ICP辅助磁控溅射制备多晶硅薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着平板显示技术的发展和人类对太阳能利用的重视,多晶硅薄膜的研究受到越来越多的关注。与传统的非晶硅薄膜相比,多晶硅薄膜有着更高的电子迁移率和更好的光电稳定性,作为平板显示器中薄膜晶体管的沟道层和硅基薄膜太阳电池的吸收层使用都表现出更加优越和稳定的性能。目前,工业上制备多晶硅薄膜的沉积技术当中,主要以化学气相沉积(CVD)为基础的热丝化学气相沉积(HWCVD)和等离子体增强化学气相沉积(PECVD)技术为主。化学气相沉积过程当中通常要使用硅烷作为反应气体;作为一种剧毒易爆的危险气体,硅烷在工业上的使用需要辅以苛刻的安全保障系统和回收处理系统,造成多晶硅的生产成本居高不下。
     磁控溅射技术是一种结构简单、成本低廉的真空沉积技术。由于不需要使用硅烷,无论是生产安全性还是成本控制上,磁控溅射都比化学气相沉积有着更大的优势。然而,普通磁控溅射在沉积硅薄膜时,由于溅射过程中的反应气体离化率较低、产生的先驱沉积物活性不够,所制备出的硅薄膜都是非晶硅。我们利用电感耦合等离子体源辅助磁控溅射沉积技术成功实现的多晶硅薄膜的低温沉积(<150℃),解决了普通磁控溅射源制备多晶硅薄膜晶化率较低的问题。
     本文第一章中,我们详细介绍了硅基薄膜在平板显示领域和太阳电池领域的应用进展,对多晶硅薄膜与非晶硅薄膜在各个领域的性能特点进行了分类比较。第一章中我们还详细讨论了现有多晶硅薄膜沉积技术的优缺点,对磁控溅射法制备多晶硅薄膜的工艺可行性进行了分析和讨论,并介绍了本文课题的研究背景。
     本文第二章中,我们详细介绍了本文所使用的电感耦合等离子体源辅助磁控溅射装置,以及用于该装置等离子体诊断的Langmuir探针。通过对Langmuir探针的诊断结果分析,我们对该装置的电感耦合等离子体源的放电特性进行了详细讨论。第二章中,我们还详细介绍了本文用于多晶硅薄膜表征的拉曼散射、X射线衍射、红外光谱、可见紫外透射光谱等分析技术的基本原理和针对硅基薄膜测试的具体分析方法。
     本文第三章中,我们重点讨论了氢气在等离子体辅助磁控溅射过程当中对多晶硅薄膜制备的影响。在固定气压条件下,我们详细分析了氢气稀释比变化对多晶硅薄膜的微结构、硅氢键合状态、硅薄膜光学带隙的影响。在此基础上,我们在不同工作气压下进行了氢气稀释比变化的多组实验,根据这些实验数据总结了氢气分压对多晶硅薄膜晶化率的影响规律。
     本文第四章中,我们首先研究了不同氢气稀释比条件下辅助等离子体源的放电功率对多晶硅薄膜制备的影响。然后利用可见光发射光谱仪(OES)我们对多晶硅薄膜制备过程的反应气体中的激发态原子的变化情况进行了详细研究。通过硅薄膜的表征结果和OES的分析结果详细讨论了ICP-MS系统制备多晶硅薄膜的晶化机制,并深入分析了电感耦合等离子体源在磁控溅射制备多晶硅薄膜的过程中所起到的作用。
     本文第五章中,我们在不同的氢气稀释比条件下研究了沉积温度对多晶硅薄膜制备的影响,将多晶硅薄膜的沉积温度降至柔性基板所要求的150℃以内,并讨论了进一步降低沉积温度所需要具备的沉积条件。在本章中,我们还详细分析和讨论了温度对多晶硅薄膜的微结构、硅氢键合状态、光学带隙的影响及其原因。
     本文第六章中,我们系统介绍了多晶硅薄膜的氧化问题,并提出了使用偏压作为氧化问题的解决方案。我们详细探讨了负偏压或者离子轰击和正偏压或者说电子轰击对多晶硅薄膜制备的影响。详细分析了离子轰击所造成的多晶硅薄膜晶化率下降、孵化层增厚等问题的原因。
     本文最后的结论中,通过各个章节的分析和论述,我们总结出了八条有关电感耦合等离子体辅助磁控溅射技术低温沉积多晶硅薄膜的研究结论,并对磁控溅射法制备多晶硅薄膜所需要进一步解决的问题提出了展望。
Hydrogenated microcrystalline silicon (μc-Si:H) thin film is a competitive material in planar display area and solar cell industry. As a channel layer in the thin film transitor (TFT) and intrinsic layer in solar cell,μc-Si:H works with more efficient electron mobility and higher photovoltaic stability. Now in industry the most popular way to depositμc-Si:H thin films is based on chemical vapor deposition (CVD), such as hot filament chemical vapor deposition (HWCVD) and plasma enhanced chemical vapor deposition (PECVD). During HWCVD and PECVD process for the growth ofμc-Si:H, it often uses toxic and explosive silane as its precursor gas, which results in high cost in the security systems and gas recycling systems.
