中国对虾(Penaeus chinensis)孵化腺细胞的免疫细胞化学及其超微结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国对虾(Penaeus chinensis)的早期胚胎发育到一定阶段后必须从卵壳中孵化出来才能进一步发育,而孵化必须依赖于孵化酶(Hatching Enzyme,HE)对卵壳的降解才能完成。孵化腺细胞(Hatching Gland Cells,HGCs)是孵化酶的特异性分泌细胞,它们还是一类孵化前的特定时期出现、孵化后的特定时期消失的一时性细胞(a transient type of cells)。由于动物HE具有高度保守的氨基酸序列,因此许多动物的HGCs均可特异性地被GST-UVS.2抗体识别。为了查清甲壳类动物孵化腺细胞的分化规律,本文以中国对虾的早期胚胎为材料利用GST-UVS.2抗体和辣根过氧化物酶标记的羊抗兔第二抗体对孵化腺细胞的分化时相及其超微结构特征进行了研究。
     免疫组织化学反应结果显示,典型的HGCs开始出现于受精后约17小时(孵化前15小时)的胚胎中,一般呈圆形或卵圆形,内含深染的孵化酶原颗粒,其起始分化的部位弥散分布于整个胚体;随发育进程的延续,HGCs的数量逐渐增多,细胞逐渐变大,所含酶原颗粒的浓度也越来越大,并开始向胚胎的前端和背部体表处迁移;至胚胎临近孵化时,HGCs的数量、体积及所含酶原颗粒的浓度达到顶峰,主要集中在头部和背部体表处;胚胎完成孵化后,HGCs所含酶颗粒浓度变淡,细胞也变小,在孵化后10小时的胚胎中孵化腺细胞在胚胎中呈全身弥散分布,孵化后15小时,孵化腺细胞聚缩并沿头胸部的体腔分布;在孵化后20小时孵化酶颗粒已基本消失殆尽。因此,对虾HGCs是一种在孵化前15小时开始出现、到胚胎孵化后20小时消失的一时性细胞。
     通过对中国对虾受精后32小时(孵化前5小时)和受精后39小时(孵化后2小时)受精卵的透射电镜观察到:2000倍下,观察到孵化前5小时胚体内存在大量卵黄脂滴和正在发育中的肌丝结构,HGCs沿体表分布,呈不规则形状,部分HGCs有微绒毛结构,部分HGCs表面呈不规则的凸起状,孵化后2h的胚胎HGCs中含有空泡状结构。4000-6000倍下,观察到两个时期的HGCs内含有较
Hatching enzyme (HE), synthesized in hatching gland cells (HGCs), plays vital roles in animal hatching. Immunocytochemical techniques employing anti-GST-UVS.2 antiserum, prepared from Xenopus HE and with specificity to Penaeus chinensis HE, were first used to investigate the differentiation and variability of hatching gland cells (HGCs) in the hatching process of embryos of marine shrimp, Penaeus chinensis, in this study. HGCs with immunoreactivity to anti-GST-UVS.2 antiserum were identified, for the first time, in shrimp embryos during hatchingprocess.Immunocytochemical staining results showed that: HE-positive immunoreactivity is really specific to Penaeus chinensis HE, and its appearance and disappearance are closely correlated with the hatching process of Penaeus chinensis; Penaeus chinensis HGCs, first appeared in embryos 15 hours before hatching and disappeared 20 hours after hatching, were also a transient type of cells, with an existence period of 35 hours; the back portion of Penaeus chinensis embryo is probably the initial position of HE secretion, and likely to be the main position of HE secretion as well; the appearance of HGCs is in a synchronous mode from places all over the embryos, and their disappearance is also in a synchronous mode; the number of HGCs increased gradually along with embryo development process and reached a maximum number at hatching. Contrarily, the number of HGCs decreased gradually after hatching, and HGCs disappeared 20 hours after hatching. However, the intensity of HE-positive reaction was almost at the same level at the period of HGCs'presence. Therefore, it can concluded that marine shrimp Penaeus chinensis HGCs, as a transient type of cells, first appeared in embryos 15 hours before hatching and disappeared in embryos 20 hours after hatching, and with distinguished patterns of appearance, disappearance and distribution in embryos. All these findings indicate that HGC is a kind of transient type of cells, which first appeared all over the body of embryo 15 hours before hatching, and disappeared 20 hours after hatching.
    By the ultrastructure study of the marine shrimp embryos, we find some muscle fibril and more yelk distributing the whole embryo; HGCs which form in ovum and rotundity posited in the surface of the body and some HGCs develop the micro-floccus structure; there are abnormity salient on the HGC surface before secreting zymogen granules, whereafter secreting there will develop vacuole in the HGC; the nucleolus of HGC is relatively larger than common cells and organelles such as endoplasm、 ribosome and mitochondria are very abundantly, as magnify the HGC, we find more nuclear pore complexes; there are much electron dencity unequal aymogen granules of roundish in 0.3μm ~0.5μm distributed in the HGCs.
