning via "imported"nitric oxide synthase activity. Circulation,2005,111(9):1114-20.
    [184] Afzal MR, Haider H, Idris NM, et al. Preconditioning promotes survival andangiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappaBsignaling. Antioxidants&redox signaling,2010,12(6):693-702.
    [185] Chacko SM, Ahmed S, Selvendiran K, et al. Hypoxic preconditioning induces theexpression of prosurvival and proangiogenic markers in mesenchymal stem cells. Americanjournal of physiology Cell physiology,2010,299(6): C1562-70.
    [186] Wang JA, Chen TL, Jiang J, et al. Hypoxic preconditioning attenuateshypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta pharmacologicaSinica,2008,29(1):74-82.
    [187] Wisel S, Khan M, Kuppusamy ML, et al. Pharmacological preconditioning ofmesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protectshypoxic cells against oxidative stress and enhances recovery of myocardial function ininfarcted heart through Bcl-2expression. The Journal of pharmacology and experimentaltherapeutics,2009,329(2):543-50.
    [188] Tang YL, Tang Y, Zhang YC, et al. Improved graft mesenchymal stem cell survival inischemic heart with a hypoxia-regulated heme oxygenase-1vector. J Am Coll Cardiol,2005,46(7):1339-50.
    [189] Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt preventremodeling and restore performance of infarcted hearts. Nat Med,2003,9(9):1195-201.
    [190] Li W, Ma N, Ong LL, et al. Bcl-2engineered MSCs inhibited apoptosis and improved heartfunction. Stem Cells,2007,25(8):2118-27.
    [191] Song H, Kwon K, Lim S, et al. Transfection of mesenchymal stem cells with the FGF-2gene improves their survival under hypoxic conditions. Molecules and cells,2005,19(3):402-7.
    [192] Wang X, Zhao T, Huang W, et al. Hsp20-engineered mesenchymal stem cells are resistantto oxidative stress via enhanced activation of Akt and increased secretion of growth factors.Stem Cells,2009,27(12):3021-31.
    [193] Cho J, Zhai P, Maejima Y, et al. Myocardial injection with GSK-3beta-overexpressing bonemarrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardialinfarction. Circ Res,2011,108(4):478-89.
    [194] Durrani S, Haider KH, Ahmed RP, et al. Cytoprotective and proangiogenic activity ofex-vivo netrin-1transgene overexpression protects the heart against ischemia/reperfusioninjury. Stem cells and development,2012,21(10):1769-78.
    [195] Michel JB. Anoikis in the cardiovascular system: known and unknown extracellularmediators. Arteriosclerosis, thrombosis, and vascular biology,2003,23(12):2146-54.
    [196] Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials,2007,28(25):3587-93.
    [197] Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix as amodulator of the inflammatory and reparative response following myocardial infarction. JMol Cell Cardiol,2010,48(3):504-11.
    [198] Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-betasignaling in cardiac remodeling. J Mol Cell Cardiol,2011,51(4):600-6.
    [199] Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft celldeath and anti-death strategies. J Mol Cell Cardiol,2001,33(5):907-21.
    [200] Loffredo FS, Steinhauser ML, Gannon J, et al. Bone marrow-derived cell therapystimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell StemCell,2011,8(4):389-98.
    [201] Landa N, Miller L, Feinberg MS, et al. Effect of injectable alginate implant on cardiacremodeling and function after recent and old infarcts in rat. Circulation,2008,117(11):1388-96.
    [202] Christman KL, Vardanian AJ, Fang Q, et al. Injectable fibrin scaffold improves celltransplant survival, reduces infarct expansion, and induces neovasculature formation inischemic myocardium. J Am Coll Cardiol,2004,44(3):654-60.
    [203] Wang T, Wu DQ, Jiang XJ, et al. Novel thermosensitive hydrogel injection inhibitspost-infarct ventricle remodelling. Eur J Heart Fail,2009,11(1):14-9.
    [204] Kofidis T, Lebl DR, Martinez EC, et al. Novel injectable bioartificial tissue facilitatestargeted, less invasive, large-scale tissue restoration on the beating heart after myocardialinjury. Circulation,2005,112(9Suppl): I173-7.
    [205] Zhang Y, Thorn S, DaSilva JN, et al. Collagen-based matrices improve the delivery oftransplanted circulating progenitor cells: development and demonstration by ex vivoradionuclide cell labeling and in vivo tracking with positron-emission tomography.Circulation Cardiovascular imaging,2008,1(3):197-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700