     Magnetron sputtering with simple equipment structure, easy scalability and high safty is a promising technique for the deposition ofμc-Si:H thin films. However, most sputtering sources often exhibit low ionization which results in poor crystallinity of silicon thin films deposited by magtron sputtering. To solve this issue, we developed a plasma source assistant magnetron sputtering system which employed inductively coupled plasma as plasma source for the growth of highly crystallized silicon thin films. In this thesis, we introduced exact deposition process and material characteristics ofμc-Si:H thin films by inductively coupled plasma source assistant magnetron sputtering (ICP-MS) system.
     In Section One, we introduced the state of the art of silicon thin film applications in planar display and solar cell industries. We illustrated different techniques for synthesis ofμc-Si:H thin films and summaried their characteristics. In the end of this section, we introduced the background of our project and pointed out the advantage of our system.
     In Section Two, we presented in detail our ICP-MS system. We demonstrated the plasma diagnosis by Langmuir probe and discussed the characteristics of our plasma source. In this section we also introduced the methods we employed for the analysis of silicon thin films.
     In Section Three, we studied the effects of H2 on the growth ofμc-Si:H thin films. First we fixed the total gas pressure and increased the hydrogen dilution ratio ([H2]/[H2+Ar]) gradually from pure Ar gas to hydrogen dilution ratio of 80%. We observed the effects of hydorgen dilution ratio on the properities of deposited Si films including microstructure, Si-H bonding configurations and optical band gap. And then we mapped crystalline properties with changing gas pressures and hydrogen dilution ratios. Finally, we summarized the effects of hydrogen partial pressure on the crystllinity of Si films.
     In Section Four, we studied the effects of ICP plasma source and growth mechanism ofμc-Si:H thin films in ICP-MS system. First we illustrated the results of characteristics of Si films with changing ICP powers at three different hydrogen dilution ratios. Then we used optical emission spectroscopy (OES) to study the radicals during depositon process of Si films. Finally based on results of sample analysis and OES, we discussed the effects of ICP plasma source and growth mechanism ofμc-Si:H thin films in ICP-MS system.
     In Section Five, we studied the effects of growth temperature from 150℃to 450℃on the growth of Si films. We showed thatμc-Si:H thin films were also formed by ICP-MS deposition even at growth temperature below 150℃. And we pointed out the precondition for low temperature or even room temperature growth ofμc-Si:H thin films in ICP-MS system.
     In Section Six, we focused on effects of bias voltage on the growth ofμc-Si:H thin films in ICP-MS system. At first, we demonstrated the oxidation issue of Si thin films deposited by magnetron sputtering. Then we illustrated the effects of negative bias voltages on the growth ofμc-Si:H thin films. And we pointed both the advantage and disadvantage of ion bombardment for the growth of Si films by magnetron sputtering. Finally, we studied the effects of positive bias voltages, and further explained the effects of ion on the growth onμc-Si:H thin films in ICP-MS system.
     In the conclusion part, we summaried results from Section Two to Section Six and also the unsolved issues need to be studied in the future work.
引文
[1]Hara M. High mobility bottom gate nanocrystalline-Si thin film transistors [J]. Thin Solid Films,2011,519:3922-3924.
    [2]Takahashi E, Nishigami Y, Tomyo A, et al. Large area and high speed deposition of microcrystalline Si films by ICP with internal low-inductance antenna [J]. Jpn. J. Appl. Phys.2007,46:1280-1285.
    [3]Saboundji A, Coulon N, et al. Top-gat microcrytalline silicon TFTs processed at low temperature (<200℃) [J]. Thin Solid Films,2005,487:227-231.
    [4]Katayama M. TFT-LCD technology [J]. Thin Solid Films,1999,341:140-147.
    [5]Kim S H, Cheon J H, et al. High-performance hydrogenated amorphous silicon TFT on flexible metal foil with polyimide planarization [J]. J. Non-Cryst. Solids,2008, 354:2529-2533.
    [6]Hu M C. Knowledge flows and innovation capability:the paptenting trajectory of Taiwan's thin film transistor-liquid crystal display industry [J]. Technological Forecastig & Social Change,2008,75:1423-1438.
    [7]Kamei K and Matsuda A. Deposition of ultrapure hydrogenated amorphous silicon [J]. J. Vac. Sci. Technol. A,1999,17:113-120.
    [8]Mccormick C S, Weber C E, Abelson J R, et al. Low temperature fabrication of amorphous silicon thin films transistors by dc reactive magnetron sputtering [J]. J. Vac. Sci. Technol. A,1997,15:2770-2776.
    [9]Kamiya T, Nomura K and Hosono H. Present status of amorphous In-Ga-Zn-0 thin-film transistors [J]. Sci. Technol. Adv. Mater.,2010,11:44305 (23pp).