引文
樊廷俊:非洲爪蟾两种孵化酶分子对卵黄膜作用机制的探讨。动物学报,2000,46(3):308-313。
    李凌,樊廷俊:卤虫(Artemia salina)孵化腺细胞分化时相的免疫细胞化学研究。实验生物学报,2004,37(2):157-164
    楼允东:鱼类的孵化酶。动物学杂志,1965,7 (3):97-101
    王蓉晖:草鱼孵化腺超微结构及孵化酶形成与释放的研究。水生生物学报,1997,21(1):64-69
    张天荫,翟玉梅,封树芒,潘忠宗,刘廷礼:鲤胚胎孵化腺细胞。水生生物学报,1991,15(1):53-56
    张志峰,廖承义,王海林,马英杰:中国对虾胚胎发育的研究。水产学报,1997,21(2):201-205
    Anderson E. The formation of the primary envelope during oocyte differentiation in teleosts. J Cell Biol, 1967, 35: 193-212
    Armstrong PB. Mechanism of hatching in Fundulus heteroclitus. Biol Bull, 1936, 71: 407
    Berrill NJ. The mosaic development of the ascidian egg. Biol Bull, 1932, 63: 381-386
    Cloud JG. Deoxycorticosterone-induced precocious hatching of teleost embryos. J Exp Zool, 1981, 216: 197-199
    Cooper KW. Demenstration of a hatching secretion in Rana pipiens Schreber. Proc Natl Acad Sci U. S. A, 1936, 22: 433-434
    D'Aniello A, de Vincentiis M, Di Fiore MM, Scippa S. Hatching enzyme from the sea-squirt Ciona intestinalis: purification and properties. Biochim Biophys Acta, 1997, 1339 (1) : 101-12
    Davis D, Behmer DJ. Hatching success of lake whitefish eggs in heated water. Prog Fish Cult, 1980, 42: 215-217
    Denuce JM, Thijssen FJW. Les proteases de la glande de electrin des teleost: Application de la technique du substrate-film. Arch Biol, 1975, 86: 391-398
    DiMichele L, Taylor M H. The mechanism of hatching in Fundulus heteroc-litus: development and physiology. J Exp Zool, 1981, 217: 73-79
    Dumont JN, Brummett AR. The vitelline envelope, chorion, and micripyle of Fundulus heteroclitus eggs. Gamete Res, 1980, 3: 25-44
    Fan T. J. and Katagiri Ch. The mode of action on vitelline envelope of Xenopus hatching enzyme as revealed by its two molecular forms. Zool Sci, 1997, 14 (1) : 101~104.
    Flugel H. Licht unt electronenmikroskopische Untersuchungen an Oocyten und Eiern einiger Knochenfische. Z. Zellforsch. Mikrosk. Anat, 1967, 83: 82-11
    Gulidov MV. and Popova K. S. The influence of the elevated oxygen concentrations on the survival and hatching of bream (Abramis brama L) embryos. Vopr Ikhtiol, 1977, 17:
    ??188-191
    Gulidov MV. Embroynic development of pike (Esox lucius L.) at different oxygen concentrations. Vopr Ikhitol, 1969,9:1046-1058
    Hagenmaier HE. The hatching process in fish embryos.. Characterization of the hatching protease (Chorionase) from the perivitelline fluid of the rainbow trout, Salmo gairdnerir Rich, as a metalloenzyme: Willhelm Roux Arch Entwicklungsmech Org, 1974b,175:157-162
    Hagenmaier HE. Zum schlupfprozess bei fischen. VI. Entwicklung, struktur and funktio der schlupfdrusenzellen bei der regenbogenforelle, salmo gairdneri rich. Z Morphol Tiere, 1974c, 79:233-244
    Hayes FR. The hatching mechanism of salmon eggs. J Exp Zool, 1974, 289: 357-373
    Hibbard H. The hatching of the squid. Biol Bull, 1937, 73:385
    Hoshi M, Numakunai T, Sawada,H. Evidence for participation of sperm proteinases in fertilization of the solitary ascidian, Halocynthia roretzi:Effect of protease inhibitors. Dev Biol, 1981,86:117-121
    Inohaya K, Yasumasu S, Araki K, et al. Species-dependent migrating of fish hatching gland cells that express astacin-like proteases in common. Dev Growth Differ, 1997, 39(2): 191-197