    [10]Park J S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices [J]. Thin Solid Films,2011, impress.
    [11]钱祥忠.高像质非晶硅薄膜晶体管液晶显示器的研究[D].成都:电子科技大学光电信息学院,2002.
    [12]Schrop R E I, Stannowski B, Rath J K. New challenges in thin film transistor (TFT) research [J]. J. Non-Cryst. Solids,2002,299-302:1304-1310.
    [13]Choi J H, et al. Giant-grain silicon (GGS) and its application to stable thin film transistor[J]. Displays,2005,26:137-142.
    [14]Palumbo G, Pennisi M. AMOLED pixel driver circuits based on poly-Si TFTs:A comparison [J]. INTEGRATION, the VLSI journal,2008,41:439-446.
    [15]Nomura K, Ohta H, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature,2004, 432:488-492.
    [16]Kamiya K and Hosono H. Electronic structures and device appl ications of transparent oxide semiconductors:what is the real merit of oxide, semiconductors [J]. Int. J. Appl. Ceram. Technol.,2005,2:285-294.
    [17]Sato A, Shimada M, et al. Amorphous In^Ga-Zn-0 thin film transistor with coplanar homojunction structure [J]. Thin Solid Films,2009,518:1309-1313.
    [18]Ito M, Miyazaki C, et al. Application of amorphous oxide TFT to electrophoretic display [J]. J. Non-Cryst. Solids,2008,354:2777-2782.
    [19]Sun Y G and Rogers J A. Inorganic semiconductors for flexible electronics [J]. Adv. Mater.,2007,19:1897-1916.
    [20]Hara M. High mobility bottom gate nanocrystalline-Si thin-film transistors [J]. Thin Solid Films,2011,519:3922-3924.
    [21]Kim S W, Choi D L. Nanocrystalline silicon fabrication by conventional plasma enhanced chemical vapor deposition for bottom gate thin film transistor [J]. Materials Letters,2010,64:1975-1977.
    [22]Juang M H, Hu P S, Jang S L. Formation of polycrystalline-Si thin-film transistors with tunneling field-effect-transistor structure [J]. Thin Solids Films, 518:3978-3981.
    [23]Zhou X, Pfeiffer M, et al. Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping [J]. Appl. Phys. Lett.,2002, 81:922-924.
    [24]Chu T Y, Chen J F, et al. Highly efficient and stable inverted bottom-emission organic light emitting devices [J]. Appl. Phys. Lett.,2006,89:53503(3pp)
    [25]Mac Donald W. Engineered films for display technologies [J]. J. Mater. Chem.,2004, 35:420-423.
    [26]Choi M C, Kim Y K, Ha C S. Polymers for flexible displays:from material selection to device applications [J]. Prog. Polym. Sci.,2008,33:581-630.
    [27]MacDonald W, Rollins K, et al. New developments in polyester film for plastic electronics [J]. SID Dig.,2003,34:264-267.
    [28]Komoda T, Ichihara T, et al. Favrication of a 7.6-in.-diagonal prototype bal listic electron surface-emitting display on a glass subtrate [J]. J. Soc. Inf. Display, 2004,12:29-35.
    [29]Komoda T, Honda Y, et al. Development of low temperature process of ballistic electron surface-emitting display (BSD) on glas substrate [J]. SID Symposium Digest of Technical Papers,2002,33:1128-1131.
    [30]Koshida N, et al. Device Applications of Silicon Nanocrystals and Nanostructures [M]. Springer Science+Business Media, LLC 2009.
    [31]Advanced Technologies Development Laboratory, Panasonic Electric Works, Ltd, Japan. Nanocrystalline silicon technology and its novel device application to ballistic electron surface-emitting display device (BSD) [R]. Advanced Display Technology Forum, Taipei,2005.
    [32]Koshida N, Ohta T, et al. Ballistic electron emission from quantum-sized nanosilicon diode and its applications [J]. Current Opinion in Solid State and Materials Science,2011,15:183-187.
    [33]Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies [J]. Renewable and Sustainable Energy Reviews,2011,15:1625-1636.
    [34]Aberle A R. Thin-film solar cells [J]. Thin Solid Films,2009,517:4706-4710.
    [35]Fuyuki T. Reserch status in thin-film crystalline Si solar cells [J]. Current Applied Physics,2001,1:515-519.
    [36]Avrutin V, Izyumskaya N, Morkoc H. Semiconductor solar cells:recent progress in terrestrial applications [J]. Superlattices and Microstructures,2011, 49:337-364.
    [37]Goetzberger A, et al. Photovoltaic material, history, status and outlook [J]. Materials Science and Engineering R,2003,40:1-46.
    [38]Diehl W, et al. Thin film solar cell technology in Germany [J]. Surface and Coating Technology,2005,193:329-334.
    [39]Mercaldo L V, et al. Thin film silicon photovoltaics:architectural perspectives and technological issues [J]. Allied Energy,2009,86:1836-1844.
    [40]Tawada Y, et al. Mass productions of thin film silicon PV modules [J]. Solar Energy Materials and Solar Cells,2003,78:647-662.
    [41]Staebler D L and Wronski C R. Reversible conductivity changes in discharge-produced amorphous Si [J]. Appl. Phys. Lett.,1977,31:292-294
    [42]Matsuda A. Microcrystalline silicon:growth and device application [J]. J. Non-Cryst. Solids,2004,338-340:1-12.
    [43]Wronski C R, at al. Thin-film Si:H-based solar cells [J]. Vacuum,2008, 82:1145-1150.
    [44]Shah A V, et al. Thin-film silicon solar cells:a review and selected trends [J]. Solar Energy Materials and Solar cells,1995,38:501-520.
    [45]Meier J, et al. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior [J]. Appl. Phys. Lett.,1994,65:860-862.
    [46]Rath J K, et al. Application of hot-wire chemical vapor-deposited Si:H films in thin film transisitors and solar cells [J]. Thin Solid Fi lms,2001,395:320-329.
    [47]Klein S, et al. Microstrytalline silicon films and solar cells deposited by PECVD and HWCVD [J]. Solar Energy,2004,77:893-908.
    [48]Wohllebe A, et al. Crystallization of amorphous Si films for thin film solar cells [J]. J. Nor-Cryst. Solids,1998,925-929.
    [49]Reber S, et al. Crystalline silicon thin-film solar cell-rescent results at Fraunhofer ISE [J]. Solar Energy,2004,77:865-875.
    [50]Saha J K, et al. Rapic crystallization of amorphous silicon urilizing a very-high-frequency microplasma jet for Si thin-film solar cells [J]. Solar Energy Materials and Solar Cells,2009,93:1154-1157.
    [51]Schropp R E I and Rath J K, Li H. Growth mechanism of nanocrystalline silicon at the phase transition and its application in thin film solar cells [J]. J. Cryst. Growth,2009,311:760-764.
    [52]Mukhopadhyay S, et al. Light induced degradation in nanocrystalline Si films and related solar cells:role of crystalline fraction [J]. Solar Energy Marterials and Solar Cells,2009,93:674-679.
    [53]冯团辉.利用快速热退火法制备多品硅薄膜[J].人工晶体学报,2005,34:353-398.
    [54]王军.多晶硅薄膜的工艺研究[J].材料热处理里学报,2004,25:4-7.
    [55]刘传珍.金属诱导法低温多晶硅薄膜的制备与研究[J].半导体学报,200l,22:61-65.
    [56]陈一匡.铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征[J].物理学报,2004.53:582-586.
    [57]庞宏杰,等.非晶硅薄膜激光晶化及其结构分析.应用激光,2007,27:18-21.
    [58]Song I H, et al. Low temperature poly-Si TFTs for display application [J]. Current Applied Physics,2003,3:363-366.
    [59]Wiesmann H, et al. a-Si:H produced by high-temperature thermal decomposition of silane [J]. J. Appl. Phys.,1979,50:3752-3754.
    [60]Mahan A H. Solar cell research and development using the hot wire CVD process [J]. Solar Energy,2004,77:931-938.
    [61]Bauer S, et al. p-i interface engineering and i-layer contron of hot-wire a-Si:H based p-i-n solar cells using in-site ellipsometry [J]. Solar Energy Materials and Solar cells,1996,43:413-424.
    [62]Schroeder B, et al. Current status of the themo-catalytic (hot-wire) CVD of thin silicon films for photovoltaic applications [J]. Thin Solid Films,2001, 395:298-304.
    [63]Schropp R E I. Present status of micro-and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition [J]. Thin Solid Films,2004, 451-452:455-465.
    [64]Matsumura H. Summary of reserch in NEDO Cat-CVD project in Japan [J]. Thin Solid Films,2001,395:1-11.
    [65]Lien S Y, et al. Tungsten filament effect on electronic properties of hot-wire CVD silicon films for heterojunction solar cell application [J]. Thin Solid Films, 2009,517:4720-4723.
    [66]Matsumura H. Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon [J]. J. Appl. Phys.,1989,65:4398-4404.
    [67]Franz D, et al. Rapid deposition of hydrogenated microcrystalline silicon by a high current DC discharge [J]. Thin Solid Films,2001,383:11-14.
    [68]Saito K, et al. High efficiency a-Si:H alloy cell deposited at high deposition rate [J]. J. Non-Cryst. Solids,1993,164-166:689-692.
    [69]Sasaki K. Fundamental properties of ECR plasma CVD and hydrogen-induced low temperature Si epitaxy [J]. Thin Solid Films,2001,395:225-229.
    [70]Kondo M and Matsuda A. Low temperature growth of microcrystalline silicon and its application to solar cells [J]. Thin Solid Films,2001,383:1-6.
    [71]Rath J K, et al. Fabrication of thin film silicon solar cells on plastic substrate by very high frequency PECVD [J]. Solar Energy Materials and Solar cells,2010, 94:1534-1541.