    Inohaya K, Yasumasu S, Ishimaru M, et al. Temporal and spatial patterns of gene expression for the hatching enzyme in the teleost embryo, Oryzias latipes. Dev Biol, 1995,171:374-385
    Inohaya K, Yasumas S, Yasumasu I, et al. Analysis of the origin and development of hatching gland cells by transplantation of the embryonic shield in the fish, Oryzias latipes. Dev Growth Differ, 1999,41(5):557-566
    Inukai T, Kunihiro I, Kashioka T. Hatching mechanism of dog salmon. Zool Mag, 1939, 52:108
    Ishida J. An enzyme dissolving the fertilization membrane of sea-urchin eggs. Annot Zool Jpn, 1936,15:453-457
    Ishida, J. An enzyme dissolving the fertilization membrance of sea-urchin eggs. Annot Zool Jpn, 1936,15:453-457
    Iuchi I, Hamazaki T, Yamagami K. Mode of action of some stimulants of the hatching enzyme secretion in fish embryos. Dev Growth Differ, 1985, 27: 573-581
    Iuchi I, Yamagami K. Induction of a precocious secretion of the hatching enzyme in the rainbow trout embryo by electric stimulation. Zool Mag, 1976a, 85:273-277
    Iuchi I, Yamagami K. Major glycoproteins solubilized from the teleostean egg membrane by the action of the hatching enzyme. Biochim Biophys Acta, 1976b, 453:240-249
    Kafatos FC, Williams CM. Enzymatic mechanism for the escape of certain moth from their cocoons. Science, 1964,146:538-540
    Kaighn MEA biochemical study of the hatching process in Fundulus hete- roclitus. Dev Biol, 1964,9:56-80
    Katagiri Ch, Maeda R, Yamasika R, Mita K, Sargent T, Yasumasu S. Molecular cloning of Xenopus hatching enzyme and its specific expression in hatching gland cells. Int J Dev Biol,1997, 41(1):19-25
    Kerr JG. The external features in the development of Lepidosiren paradoxa, Fitz. Philos Trans R. Soc London SerB, 1900,192:299-330
    Kitamura Y, Katagiri C. Characterization of the hatching enzyme from embryos of an anuran amphibian, Rana pirica. Biochim Biophys Acta, 1998,1387(1-2): 153-64
    Lepage T, Gache C. Early expression of a collagenase-like hatching gene in the sea urchin embryo. EMBOJ, 1990, 9:3003-3012
    Lonning S. Comparative electron microscopic studies of teleostean eggs with special reference to chorion. Sarsia, 1974,49:41-48
    Luczynski M. A technique for delaying embryogenesis of vendace Coregonus albula, L.) eggs in order to synchronize mass hatching with optimal conditions for lake stocking. Aquaculture, 1984b, 41:113-117
    Luczynski M. Improvement in the efficiency of stocking lakes with larvae of Coregonus albula L. by delaying hatching. Aquaculture, 1984a, 41:99-111
    Luczynski M, Hosaja M, Dabrowski K. Hatching gland cells in Coregoninae embryos. Zangew Zool, 1986,73:63-73
    Marion MB. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem, 1976,72:248-254
    Milkman R. Controlled observation of hatching in Fundulus heteroclitus. Biol Bull. (Woods Hole, Mass.). 1954,107:300
    Nomura K, Tanaka H, Kikkawa Y, Yamaguchi M, Suzuki N. The specificity of sea urchin hatching enzyme (envelysin) places it in the mammalian matrix metalloproteinase family. Biochemistry 1991 ,30(25):6115-23
    Moriwaki I. The mechanism of escape of the fry out of the egg chorion in the dog salmon.Rep.Hokkaido Fish, 1901
    Needham J. "Chemical Embroyology." Cambridge Univ. Press, Lodon and New York.