    [72]Rudiger J, et al. VHF plasma processing for in-line deposition systems [J]. Thin Solid Films,2003,427:16-20.
    [73]Fujiwara H, et al. Depth profiling of silicon-hydrogen bonding mods in amorphous and microcrystalline Si:H thin films by real-time infrared spectroscopy and spectroscopic ellipsometry [J]. J. Appl. Phys.,2002,91:4181-4190.
    [74]Shimizu S, et al. A highly stabilized hydrogenated amorphous silicon film having very low hydrogen concentration and improved Si bond networ [J]. J. Appl. Phys. 2005,97:33522-33525.
    [75]Setshuhara Y, et al. Development of internal-antenna-driven large-area RF plasma sources using muliple low-inductance antenna units [J]. Surface and Coatings Technology,2003,174-175:33-39.
    [76]Lee Y J, et al. Reduction of the electrostatic coupling in a large-area internal inductively coupled plasma source using a multicusp magnetic field [J]. Appl. Surf. Lett.,2004,85:1677-1679.
    [77]Reinig P, et al. Pulsed dc magnetron-sputtering of microstalline silicon [J]. Thin Solid Films,2002,403-404:86-90.
    [78]Reinig P, et al. Crystalline silicon films grown by pulsed dc magnetron sputtering [J]. J. Non-Cryst. Solids,2002,299-302:128-132.
    [79]Gerbi J E and Abelson J R. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment [J]. J. Appl. Phys.,2007,101:63508-63512.
    [80]Boo J H, et al. High rate deposition of poly-Si thin films at low temperture using a new designed magnetron sputtering source [J]. Surface and Coatings Technology, 2000,131:211-215.
    [81]Zhao Z X, et al. Nanocrystalline silicon thin films prepared by RF sputtering at low temperature and heterojunction solar cell [J]. Material Letters,2004, 58:3963-3966.
    [82]于化丛.氢化纳米硅(nc-Si:H)薄膜太阳电池研究[D].上海:上海交通大学物理系,2005.
    [83]Xu J, et al. Characterization of CNx films prepared by twinned ECR plasma source enhanced DC magnetron sputtering [J]. Thin Solid Films,2001,390:107-112.
    [84]Gao P, et al. Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering [J]. Surface and Coatings Technology,2007,201:5298-5301.
    [85]营井秀郎.等离子体电子工程学[M].北京:科学出版社,2002.
    [86]Meziani T, et al. Design of a magnetic-pole enhanced inductively coupled plasma source [J]. Plasma Source Sci. Technol.,2001,10:276-283.
    [87]Suzuki K, et al. Power transfer efficiency and mode jump in an inductive RF discharge [J]. Plasma Source Sci. Technol.,1998,7:13-20.
    [88]陆文琪.等离子体实验与诊断[R].大连:大连理工大学,物理实验教程,2006.
    [89]Chen F F. Langmuir Probe Diagnostics [R]. Korea:Mini-Course on Plasma Dignostics, IEEE-ICOPS meeting,2003.
    [90]Hopwood J and Qian F. Mechanisms for highly ionized magnetron sputtering [J]. J. Appl. Phys.,1995,78:758-765.
    [91]Helmersson U, et al. Ionized physical vapor deposition (IPVD):a review of technology and applications [J]. Thin Solid Films,2006,513:1-24.
    [92]Ryan K R and Graham I G. Ionic collision processes in mixtures of hydrogen and rare gases [J]. J. Chem. Phys.,1973,59:4260-4271.
    [93]Kushner M J. A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon [J]. J. Appl. Phys.,1988, 63:2532-2551.
    [94]Abelson J R, et al. Hydrogen release kinetics during reactive magnetron sputter deposition of a-Si:H:an isotope labelin study [J]. J. Appl. Phys.,1994, 76:1856-1860.
    [95]Kanemitsu Y, et al. Microstructure and optical properties of free-standing porous silicon films:size denpendence of absorption spectra in Si nanometer-size crystallites [J]. Phys. Rev. B,1993,48:2827-2830.
    [96]Bustarret E, et al. Exeriment determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy [J]. Appl. Phys. Lett.,1988, 52:1675-1677.
    [97]Viera G, et al. Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy [J]. J. Appl. Phys.,2001,90:4175-4173.
    [98]Cheng Q J, et al. Effective control of nanosrtuctured phases in rapid, room temperature synthesis of nanocrystalline Si in high-density plasmas [J]. Crystal Growth and Design,2009,9:2863-2867.
    [99]晋勇,等.X射线衍射分析技术[M].北京:国防工业出版社,2008.
    [100]Morales M, et al. Structural and microsructural charaterization of nanocrystalline silicon thin films obtained by radio-frequency magnetron sputtering [J]. J. Appl. Lett.,97,2004:34307(13pp).
    [101]方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2003.
    [102]Brodsky M H, Cardona M, Cuomo J J. Infrared and Raman spectra of the silicon-hydrogen bonds in amrophous silicon prepared by glow discharge and sputtering [J]. Phys. Rev. B,1977,16:3556-3571.
    [103]Lucovsky G, et al. Structrual interpretation of the vibrational spectra of a-Si:H alloys [J]. Phys. Rev. B,19:2064-2073.
    [104]Langford A A, et al. Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon [J]. Phys. Rev. B,1992,45:13367-13377.
    [105]Manfredotti C, et al. Influence of hydrogen-bonding configurations on the physical properties of hydrogenated amorphous silicon [J]. Phys. Rev. B,1994, 50:18046-18053.
    [106]Maley N. Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys [J]. Phys. Rev. B,1992,46:2078-2085.
    [107]罗志,等.氢化非晶硅薄膜中氢含量及键合模式的红外分析[J].物理学报,2003,52:169-174.
    [108]Viera. G, et al. Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy [J]. J. Appl. Phys.,2001,90:4175-4183.
    [109]Guo L H, et al. Low-temperature growth of crystalline silicon on a chlorine-terminated surface [J]. Appl. Phys. Lett.,1999,75:3515-3517.
    [110]黄锐,等.氢稀释对多晶硅薄膜结构特性和光学特性的影响[J].物理学报,2006,55:2523-2528.
    [111]Shirai T, et al. Surface chemistry and preferential crystal orietation on the H and Cl terminated silicon surface [J]. J. Appl. Phys.,2007,101:33531-33538.
    [112]Watanabe S. Chemical structure of dihydride phase on saturated H-chemisorbed Si surfaces [J]. J. Chem. Phys.,2000,113:2423(7pp).
    [113]Hi gash i G S, et al. Ideal hydrogen termination of the Si(111) surface [J]. Appl. Phys. Lett.,1990,56:656-658.
    [114]Stryahi lev D, et al. The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in uc-Si:H [J]. J. Non-Cryst. Solids, 2000,266-269:166-170.
    [115]Sidhu L S, et al. Infrared vibration spectra of hydrogenated, deuterated, and tritiated amorphous silicon [J]. J. Appl. Phys.,1999,85:2574-2578.
    [116]Smets A H M, et al. Vacancies and voids in hydrogenated amorphous silicon [J]. Appl. Phys. Lett.,2003,82:1547-1549.
    [117]Touir T, et al. Local Si-H bonding environment in hydrogenated amorphus silicon films in relation to structural inhomogenities[J]. Phys. Rev. B,1999, 59:10076-10083.
    [118]陈光化,等.新型电子薄膜材料[M].北京:化学工业出版社,2002.
    [119]Yu W, et al. Influence of substrate tempertature on growth of a-Si:H films by reactive facing target sputtering deposition [J]. Sci. China Phys. Mech. Astron., 2010,53:807-811.
    [120]Futako W, et al. Wide band gap amorphous silicon thin films prepared by chemical annealing [J]. J. Appl. Phys.,1999,85:812-818.
    [121]Mahan A H, et al. On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon [J]. J. Appl. Phys.,2004,96:3818-3826.
    [122]Maley N and Lannin L S. Influence of hydrogen on vibrational and optical properties of a-Si1xHx alloys [J]. Phys. Rev. B,1987,36:1146-1152.
    [123]Das D and Bhattacharya K. Characterization of the Si:H network during transformation from amorphous to micro-and nanocrytalline structures [J]. J. Appl. Phys.,2006,100:103701-103708.
    [124]Chen Y S, et al. Study of amorphous incubation layers during the growth of microcrystalline silicon films under different deposition conditions [J]. Chin. Phys. B,2010,19:87206 (5pp).
    [125]Mullerava J, et al. Microstructure of hydrogenated silicon thin films prepared from silane diluted with hydrogen [J]. Appl. Surf. Sci.,2008,254:3690-3695.
    [126]Robertson J. Crystallization of silicon ideas [J]. Nature,2002,418:30-31.
    [127]Cabarrocas P P, et al. Microcrystalline silicon growth by the layer-by-layer technique:long term evolution and nucleation mechanisms [J]. J. Non-Cryst. Solids, 1996,198-200:871-874.
    [128]Tsu D V, et al. Effect of hydrogen dilution on the structure of amorphous silicon alloys [J]. Appl. Phys. Lett.,1997,71:1317-1319.
    [129]Matsuda A. Growth mechanism of microcrystalline silicon obtained from reactive plasmas [J]. Thin Solid Films,1999,337:1-6.
    [130]Fujiwara H, Kondo M, Matsuda A. Depth profiling of silicon-hydrogen bonding modes in amrophous and microcrystalline Si:H thin films by real-time infrared spectroscopy and spectroscopic ellipsometry [J]. J. Appl. Phys.,2002, 91:4181-4191.
    [131]Guo L H, et al. Low-temperature growth of crystalline silicon on a chlorine-terminated surface [J]. Appl. Phys. Lett.,1999,75:3515-3517.