    Ohzu E, Kusa M. Amino acid composition of the egg chorion of rainbow trout. Annot Zool. Jpn, 1981,54:241-244
    Ouji M, Iga T. On the special affinity to some dyes of granules of the hatching gland cells in carp embryos. Zool Mag, 1961, 70:356-360
    Owers NO, Blandau RJ. In "The Biology of the Blastocyst". Ed by R.J. Blandau, Univ. Chicago Press, Cicago and London ,1971, pp,207-223
    Roe JL, Lennarz WJ. Biosynthesis and secretion of the hatching enzyme during sea urchin embryogenesis. J Biol Chem 1990 ,265(15):8704-11
    Rosenthal H, Iwai T. Hatching glands in herring embryos. Mar Ecol Prog Ser, 1979,1:123-127
    Sato SM, Sargent TD. Molecular approach to dorsoanterior development in Xenopus laevis. Dev Biol. 1990 ,137(1):I35-41
    Sawada H, Yamazaki K, Hoshi M. Trypsin-like hatching protease from mouse embryos: evidence for the presence in culture medium and its enzymatic properties. J Exp Zool, 1990,254(1):83-7
    Schoots AFM, De Bont RG, Van Eys GJ, et al. Evidence for a stimulating effect of prolactin on teleostean hatching enzyme secretion. J Exp Zool, 1982a, 219:129-132
    Schoots AFM, Meijer RC, Denuce JM. Dopaminergic regulation of hatching in fish embryos. Dev Biol, 1983,100:59-63
    Schoots AFM, Opstelten RJG, Denuce JM. Hatching in the pike, Esox lucius L: Evidence for a single hatching enzyme and its immunocytochemical localization in specialized hatching gland cells. Dev Biol, 1982b, 89:48-55
    Schoots AFM, Sackers RJ, Overkamp PSG, et al. Hactching in the teieost, Oryzias latipes: limited proteolysis causes envelope swelling. J Exp Zool, 1983, 226:93-100
    Slifer EH. The origin and fate of the membranes surrounding the grasshopper egg together with some experiments on the source of the hatching enzyme. Q J Microsc [N.S], 1937,79:493-506
    Smith S. Early development and hatching in "Physiology of Fish" (d.e. Brown, ed.), 1957,1:323-359. Academic Press, New York.
    Tamori Y, Mita K, Katagiri C. Homoiogenetic regulation through the ectoderm on localized expression of the hatching gland phenotype in the head area of Xenopus embryos. Dev Growth Differ 2000 ,42(5):459-67
    Trifonova AN. La physiologie de la differentiation et de la croissance. I. Lequilibre Pasteur-meyerhof dans le development des poisons, Acta Zool, 1937,18:375-445
    Urch UA, Hedrick JL. The hatching enzyme from Xenopus laevis: limited proteolysis of the fertilization envelope. J Supramol Struct Cell Biochem. 1981,15(2):111-7
    Willemse M. Th M, Denuce JM. Hatching glands in the teleosts, Brachydanio rerio, Danio malabarius, Moemkhausia oligolepis and Barbus schuberti. Dev Growth Differ. 1973,15:169-177
    Yamagami K, Yamamoto M, Iuchi I, Taguchi S. Retardation of maturation and secretion-associated ultrastructural changes of harching gland in the medaka embryos incubated in air. Annot ZoolJpn, 1983, 56:266-274
    Yamagami K. A method for rapid and quantitative determination of the hatching enzyme (chorionase) activity of the Medaka, Oryzias latipes. Annot. Zool. Jpn, 1970, 43:1-9
    Yamagami K. Mechanism of hatching in fish. Academic Press, Int. 1988, 7: 446-499
    Yamamoto M, Iuchi, Yamagami K. Ultrasyructureal changes of the teleostean hatching gland cell during natural and electrically induced precocious secretion. Dev Biol, 1979,68:162-174
    Yamamoto M, Yamagami K. Electron microscopic studies on choriolysis by the hatching enzyme of the teleost, oryzias latipes. Dev Biol, 1975, 43: 313-321
    Yamamoto M. Electron microscopic of fish development. I. Fine structure of the hatching glands of embryos of the teleost, Oryzias latipes. J Fac Sci Univ Tokyo Ser 4, 1963,10:115-121
    Yamamoto, M. Hatching gland and hatching enzyme. In medaka (killfish) Biology and Strain. T Yamamoto. Keigaku Pub. Co. Tokyo. 1975, pp.73-79
    Yanai T, Ouji M, Iga T. Experimental studies on the origon of the frontal gland of amphibians. II Transplation of the neural crest. Annot ZoolJpn, 1955, 28:227-232
    Yasumasu S, Iuchi I, Yamagami K. Isolation and some properties of Low Cho- riolytic Enzyme (LCE), a component of the hatching enzyme of the hatching enzyme of the teleost Oryzias latipes. J Biochem, 1989,105:212-218
    Yasumasu S, Katows S, Hamazaki T.S, et al. Two constituent proteases of a teleostean hatching enzyme: Concurrent syntheses and packaging in the same secretory granules in discrete arrangement. Dev Biol, 1992b, 149:349-356
    Yasumasu S, Shimada H, Inohaya K, et al. Different exon-intron organization of the genes for two astacin-like proteases, high choriolytic enzyme (choriolysin H) and low choriolytic enzyme (choriolysin L), the constituents of the fish hatching enzyme. Eur J Biochem, 1996,237(3):752-758
    Yasumasu S, Yamada K, Akasaka K, et al. Isolation of cDNAs for LCE and HCE, two constituent proteases of the hatching enzyme of Oryzias latipes and concurrent expression of their mRNAs during development. Dev Biol, 1992,153:250-258
    Yoshizaki N,Katagiri C. Cellular basis for the production and secretion of the hatching enzyme by frog embryos. J Exp Zool,1975,192:203-212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700