    [132]Robertson J. Deposition mechanism of hydrogenated amorphous silicon [J]. J. Appl. Lett.,2000,87:2608-2617.
    [133]Perrin J, et al. Surface reaction probabilitieds and kinetics of H, SiH3, Si2H5, CH3, and C2H5 duiring depostion of a-Si:H and a-C:H from H2, SiH1, and CH1 discharges [J]. J. Vac. Sci. Technol. A,1998,16:278-289.
    [134]Doughty D A, et al. Surface reaction probility of film-producing radicals in si lane glow discharges [J]. J. Appl. Phys.,1990,67:6220-6228.
    [135]Doughty D A and Gallagher A. Spatial distribution of a-Si:H film-producing radicals in silane rf glow discharges [J]. J. Appl. Phys.,1990,67:139-145.
    [136]Saitoh K, et al. Role of the hydrogen plasma treatment in the layer-by-layer deposition of microcrytalline silicon [J]. Appl. Phys. Lett.,1997,71:3403-3405.
    [137]Solomon I, et al. Plasma deposition of microcrystalline silicon:the selective etching model [J]. J. Non-Cryst. Solids,1993,164-166:989-992.
    [138]Tsai C C, et al. Control of silicon network structure in plasma deposition [J]. J. Non-Cryst. Solids,1989,114:151-153.
    [139]Remes Z, et al. Silicon network relaxation in amorphous hydrogenated silicon [J]. Phys. Rev. B,1997,56:710-713.
    [140]Sriraman S, et al. Mechanism of hydrogen-induced crystallization of amorphous silicon [J]. Nature,2002,418:62-65.
    [141]Robertson J. Thermodynamic model of nucleation and growth of plasma deposited microcrystalline silicon [J]. J. Appl. Phys.,2003,93:731-735.
    [142]Lee G H and Yoon J H. Growth of crystalline grains in microcrystalline silicon films [J]. Phys. Rev. B,2006,73:193302(3pp).
    [143]Yang Y H, et al. Subsurface hydrogenated amorphous silicon to uc-hydrogenated silicon transformation during magnetron sputter deposition determined by spectroscopic ellispsometry [J]. Appl. Phys. Lett.,1994,65:1769-1771.
    [144]Ricard A. Reactive plasma [M]. SFV Eidtions (english version),1996.
    [145]Makihara H, et al. Effect of the hydrogen partial pressure ratio on the properties of uc-Si:H films prepared by rf magnetron sputtering [J]. Vacuum,2000,59:785-791.
    [146]Geng Z C, et al. Atomic hydrogen determination in medium-pressure microwave discharge hydrogen plasma via emission actinometry [J]. Plasma Sources Sci. Technol.,2005,14:76-82.
    [147]Jovicevic S, et al. Excessive Balmer line broadening in microwave-induced discharges [J]. J. Appl. Phys.,2004,95:24-29.
    [148]Tatarova E, et al. Hydrogen Balmer-a line broadening in a microwave plasma source [J]. Plasma Sources Sci. Technol.,2007,16:52-56.
    [149]Jovicevic S, et al. Spectroscopic study of hydrogen Balmer lines in a microwave-induced discharge [J]. J. Appl. Phys.,2009,105:13306-13311.
    [150]Mills R L, et al. Comparison of excessive Balmer a line broadening of inductively and capacitively coupled RF, microwave, and glow-discharge hydrogen plasmas with certain catalysts [J]. IEEE Transactions on Plasma Science,2003,31:338-355.
    [151]Bharathi P, et al. Signature of fast H atoms from cathode glow region of a dc discharge [J]. Physics of plasma,2009,16:53504-53513.
    [152]Abelson J R. Plasma deposition of hydrogenated amorphous silicon:studies of the growth surface [J]. Appl. Phys. A,1993,56:493-512.
    [153]Videnovic I R, et al. Spectroscopic investigations of a cathode fall region of the Grimm-type glow discharge [J]. Spectrochimica Acta Part B,1996,51:1707-1731.
    [154]Bogaerts A and Gijbels R. Effect of small amounts of hydrogen added to argon glow discharges:hybrid Monte Carlo-fluid model [J]. Phys. Rev. B,2002,65:56402 (15pp).
    [155]Nunomura S and Kondo M. Characterization of high-pressure capacitively coupled hydrogen plasmas [J]. J. Appl. Phys.,2007,102:93306-93312.
    [156]Cheng Q J, et al. Rapic, low-temparature synthesis of nc-Si in high-density, non-equilibrium plasmas:enabling nanocrystallinity at very low hydrogen dilution [J]. J. Mater. Chem.,2009,19:5134-5140.
    [157]Cheng Q J, et al. Effective control of nanostructured phased in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas [J]. Crystal Growth and Design,2009,9:2863-2867.
    [158]Choi S G, et al. Effect of plasma source power on the nanocrystallization of silicon thin films by reactive particle beam assisted chemical vapor deposition [J]. Ceramics International,2011, inpress.
    [159]Song B C, et al. Reactive particle beam based depostion process of nano-crystalline si lion thin film at low temperature for the flexible AM-OLED backplane [J]. Thin Solid Films,2010,518:6299-6303.
    [160]Katiyar H, et al. Hydrogen-surface reactions during the growth of hydrogenated amorphous silicon by reactive magnetron sputtering:a real time kinetic study by in situ infrared absorption [J]. J. Appl. Phys.,1995,77:6247-6256.
    [161]Nuruddin A, et al. Surface reaction probability in hydrogenated amorphous silicon growth [J]. J. Appl. Phys.,1994,76:3123-3129.
    [162]Fedders P A. Some theoretical aspects of hydrogen motion in a-Si:H [J]. Phys. Rev. B,2000,61:15797-15803.
    [163]Nickel N H, et al. Hydrogen migration in polycrystalline silicon [J]. Phys. Rev. B,1996,53:7550-7561.
    [164]Su Y S and Pantelides S T. Diffusion mechanism of hydrogen in amorphous silicon:ab initio molecular Dynamics simulation [J]. Phys. Rev. Lett.,2002,88:165503(4pp).
    [165]Norberg R E, et al. Non-bonded hydrogen in a-Si:H [J]. J. Non-Cryst. Solids,1998, 227-230:124-127.
    [166]Baum J, et al. Multiple-quantum NMR study of clustering in hydrogenated amorphous silicon [J]. Phys. Rev. Lett.,1986,56:1377-1380.
    [167]Carlos W E and Taylor P C.'H NMR in a-Si [J]. Phys. Rev. B,1982,26:3605-3616.
    [168]Poura P, et al. Calorimetry of dehydrogenation and dangling-bond recombination in several hydrogenated amorphous silicon materials [J]. Phys. Rev. B,2006, 73:85203(15pp).
    [169]Han D, et al. Hydrogen structures and the optoelectronic properties in transition films from amorphous to microcrystalline silicon prepared by hot-wire chemical vapor deposition [J]. J. Appl. Phys.,2003,93:3776-3783.
    [170]Hasegawa S, et al. Effects of deposition temperature on polycrystalline silicon films using plasma-enhanced chemical vapor deposition [J]. J. Appl. Phys.,1998, 84:584-588.
    [171]Shen S C, et al. Far-infrared absorption of pure and hydrogenated a-Ge and a-Si [J]. Phys. Rev. B,1980,22:2913-2919.
    [172]Ouweans J D, et al. Interpretation of the silicon-hydrogen stretching doublet in a-Si:H hydrogenated amorphous silicon [J]. Appl. Phys. Lett.,1994,64:204-206.
    [173]Ouwens J D and Schropp R E I. Hydrogen microstructure in hydrogenated amorphous silicon [J]. Phys. Rev. B,1996,54:17759-17762.
    [174]Mahan A H, et al. Si-H bonding in low hydrogen content amorphous silicon films as probed by infrared spectroscopy and x-ray diffraction [J]. J. Appl. Phys.,2000, 87:1650-1658.
    [175]Lucovsky G, et al. Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films [J]. Phys. Rev. B,1983,28:3225-3233.
    [176]Tsu D V, Lucovsky G, Davidson B N. Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiO1:H(0    [177]Andres E S, et al. Bonding configuration and density of defects of SiOxHythin films deposited by the electron cyclotron resonance plasma method [J]. J. Appl. Phys.,2003,94:7462-7469.
    [178]Yeh J L and Lee S C. Structrual and optical properties of amorphous silicon oxynitride [J]. J. Appl. Phys.,1996,79:656-663.
    [179]Fujiwara H, Kondo M, Matsuda A. Depth prof iling of silicon-hydrogen bonding modes in amorphous and microcrystalline Si:H thin films by real-time infrared spectroscopy and spectroscopic ellipsometry [J]. J. Appl. Phys.,2002,91: 4181-4190.
    [180]Tolstoy V P, Chernyshova I V, Skryshevsky V A. Handbook of infrared spectroscopy of ultrathin films [M]. New Jersey:John Wiley & Sons, Inc.,2003.
    [181]Bounouh Y, et al. Influence of annealing on the hydrogen bonding and the microstructure of diamondlike and polymerlike hydrogenated amorphous carbon films [J]. Phys. Rev. B,1995,51:9597-9605.
    [182]Fanchini G, et al. Vibrational properties and microstructure of reactively sputtered hydrogenated carbon nitrides [J]. J. Appl. Phys.,2002,91:1155-1165.
    [183]Thornton J A. The microstructure of sputter-deposited coatings [J]. J. Vac. Sci. Technol. A,1986,4:3059-3065.
    [184]Messier R, et al. Revised structure zone model for thin film physical structure [J]. J. Vac. Sci. Technol. A,1984,2:500-503.
    [185]Messier R. The nano-world of thin films [J]. Journal of Nanophotonics,2008, 2:21995 (21pp).
    [186]黄代绘,等.单品硅衬底材料的消光衍射[J].半导体学报,2004,25:1269-1272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700